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Abstract: DNA-Encoded Library (DEL) technology has emerged as an alternative method for bioactive molecule 
discovery in medicinal chemistry. It enables simple synthesis and screening of compound libraries of enormous 
size. Even though it gains more and more popularity each day, there are almost no reports of chemoinformatics 
analysis of DEL chemical space. Therefore, in this project we aimed to generate and analyze theultra-large 
chemical space of DEL. Around 2500 DELs were designed using commercially available BBs resulting in 2,5B DEL 
compounds that were compared to biologically relevant compounds from ChEMBL using Generative Topographic 
Mapping. This allowed to choose several optimal DELs covering the chemical space of ChEMBL to the highest 
extent and thus containing the maximum possible percentage of biologically relevant chemotypes. Different 
combinations of DELs were also analyzed to identify a set of mutually complementary libraries allowing to attain 
even higher coverage of ChEMBL than it is possible with one single DEL. 
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INTRODUCTION  

Identifying compounds that bind to a 

biomacromolecule and show a desired therapeutic 

effect is a fundamental step in any drug discovery 

process. The most common method to find such 

molecules is high throughput screening (HTS)1, 2. 

Since its emergence in the 1990s, HTS has 

delivered numerous lead molecules for drug 

development3. Nevertheless, this technology has 

several limitations, such as expensive robotic 

equipment and compound libraries, that are 

available mostly to large pharmaceutical 

companies4. The number of compounds that can be 

screened in one HTS campaign is usually limited 

to a million5, while the chemical space of 

synthetically accessible molecules is far larger6.  

DNA-encoded library (DEL) technology has 

partially solved these problems7. It consists of the 

creation of ultra-large libraries of DNA-encoded 

compounds using water-based combinatorial 

chemistry and their screening against soluble 

target proteins using binding affinity selection8. 

DNA-encoded compounds are molecules labeled 

with single or double-stranded DNA. The latter 

plays a role of a “barcode” that encodes 

information about the building blocks (BBs) from 

which the compounds were synthesized. This 

DNA barcode allows to quickly identify successful 

ligands bound to the protein after affinity 

selection. The creation and screening of DELs 

offer many advantages compared to the 

conventional HTS approach. First of all, they are 

usually synthesized using a combinatorial split-
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and-pool approach9 and thus allow to produce 

chemically versatile libraries of enormous size10, 

11. DEL compounds are screened all at once in a 

single vessel in contrast to individual compound 

screening in HTS8. Simple experimental setup of 

affinity selection accessible both in industry and 

university laboratories allows cheap and fast hits 

identification.12 Many successful stories of 

employing this technology were published, 

including DEL-derived hits that progressed to 

clinic9. 

However, up to this point, most efforts were 

focused on the analysis of the libraries of BBs or 

identified active compounds4. Authors were less 

keen to explore the entire chemical space covered 

by DELs because it is extremely vast. To our best 

knowledge, only one paper reported the analysis of 

DEL space using Reduced Complexity Molecular 

Frameworks (RCMF) methodology13. However, 

in that work, the analysis was limited to only four 

DELs (>5 × 108 compounds). Since DEL 

technology is actively being developed and new 

methodologies for DEL synthesis were being 

elaborated, the aforementioned pioneering work 

no longer reflects the status quo.  

This work is focused on the generation of 

possible DELs from commercially available BBs 

using a tool for DELs generation called 

eDesigner14. Since screening thousands of DELs 

containing billions of compounds is unfeasible, we 

suggest choosing the so-called “golden” DEL(s) 

that covers the chemical space of biologically 

tested compounds to the highest extent. Such a 

library would have high structural diversity and 

contain the majority of biologically relevant 

chemotypes, which is critical for the success of the 

primary screening against novel biological targets. 

It was identified by comparing the generated DEL 

space to the chemical space of biologically 

relevant ChEMBL15 compounds using Generative 

Topographic Mapping (GTM) – a very efficient 

dimensionality reduction method16. GTM has 

proved to be a powerful tool for “Big Data” 

analysis and visualization (up to 1B compounds)17. 

Notably, the prior development of quantitatively 

validated, polypharmacologically competent 

Universal Maps (uMaps) allowed us to propose a 

chemically meaningful representation of the to-

date explored drug-like chemical space.18 Only 

one of the several uMaps (uMap1, see 

corresponding article) has been used in this study 

for simplicity, but the study could be extended to 

consensus mapping on several uMaps. 

