
De novo drug design using reinforcement learning
with graph-based deep generative models

Sara Romeo Atance 1 2 Juan Viguera Diez 1 2 Ola Engkvist 1 2 Simon Olsson 2 Rocı́o Mercado 1

Abstract
Machine learning methods have proven to be ef-
fective tools for molecular design, allowing for
efficient exploration of the vast chemical space
via deep molecular generative models. Here, we
propose a graph-based deep generative model for
de novo molecular design using reinforcement
learning. We demonstrate how the reinforcement
learning framework can successfully fine-tune the
generative model towards molecules with vari-
ous desired sets of properties, even when few
molecules have the goal attributes initially. We ex-
plored the following tasks: decreasing/increasing
the size of generated molecules, increasing their
drug-likeness, and increasing protein-binding ac-
tivity. Using our model, we are able to generate
95% predicted active compounds for a common
benchmarking task, outperforming previously re-
ported methods on this metric.

1. Introduction
Deep generative models (DGM) are being applied in an
increasing amount of domains, and have successfully been
used in a number of tasks including text (McKeown, 1992),
music (Briot et al., 2017) and image (Gregor et al., 2015)
synthesis. Applications of DGMs in the chemical sciences
are also emerging with these models being used to generate
promising molecules in fields such as drug discovery and
materials design. The adoption of DGMs in chemistry has
given rise to the sub-field of generative chemistry where
the aim is to efficiently explore the vast chemical space and
identify compounds with desired properties (Chen et al.,
2018), such as new medicines (Stokes et al., 2020). For
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instance, RNNs (Segler et al., 2018; Li et al., 2018), VAEs
(Gomez-Bombarelli et al., 2016; Ma et al., 2018; Jin et al.,
2020), and GANs (Sanchez-Lengeling et al., 2017; De Cao
& Kipf, 2018) have successfully been used in generative
models for de novo molecular design.

Recent research has focused on addressing current limita-
tions by using molecular graph representations in DGMs,
where atoms and bonds in a molecule can naturally be rep-
resented as vertices and edges in a graph structure (Jiménez-
Luna et al., 2021). Here, we describe a reinforcement learn-
ing (RL) strategy for fine-tuning graph-based DGMs for
drug discovery applications. We test the proposed RL frame-
work by fine-tuning a pre-trained DGM model to favour
property profiles relevant to drug design tasks, including
increasing pharmacological activity. We quantify activity us-
ing a quantitative structure activity relationship (QSAR) pre-
dictor of dopamine receptor D2 (DRD2) activity, a widely-
used de novo design benchmark (Olivecrona et al., 2017;
Blaschke et al., 2020; Arús-Pous et al., 2020). While RL
has been applied to many string-based methods for de novo
molecular design (Olivecrona et al., 2017; Popova et al.,
2018; Guimaraes et al., 2017; Neil et al., 2018; Putin et al.,
2018), our results encourage the possibility of future work
in RL for graph-based molecular design using even more
complex design objectives.

2. Related work
There is a variety of work applying RL to deep molecular
generative models. While the majority of these models use
string-based methods (Olivecrona et al., 2017; Popova et al.,
2018; Guimaraes et al., 2017; Neil et al., 2018; Putin et al.,
2018; Blaschke et al., 2020), RL has also been applied to
select graph-based (You et al., 2018) and fingerprint-based
(Zhou et al., 2019) models. We discuss the most relevant of
these works in the subsections below.

2.1. Molecular DGMs

In addition to the aforementioned generative models, two
closely-related molecular DGMs have inspired this work.
The first is REINVENT (Blaschke et al., 2020), a string-
based DGM, which uses RNNs to generate targeted molec-
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ular strings via policy gradient RL. To take a graph-based
approach, here we use the graph-based DGMs implemented
in GraphINVENT (Mercado et al., 2021a), which use graph
neural networks (GNNs) to generate molecular graphs, and
combine them with an RL framework as in REINVENT.
Graph-based models are not only less explored for deep
molecular generation, but also allow direct learning from
the graph structure, better handling of complex molecular
ring systems, and simpler integration of 3D information
(Jiménez-Luna et al., 2021).

2.2. Graph-based DGMs using RL

Previous work applying RL to molecular DGMs which ex-
plicitly treats molecules as graphs is limited, and consists
of a graph convolutional network (GCN)-based model for
targeted molecular graph generation using policy gradient
methods (You et al., 2018).

As this work builds upon previous work, and we highlight
here the key differences and improvements. In contrast
to the graph convolutional policy network (GCPN) (You
et al., 2018), the action space used by our underlying model,
GraphINVENT, is split into 3 possible action types, while
the GCPN uses 4 possible action types, which in both cases
are concatenated to make the ‘overall’ action space. This
difference is more of a design choice, however, as ultimately
both models encode the action space similarly. Nonetheless,
while GCPN uses the GCN implementation, our models use
the gated graph neural network (GGNN) (Li et al., 2017),
which was recently reported to outperform other GNN im-
plementations in graph-based molecular generation applica-
tions (Mercado et al., 2021a). Finally, with the exception
of quantitative estimate of drug-likeness (QED) optimisa-
tion, the other design tasks explored in this work are distinct
from those explored previously; namely, the generation of
potential active molecules was not explored with the GCPN.

3. Contributions
Using policy gradient RL, we extended a graph-based DGM
for the generation of fine-tuned, drug-like molecules with
desired properties. We propose the best agent reminder
(BAR) loss and show that it significantly improves model
training. We show consistency of our results using multiple
different scoring functions to guide agents towards different
design goals.

4. Methods
Our graph-based de novo design model consists of three
main components:

1. a graph-based molecular DGM,

2. a RL framework with a memory-aware loss,

3. and the scoring model.

4.1. Graph-based molecular DGM

Following the GraphINVENT approach we use a Gated
Graph Neural Network (GGNN)-based model (Mercado
et al., 2021b). This model generates molecules by itera-
tively sampling ‘actions’ to build up an input graph. The
problem of generating a molecular graph, G, can be formu-
lated as a Markov decision process, where an agent makes
decisions sampling from the action probability distribution
(APD), which encodes the action space (see Appendix B.1).
Examples of graph construction actions are ‘add node/edge’
or ‘terminate’. The APD is predicted by the generative
model, conditioned on the current graph state.

To summarise, we build molecules using a sequence of n
actions A = {a0, a1, . . . , an−1}, where ai ∼ APDi and
f : Gi 7→ APDi. Here, f represents our GGNN-based
model, and APDi is shorthand for APD(: |Gi), where ‘:’
stands for all possible actions to take. Starting from an
empty graph G0, and ending with the final graph Gn, the
graph generation process proceeds as follows: G0 → a0 ∼
APD0 → G1 → · · · → an−1 ∼ APDn−1 → Gn.

The model is trained by minimising the Kullback-Leibler
(KL) divergence between ‘true’ and predicted APDs. The
set of chosen hyperparameters is the result of an exhaustive
search and is detailed in Appendix A.1. The best model was
selected at the epoch which minimised the validation loss
and used as the ‘prior’ in the RL framework.

4.2. Memory-aware RL framework

We build on the previously reported REINVENT algorithm
for fine-tuning (Olivecrona et al., 2017). The goal in REIN-
VENT is to update the agent policy π from the prior policy
πPrior so as to increase the expected score for the action
sequences used to build a graph. Here, the policy is parame-
terised using our graph-based model that predicts an APD
given an input graph.

The loss we propose here uses a reward shaping mechanism
(Buhmann et al., 2011). Briefly, compared to that of REIN-
VENT, we introduce a loss term which keeps track of the
best agent so far and is updated every few learning steps. By
doing so, we remind the current agent of sets of actions that
can lead to high-scoring compounds, in turn accelerating
agent learning. The best agent reminder (BAR) loss takes
the form

J(θ) =
(1− α)
N

∑
m∈M

Jmol(A,P,Am;θ)

+
α

N

∑
m̃∈M̃

Jmol(A, Ã, Ãm̃;θ). (1)

Above, α is a scaling factor that we treat as a hyperparameter.
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Figure 1. RL loop. Augmented log-likelihood refers to the second term, with the reference likelihood and the score, in Eq. 2.