METHODS 

General workflow 

The workflow consists of seven parts, as shown in 

Figure 1. First, DEL-compatible chemical 

building blocks (BBs) were selected from the 

eMolecules and Enamine in-stock BB libraries 

described in the Data section. It was done on the 

basis of the Goldberg rule of two (Ro2)19 and 

eDesigner built-in filters for selecting DNA-

compatible BBs. Using these BBs, thousands of 

DELs were designed and generated with the help 

of eDESIGNER. The size of each DEL varied 

from 1M to 1B, but for easier and quicker analysis, 

only a representative subset of 1M compounds per 

DEL was enumerated using the random sampling 

approach. In the third step, generated compounds 

were standardized according to the protocol 

explained in the Data section. ISIDA descriptors20 

were used to represent molecular structures in a 

machine-readable form of numerical N-

dimensional vectors. They were then projected 

onto uMap1. Comparative landscapes were 

created and visualized to compare DEL 

compounds to biologically relevant molecules 

from the ChEMBL database. Then a so-called 

“golden” DEL that provides the highest coverage 

of ChEMBL chemical space was identified using 

responsibility patterns (RPs)21. To achieve even 

better coverage, complementary DELs were added 

to the “golden” one to give a “platinum” pool of 

DELs.  

BBs selection 

Before DEL design and generation, input BBs 

were filtered according to Ro2 with the help of 

SynthI22. Ro2 is a guideline to choose high-quality 

BBs that can give access to drug-like molecules19. 

According to it, BBs should contribute to the final 

molecule only structural fragments that satisfy the 

following rules: MW<200 Da, clogP<2, number of 

H-bond donors <=2, and number of H-bond 

acceptors <=4. This filtration allows to limit the 

size of DEL compounds shifting corresponding 
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libraries towards drug-like subspace of the 

chemical space. In addition to physicochemical 

properties, eDesigner built-in DNA-compatibility 

filters were also applied. The selection of building 

blocks by eDesigner is made by excluding 

compounds with unwanted functionalities that can 

lead to the reaction with water such as imines, 

benzyl halides, etc. 

 
Figure 1. Workflow of the project. The rectangles represent separa te DNA encoded libraries (DELs).  

DEL generation with eDesigner  

For the generation of chemical space of DELs, the 

eDESIGNER14 tool was used. At first, based on the 

list of the most efficient DNA-compatible reactions 

encoded in the tool (see Supporting Information of 

respective article14) and a user-provided list of 

BBs, it generates a special set of instructions for 

DEL compound enumeration called libDESIGNs. 

Each libDESIGN contains information about the 

starting headpiece (the whole DNA part for 

computational convenience is formally represented 

as a 13C atom), the reaction types, and BBs which 

will be used in them, as well as deprotection 

reactions for the final stage of DEL generation. 

There are also several restrictions that can be 

applied to control some of the properties of the 

resulting DEL. They include, for example, the 

maximum and the median value of heavy atom 

count in the generated molecules, minimum library 

size, etc. Once the libDESIGNs are created, the 

representative DELs subsets of the selected size 

can be enumerated by the LillyMol tool.23 An 

example of such enumeration is shown in Figure 2. 

The isotopic mark on the carbon atom specifies the 

place of attachment of the DNA tag. For clarity 

reasons, before physicochemical properties 

calculation and GTM analysis, the 13C atom is 

removed, therewith obtaining the compound that 

would have been resynthesized off-DNA for 

validation in case of being selected during a real 

screening campaign.  

Generative Topographic Mapping (GTM) 

In the chemical space molecules are represented as 

data points, with their position being defined by a 

vector of numerical values called descriptors. The 

main idea of GTM16 consists in inserting a flexible 

hypersurface called manifold into the high-

dimensional descriptor space with a subsequent 

projection of these data points into a 2D latent 

space grid.  

The manifold is defined by a grid of Radial 

Basis Functions (RBFs, represented by Gaussian 

functions). It generates a probability distribution 

and is fitted to maximize the likelihood of the 

training set. The probability distribution generated 

by the GTM is evaluated over another grid of 

predefined locations, termed nodes. The number of 

RBFs is the key user-defined operational 

parameters; the number of nodes controls the map's 

resolution: it impacts the rendering but not the 

model itself. The GTM algorithm “bends” the 

manifold to pass through the densest areas of the 

data cloud formed by the points representing 

molecules of the input dataset. Then, the molecules 

are projected from the high-dimensional space onto 

the 2D map by associating each molecule to the 

several closest grid nodes. The degrees of 

association of each molecule to each node of the 

grid are called “responsibilities”. The 

responsibility of a node for a compound is the 

contribution of this node to the likelihood of this 

compound. Therefore responsibilities are real 
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numbers vectors summing up to 1 over all nodes. 