P is the Prior model. A and Ã refer to the sets of actions
taken to build a molecule by the current, A, and best, Ã,
agents, respectively.M is the set of molecules m generated
by the current agent. M̃ is the set of molecules m̃ generated
by the best agent. N is the number of molecules sampled
by each model. Then, for each molecule:

Jmol(B,Ref.,B;θ) =

[logP (B)B − (logP (B)Ref. + σS(B))]2 . (2)

Above, σ is a scaling factor that we treat as a hyperpa-
rameter. Defining APDB(bi|Gi) as the probability of sam-
pling action bi given the input graph Gi, then P (B)B =∏n−1

i=0 APDB(bi|Gi) is the probability of taking the se-
quence of actions B given model B, and P (B)Ref. is the
analogous probability given by the reference model for the
same sequence of actions. S(B) is the score for the molecule
generated following actions B. The score modulates the log-
probabilities given by the reference model and ensures that
those of poorly scoring molecules are lowered relative to
those of highly scoring molecules.

The learning process (Fig. 1) consists of the following steps:

1. Initialize the current and best agents to the prior model.
For the prior, we use the pre-trained DGM.

2. Generate a batch of molecules with both the current
and the best agents, keeping track of the actions.

3. Score all generated molecules.

4. Compute the probabilities that

i. the prior model P and current agent A assign to
A, the set of actions taken by the current agent

ii. the current agent A and best agent Ã assign to Ã,
the set of actions taken by the best agent.

5. Compute the BAR loss (Eq. 1).1

6. Update the current agent parameters so as to minimise
the loss.

7. Continue the RL loop by going back to step 2 and
updating the best agent every 5 learning steps.2

4.3. Scoring model

The scoring model should be designed for each specific
optimisation task, and can range in complexity. Here, we
implemented four different scoring functions. The goals of
the scoring functions were to:

1. Change the average size (↑ or ↓) of molecules.

2. Promote ‘drug-likeness’ in molecules.

3. Promote DRD2 activity.

The first two scoring functions were used to test the opera-
tion of the RL framework. The final scoring function was
designed to be more representative of the properties one
seeks to optimise in a drug discovery project.

During scoring, molecules which are invalid, improperly
terminated and/or duplicates are assigned a score of 0. We
do not penalise undesired molecules; in this way, the model
may learn to explore undesirable molecules that may lead
to more desirable ones during the learning process.

1When computing the loss, we disregard duplicates in a batch of
sampled molecules so as to not update twice in the same direction
and encourage generation of repeated molecules. Fewer unique
molecules are generated when we include duplicates in computing
the loss.

2The best agent is updated if the average score of 1000 gener-
ated molecules is the largest observed (1000 molecules chosen as
a trade-off between speed and sufficient sampling).
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4.3.1. REDUCING AND INCREASING THE AVERAGE SIZE
OF THE MOLECULES.

On average, molecules sampled from the prior contain 26
heavy atoms. As such, we began exploring the RL frame-
work with the simple task of shifting the distribution of the
number of nodes in the sampled molecules towards smaller
and larger molecules.

We accomplished these two tasks by defining a scoring
function that creates a maximum reward for molecules with
10 and 40 heavy atoms, respectively. More specifically:

Ssize(A) =

{
0 if not {PT, valid and unique},
1− |nnodes−n?

nodes|
maxnodes−n?

nodes
otherwise,

(3)

where n?nodes is the target number of heavy atoms in sam-
pled molecules and was set to 10 or 40 for the tasks of reduc-
ing and increasing molecular size, respectively. Here, A is
the set of actions taken to build the molecule, PT stands for
properly terminated, nnodes is the number of heavy atoms
in the molecule, and maxnodes is the maximum number of
nodes allowed in the model (72 here).

4.3.2. PROMOTING DRUG-LIKE MOLECULES.

The next scoring function is based on the QED (Bickerton
et al., 2012) implementation from RDKit (Landrum):

SQED(A) =

{
0 if not {PT, valid and unique},
QED(Mol(A)) otherwise.

(4)

Here, Mol(A) refers to the molecule generated via actions
A. QED values can range between 0 and 1, with higher
values indicating a molecule is more drug-like. The goal
of this scoring function is to guide the DGM towards the
generation of more drug-like molecules, although it should
be noted that QED does not necessarily correlate with phar-
macological activity.

4.3.3. PROMOTING DRD2 ACTIVE MOLECULES.

Finally, we investigated a scoring model to fine-tune our
DGM towards the generation of drug-like, DRD2-active
molecules. Here, we made use of a QSAR model (Kotsias
et al., 2020a) to predict DRD2 activity in sampled com-
pounds, as well as the QED discussed previously:

Sactivity(A) =


1 if PT, valid, unique, QED > 0.5

and activity > 0.5,

0 otherwise.
(5)

Like QED, predicted activity ranges from 0 to 1, with 1
indicating that a molecule is likely active. However, as the
QED and QSAR models are not perfect (Bickerton et al.,
2012), we used a threshold of 0.5 to classify molecules

as either ‘active’ (QED and activity > 0.5) or ‘inactive’
(QED or activity < 0.5). We observed that, for instance, a
molecule with a predicted activity score of 0.4 is not likely
to be a ‘true’ active, and thus found a threshold of 0.5 to
work well in preventing the model from learning from bad
examples.

We compare the molecules generated using this scoring
function with a dataset of predicted DRD2 active molecules,
which consists of 3627 molecules which score 1 according
to Eq. 5. Comparison to this set allows us to evaluate if
the model can learn to generate known true DRD2 actives
having seen no previous examples, as known actives were
removed from the original training set.

4.4. Dataset details

The dataset used to train the prior was downloaded from
(Kotsias et al., 2020b) and is a subset of ChEMBL (Mendez
et al., 2018) with known DRD2 active molecules removed.
Molecules in the remaining set are made up of {H, C, N,
O, F, S, Cl, Br} and < 50 heavy atoms (Kotsias et al.,
2020c). 5 · 105 molecules were randomly selected from
it to create the training set, with 5 · 104 for validation and
5 · 104 for testing. The DRD2 ‘predicted actives’ dataset
was downloaded from (Kotsias et al., 2020b).

5. Results
5.1. Using the BAR loss function

When analysing the behaviour of the reinforcement learn-
ing framework using different values of α in the loss func-
tion (Eq. 1) with the activity scoring function (Eq. 5), we
observe that a value of α = 0.5 helps to significantly im-
prove learning (Fig. 2). As the score is discrete, the model
learns only when molecules satisfying all the desired cri-
teria are sampled, and the model does not generate many
active molecules initially (see α = 0.0 in Fig. 2). Therefore,
it is especially helpful in this setting to have introduced a
memory-mechanism to the loss via the term which depends
on the best recent agent and is modulated by α. Without this
term, the agent may forget combinations of actions which
result in high activities/scores. We found that using α = 0.5
not only accelerated and stabilised learning, but also led to
a greater fraction of predicted actives sampled.

5.2. Tuning desired properties via the scoring function

We show here some results for the scoring functions defined
above. To prove the ability of the RL framework to fine-tune
the DGM towards the generation of molecules with desired
properties, we used the scoring functions previously defined
in Eqs. 3, 4, and 5. For hyperparameters, see Appendix A.2.

In Fig. 3 we show the evolution of the average score, the
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Figure 2. Comparison of the average score of the generated
molecules as a function of learning step. The results in blue are
analogous to using the loss proposed in REINVENT (Blaschke
et al., 2020), which is recovered when α = 0.0. The results in
orange correspond to keeping contributions from the best recent
agent in the loss with α = 0.5 (Eq. 1).

fraction of valid and properly terminated molecules (those
which do not violate any chemical rule and for which the last
sampled action was ‘terminate’), and the fraction of unique
molecules (non repeated among the generated compounds)
during learning. Several observations can be made:

• Our model improves the average score of sampled
molecules using all four scoring functions. We high-
light that the model was able to learn how to generate
well-scoring molecules even when we searched for ac-
tive DRD2 molecules, of which no known true positive
examples were given during training.