Finally, the manifold is flattened out to obtain a 2D 

representation of the map with compounds 

projected onto it. 

 

 

Figure 2. Example of DEL compound generation by eDesigner. The user should provide headpiece and 

the list of BBs; an appropriate list of reactions will be selected automatically by eDesigner, and respective 

compounds are generated. The isotopic mark is placed by eDesigner in order to know the position of DNA 

attachment and is removed prior to GTM analysis and physicochemical properties.  

Based on the responsibility vectors, different 

types of landscapes can be created, where each 

node is colored using the weighted average of the 

properties of the compounds projected there. 

Properties assigned to each node are calculated as 

a weighted average of the properties of all 

residents, where weights are compound 

responsibilities to reside in this node. Depending 

on the information used for its coloration, there are 

two types of landscapes: class and property. The 

class landscape is used to analyze the distribution 

of the molecules of two classes in the chemical 

space. In this work, the class landscapes are used to 

visualize and analyze the distribution of the 

molecules of two classes – DEL (library1) and 

ChEMBL (library2) compounds. Property 

landscapes represent the distribution of molecular 

property or activity values. Using these landscapes, 

GTM can be applied for chemical space analysis, 

library comparison, or even virtual screening24.  

Universal GTM 

The concept of Universal GTM (UGTM) was 

introduced by Sidorov et al.25 and further 

developed by Casciuc et al.18 as a general-purpose 

map that can accommodate ligands of diverse 

biological targets on the same GTM manifold. A 

genetic algorithm was used to choose the best 

descriptors set and GTM operational parameters 

(number of nodes and RBFs, manifold flexibility 

controls, etc.) so as to maximize the mean 

predictive performance over hundreds of biological 

activities from ChEMBL. The resulting best 

uMap1 allowed to separate molecules by their 

activity class (active/inactive) against 618 (later 

extended to 749) biological targets, which makes it 

“polypharmacologically competent”. This map 

was built based on ISIDA atom sequence counts 

with a length of 2−3 atoms labeled by CVFF force 

field types and formal charge status20. The size of 

the map was chosen to be 41x41 nodes and the 

number of RBFs - 18x18.  
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Since the ChEMBL database is the most 

reliable source of the compounds with 

experimentally measured biological activity15, the 

universal maps trained on the ChEMBL data series 

are highly oriented towards biologically relevant 

compounds. Apart from predicting biological 

activity, these maps can also be used as frameworks 

for analyzing large chemical libraries in medicinal 

chemistry and drug design context. The uMap1  has 

been used in this project to compare biologically 

relevant compounds from ChEMBL with the 

DNA-encoded compounds. This choice was 

motivated by previous results in identifying 

biologically relevant molecules missing from the 

chemical market, as well as untested commercially 

available compounds when comparing ChEMBL 

and ZINC17.  

Responsibility patterns  

As mentioned previously, compounds are mapped 

on the GTM with certain responsibilities -

probabilities of these compounds to populate a 

specific node of the map. Since these values are 

real numbers, finding two molecules with identical 

responsibility vectors is highly improbable. This 

makes it challenging to identify structurally similar 

compounds by their responsibility vectors – they 

may be slightly different even for very similar 

compounds. To solve this problem, it was 

suggested by Klimenko et al.26 to discretize the 

vector, with all responsibility values less than 0,01 

being reassigned to zero and all others - to a number 

from 1 to 10. This discretized vector is referred to 

as Responsibility Pattern (RP) and is calculated for 

each compound according to the formula in 

Figure 3.  

Molecules whose R vectors round up to the 

same RP are considered to be grouped in the same 

cell of the chemical space and thus to form a cluster 

of similar structures24. For example, in Figure 3, a 

GTM density landscape, featuring compound sets 

associated with two different RPs is shown. Colors 

encode the cumulative sum of responsibilities of all 

compounds residing in the particular node (grey 

regions are moderately populated, while colored 

ones contain a higher number of compounds). RP1 

corresponds to the 221 indoles that contain 

additional amino and/or guanidino functional 

groups. These compounds occupy a small compact 

area of the chemical space distanced from the 

island of RP vector 2, populated by 173 naphthols, 

polyphenols, and their methyl ethers. In this work, 

RPs were used to compare each separate DEL with 

ChEMBL, i.e. to evaluate the proportion of 

ChEMBL RPs (“structural motifs”) also covered 

by a given DEL.