• The percentage of valid and properly terminated
molecules improves during learning as we penalise
invalid and improperly terminated molecules.

• The fraction of unique molecules decreases during
learning when reducing molecular size or promoting
drug-like and active compounds. This behaviour is un-
desirable but unsurprising, as we are updating towards
a smaller chemical space.

• The results are robust as most metrics exhibit very little
noise.

We illustrate examples of molecules from the training set,
samples from the pre-trained model, and samples from the
fine-tuned models in Fig. 4. We find that all generated
molecules look reasonable although some of them may be
less stable due to the large macrocycles present in them.
In particular, less stable molecules are sampled more often
from the models which aim to increase the size and drug-
likeness of molecules. Nonetheless, our model is successful
at generating molecules using all four scoring functions. As
can be seen, there is a remarkable change in the size of

the molecules sampled when reducing and increasing the
number of atoms in the molecules, especially compared
to molecules sampled from the original GraphINVENT
model. Additionally, the model is successful when fine-
tuning molecules towards higher QED scores (Eq. 4), as
they indeed look ‘drug-like’. Finally, the results for the
activity scoring function are remarkable, as 95% of sampled
molecules are predicted to be active by the QSAR model.

We analyse further the results achieved by the most complex
scoring function (the DRD2 activity score) in Table 1. For
this experiment, we compared the fine-tuned models to the
prior as follows:

1. First, we sampled 10K molecules from the prior model.

2. Then, we sampled 10K molecules from a single fine-
tuned model.

3. Finally, we sampled and collected 1K molecules from
10 different fine-tuned models (same set of hyperpa-
rameters, but different training runs).

For each set of sampled molecules, we computed their av-
erage QED, average DRD2 activity, and how many are
predicted actives. We also computed the number of known
true actives generated by each model. We observe that both
sets of fine-tuned molecules show similar values for the first
metrics, and are substantially improved compared to the
pre-trained model. Most importantly, while the prior model
is not able to generate any known true DRD2 actives, both
fine-tuned models are indeed able to sample known actives.
Notably, when the 10K molecules come from 10 different
fine-tuned models, the number of known actives sampled is
10-fold higher than when 10K molecules are sampled from
a single model. This follows from the previous reasoning
about the RL-trained models being heavily-dependent on
the initial learning steps; as such, there is little overlap in
sets of molecules generated during different RL runs.

6. Discussion
The goal of our model is to explore the chemical space
in search of promising new molecules that demonstrate
pharmacological activity. Use of the memory mechanism
allows our model to train more smoothly, at the cost of
introducing some bias to it. However, by keeping track
of the best agent rather than the best molecules generated
(another popular memory mechanism in DGMs; see Popova
et al. 2018; Putin et al. 2018; Blaschke et al. 2020), we
believe that the model is less biased, thus able to balance
exploration and the generation of novel structures without
forgetting actions that led to good molecules.

Of all the tasks explored, our model shows particular
promise for the task of generating DRD2 actives, a pop-
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Figure 3. Learning curves for the four different scoring functions investigated. Left: Evolution of the average score of the generated
molecules during learning. Centre: Evolution of the fraction of generated molecules which are both valid and properly terminated during
learning. Right: Evolution of the fraction of unique molecules generated during learning. The values are computed in all cases for
1000 molecules, taking averages over 10 runs. The error bars correspond to the standard deviation. The hyperparameter values used are
α = 0.5 for all four scoring functions, and σ = 10 for {Reduce, Increase, and QED} and σ = 20 for Activity.

Table 1. Comparison of various evaluation metrics for three sets of
10K generated molecules: one in which all are sampled from the
pre-trained DGM without fine-tuning (Prior), another in which all
are sampled from a single fine-tuned model (Single), and another
in which 1K molecules are sampled from 10 separate fine-tuned
models and combined (Comb.). Active refers to the percentage of
molecules which have predicted QED and activity scores > 0.5.
Known true actives refers to the percentage of molecules from the
DRD2 dataset which have been re-generated by each model.

Prior Single Comb.
Average QED 0.59 0.72 0.76
Average DRD2 activity 0.03 0.92 0.94
Active (%) 1 94 97
Unique (%) 100 48 60
Active and unique (%) 1 45 58
Known true actives (%) 0.00 0.08 0.83

ular benchmark for molecular DGMs as it simulates a ‘real’
drug discovery task. Compared to previous work (Kotsias
et al., 2020c), our model is able to generate a much greater
fraction of predicted active molecules after removal of du-
plicates: 95% active compounds, compared to only 54% in
the best model from the aforementioned work. Although
the percentage of known true actives that our models are
able to recover is very small, we highlight that the DGM
has not seen any examples of known true active molecules
at any point during training and that there were no predicted
actives generated before fine-tuning. This finding suggests
that the model could be used to generate actives in a chal-
lenging but realistic drug discovery setting where little to
no actives are known.

We believe the good performance of our model is due to
the term in the BAR loss function which keeps track of the
best agent so far. By keeping track of the best agent during
training, we were able to stabilise learning and achieve bet-

ter performance for all models. We speculate the origin of
the improved performance of the BAR loss is similar to that
seen in momentum-based optimisers in stochastic gradient
descent. We leave a rigorous theoretical analysis of the loss
for future work. The trained models are robust, and show lit-
tle variation between runs in terms of the metrics of interest
(Fig. 3), and only the fraction of unique samples varies no-
tably between runs when aiming to generate DRD2 actives.
This task is extremely difficult, as it depends strongly on the
first active molecules generated by the model, which means
the sets of actives generated by a model during different
runs generally have negligible overlap.

We can compare our model to previous work, the GCPN
(You et al., 2018), for the task of QED optimisation. Here,
the authors report the top 3 QED values obtained from
molecules generated by their fine-tuned model: 0.948, 0.947,
and 0.946. Similarly, we find the top 3 QED values out
of 1000 molecules sampled by our model after QED fine-
tuning to be 0.948, 0.947, and 0.947. Furthermore, for 10
different runs of 1000 samples each, all top 3 QEDs are in
the range of 0.940-0.948. The models thus show similar
performance for this task, and suggest that 0.948 may be an
upper limit for the task of QED optimisation.

The main drawback of the proposed model is the amount of
time and computational power needed to pre-train the un-
derlying GraphINVENT model (a few days on an NVIDIA
Tesla K80); however, this is on par with that needed for
other state-of-the-art molecular DGMs (Zhang et al., 2021),
and only has to be done once per dataset. After pre-training,
fine-tuning the model with RL is comparatively quick and
requires only between 10− 40 minutes, where scoring the
model is the main bottleneck. Furthermore, the same pre-
trained model can be fine-tuned for multiple tasks, making
our model competitive with other tools.
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Some molecules generated by the models when increasing
molecular size and QED appear to have a larger fraction
of (undesirable) macrocycles and unstable moieties. Addi-
tionally, the percent valid and properly terminated does not
increase as much when fine-tuning the model towards larger
molecules as for the other scores (Fig. 3). We believe in
these cases, the model has not seen many examples on how
to predict reasonable APDs, making it difficult for it to learn
actions that lead to large, stable molecules. We do not ob-
serve this trend when reducing the size of the molecules, and
we believe it is because the model sees significantly more
small sub-graphs during pre-training. QED is an equally
challenging property to optimise as it is highly non-linear.
These challenges motivated the use of the 0.5 threshold
in Eq. 5, which proved to work well. However, exploring
better estimates of molecular stability, drug-likeness, and
synthetic accessibility in the scoring function is a possible
way to minimise the sampling of undesirable structures, and
is a topic of future work.

7. Conclusions
Here, we have used RL to develop a graph-based de novo
molecular design tool. The proposed RL framework has
shown a remarkable ability for fine-tuning the pre-trained
DGM towards production of molecules with desired sets
of properties, even in challenging situations where only a
few examples of compounds with the desired properties
were initially sampled. We have shown our model is able
to perform well in several tasks most notably promoting
the generation of DRD2 active molecules. While favouring
certain properties, our RL framework also improves other
performance metrics including increasing the percentage of
valid and properly terminated molecules, reaching validity
rates comparable to that of state-of-the-art models (Brown
et al., 2019; Polykovskiy et al., 2020; Zhang et al., 2021).

Many properties a molecule exhibits directly depend on its
molecular graph. As such, we believe the development of
graph-based methods is key for the next generation of de
novo design tools, as graphs can naturally encode structural
information. Our tool is thus an important stepping stone
towards the design of more advanced molecular DGMs
and tools which will allow scientists to efficiently traverse
the chemical space in search of promising molecules. We
believe the use of DGMs in fields like drug design has the
potential to help chemists come up with new ideas, and to
accelerate the complex process of molecular discovery.

Software and Data
Code for this work is available at https://github.
com/olsson-group/RL-GraphINVENT.
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Figure 4. Top left: Examples of molecules in the training set. Top right: Examples of molecules generated by the pre-trained model.
Centre left: Examples of molecules generated by the model after fine-tuning with the score defined in Eq. 3 for reducing the size of the
generated molecules; the value below each molecule corresponds to its number of nodes. Centre right: Examples of molecules generated
by the model after fine-tuning with the score defined in Eq. 3 for increasing the size of the generated molecules; the value below each
molecule corresponds to its number of nodes. Bottom left: Examples of molecules generated by the model after fine-tuning with the score
defined in Eq. 4 for promoting drug-like molecules (high QED); the value below each molecule corresponds to its QED. Bottom right:
Examples of molecules generated by the model after fine-tuning the pre-trained model using the score defined in Eq. 5 for promoting the
generation of drug-like, DRD2 active molecules; the numbers below each molecule corresponds to its QED (top) and activity estimate
(bottom). All molecules shown are predicted to be active (QED > 0.5 and activity > 0.5).
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gkvist, O., Chen, H., and Bjerrum, E. J. Graph networks
for molecular design. Machine Learning: Science and
Technology, 2(2):025023, 2021a.

Mercado, R., Rastemo, T., Lindelöf, E., Klambauer, G.,
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A. Hyperparameters
A.1. Generative model: GraphINVENT

hyperparameters

The GraphINVENT model consists of two main compo-
nents: the GGNN and the global readout block. The hyper-
parameter values chosen in both models are those found to
work best in the original publication (Mercado et al., 2021a).
Taking into account that, in the GGNN, the message size
must be equal to the number of hidden node features, the
effective parameters to optimise are shown in Table 2.

Table 2. Effective model parameters and their optimal values.
Parameter Value

Number of hidden node features 100
Graph embedding size 100

Hidden size of MLPs in GGNN 250
Depth of MLPs in GGNN 4

Dropout probability in GGNN 0
Number of message passes 3

Hidden size of MLPs in global readout 500
Depth of MLPs in global readout 4

Dropout probability in global readout 0

The parameter values used in the multi-layer perceptrons
(MLPs) of the GGNN are detailed in Table 3. Their weights
are initialised from Xavier uniform distributions (Glorot &
Bengio, 2010). The activation functions used are SELUs
(Klambauer et al., 2017). The number of message passes in
the message passing phase is also shown in Table 3. These
parameters relate the message passing and graph readout
parameters in the following way: hidden node features =
input features, message size = output features, and graph
embedding size = output features.

Table 3. Model hyperparameters used in the MLPs and the message
passing phase of the GGNN in GraphINVENT.

Parameter Value
Input features 100

Hidden features 250
Output features 100

Depth 4
Dropout probability 0

Message passes 3

The parameter values chosen in the MLPs of the global
readout block are detailed in Table 4. Again, weights are
initialised from an Xavier normal distribution and the activa-
tion functions are SELUs. The remaining parameters of the
MLPs are chosen as needed to encode all necessary infor-
mation for the probabilities of adding an atom, connecting
two nodes or terminating a graph. These sizes depend on

another hyperparameter, the maximum number of nodes in
molecules in a given dataset.

Table 4. Common hyperparameters used in the MLPs of the global
readout block in GraphINVENT.

Parameter Value
Hidden features 500

Depth 4
Dropout probability 0

Other parameters which need to be specified in GraphIN-
VENT are those related to the dataset and its features. We
use a ‘simple’ version of GraphINVENT which ignores aro-
matic bonds, chirality, and hydrogens (neither explicit nor
implicit). Additionally, we use canonical node orderings
and allow a maximum number of heavy atoms of 72 (largest
molecule in the DRD2 actives set).

Training of GraphINVENT is done using the Adam opti-
miser (Kingma & Ba, 2014) with no weight decay and the
OneCycleLR (Smith & Topin, 2019) learning rate scheduler
implemented in PyTorch. In the scheduler, we have used
the default parameters but disabled learning rate ‘warm-
up’. Furthermore, we take as many steps as epochs and
set the fraction of steps for increasing the learning rate to
0.05. Other parameters such as the initial and final learning
rates and the batch size must be adjusted for each specific
dataset via hyperparameter optimisation. For optimal train-
ing, we trained for 30 epochs, used an initial learning rate
of 10−4, a final learning rate of 10−7, and a batch size of
1000 sub-graphs.

A.2. RL framework hyperparameters

When training the agent, we again used the PyTorch Adam
optimiser with no weight decay and the OneCycle learning
rate scheduler (same settings as before). We found an initial
learning rate of 10−4, together with a final learning rate of
10−6, to work best during RL-based training.

A batch size of 64 molecules was used in all RL set-
tings (64 × 26 ∼ 1164 sub-graphs), except for models
in which the scoring function aimed to increase the size of
the molecules, where it was necessary to reduce the batch
size to 32 molecules (∼ 832 sub-graphs) due to memory
constraints. However, these batch sizes are comparable to
the ones used for training GraphINVENT, where the batch
size consists of 1000 sub-graphs.

The hyperparameter values used in the activity scoring func-
tion (Eq. 5) were σ = 20 and α = 0.5, and were the result
of hyperparameter optimisation. α = 0.25 and 0.75 were
also tried, though α = 0.5 was found to work best. For the
other scoring functions (Eqs. 3 and 4) we used σ = 10 and
α = 0.5, although these were not as thoroughly optimised.
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B. GraphINVENT details
B.1. Action space

GraphINVENT uses both the node- and graph-level infor-
mation to predict the action probability distribution, or APD,
in the final (global) readout block. The APD specifies how
to grow the input subgraphs, and is made up of three com-
ponents: fadd, fconn, and fterm.

fadd contains probabilities for adding a new node to the
graph. fconn contains probabilities for connecting the last
appended node in the graph to another existing node in the
graph. fterm is the probability of terminating the graph.
fadd and fconn are multi-dimensional tensors as they must
encode for a variety of properties, including which atom to
connect to, with which each atom type, the identity of the
new atom, etc. However, as the APD is a ‘vector’ property,
fadd and fconn are flattened for concatenation with fterm
before forming the final APD. The shapes/indices of the
three (unflattened) APD components are described in detail
in the original publication (Mercado et al., 2021a).

As it is a probability distribution, the APD for each graph
should sum to 1. Using the learned node and graph embed-
dings, HL and g respectively, each APD is computed as
follows:

f ′add = MLPadd,1
(
HL
)

f ′conn = MLPconn,1
(
HL
)

fadd = MLPadd,2 ([f ′add, g])

fconn = MLPconn,2 ([f ′conn, g])

fterm = MLPterm,2 (g)

APD = SOFTMAX ([fadd, fconn, fterm])

Note that in practice this is done for a mini-batch of graphs
simultaneously on a GPU.

B.2. Iterative molecular generation

To demonstrate how the APD is used in GraphINVENT, we
show a schematic of the generation loop in Figure 5.

2. Generation using GraphINVENT
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Figure 5. Schematic of the generation loop in GraphINVENT.