 

Figure 3. Left: formula for responsibility pattern (RP) calculation. Right: example of compounds sharing 

the same RPs and their position on the density landscape - a map colored by local density of compounds. 

Highly populated zones are colored in red, underpopulated ones - in grey. 
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ChEMBL coverage estimation 

First, RPs for all compounds are calculated as 

described above. Then the pairwise overlap  

 

between each DEL and ChEMBL is determined by 

dividing the number of common RPs for both 

libraries by the total number of ChEMBL RPs: 

 

𝐶ℎ𝐸𝑀𝐵𝐿 𝑅𝑃𝑠 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 % =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝐸𝑀𝐵𝐿 𝑅𝑃𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝐷𝐸𝐿

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶ℎ𝐸𝑀𝐵𝐿 𝑅𝑃𝑠
 

However, the analysis of the percentage of covered 

ChEMBL RPs does not consider the number of 

compounds corresponding to each RP, although 

different RPs can be populated differently – from 1 

to ≈12 000 compounds. As a result, increasing RP 

coverage does not necessarily mean significantly 

increasing the compound coverage. Thus the 

ChEMBL RPs coverage (%), weighted by RP 

population (the number of ChEMBL compounds 

per RP), is also used:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐶ℎ𝐸𝑀𝐵𝐿 𝑅𝑃𝑠 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 % =  
∑ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐶ℎ𝐸𝑀𝐵𝐿 𝑅𝑃𝑠 𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑛 𝐷𝐸𝐿

∑ 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑙𝑙 𝐶ℎ𝐸𝑀𝐵𝐿 𝑅𝑃𝑠
 

 

DATA  

Commercially available BBs 

A set of 450K commercially available BBs was 

provided by eMolecules Inc27. They were 

complemented by an “orthogonal” (i.e., containing 

completely different BBs) dataset of 10K 

Enamine28 in-stock BBs. Among them, only 

79,141 BBs that satisfy Ro2 and eDesigner build-

in DNA-compatibility filters were selected.  

ChEMBL (biologically tested compounds) 

ChEMBL is a database containing >2M diverse and 

biologically relevant compounds against >14K 

biological targets15. The major goal of this project 

was to find structurally diverse DELs suitable for 

primary screening. Since similar structures tend to 

have similar properties, finding a DEL containing 

compounds structurally similar to ChEMBL means 

finding a DEL that contains biologically relevant 

molecules. Such DEL will have a high potential to 

contain hit compounds. Hence,  ChEMBL 

(version 28) was used as a reference library that 

guides our choice of the best DEL for primary 

screening. First, 2 086 898 molecules were 

downloaded from ChEMBL. After standardization, 

1,853,565 unique compounds with known 

biological activities remained. The standardization 

of chemical structures was done using ChemAxon 

Standardizer29 according to the procedure 

implemented on the Virtual Screening Web Server 

of the Laboratory of Chemoinformatics in the 

University of Strasbourg.30It included 

dearomatization and final aromatization 

(heterocycles like pyridone are not aromatized), 

dealkalization, conversion to canonical SMILES, 

removal of salts and mixtures, neutralization of all 

species, except nitrogen(IV), generation of the 

major tautomer according to ChemAxon. After the 

standardization, the ISIDA fragment descriptors 

used to construct the first universal map (described 

in Experimental section 4) were calculated for all 

molecules. The same procedure was also applied to 

generated in this work DEL compounds. 

RESULTS AND DISCUSSION 

DNA-compatible BBs and reactions for DEL 

generation 

The scope of synthetic procedures used in DEL 

chemistry is limited to high-yielding DEL 

compatible reactions. Synthetic efforts to adapt 

reactions for use in DEL technology have been 

underway for several years, but the number of 

optimized for DEL chemistries is still rather 

restricted31. For example, only a few 

heterocyclisations optimized for DEL synthesis 

were described, such as benzimidazole, 
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imidazolidinone, thiazole synthesis, and some 

others32. Nevertheless, even a few reactions can 

give rise to structurally diverse DELs if abundant 

building blocks (BBs) sets are employed for their 

generation.   

 

Figure 4. Monofunctional DNA-compatible commercially available BBs. 

 

Figure 5. Bifunctional DNA-compatible commercially available BBs. 

In this work, 79,141 mono-, bi-, and trifunctional 

BBs were used for DEL generation. They were 

obtained by applying the Goldberg rule of two and 

built-in eDesigner DEL-compatibility filters to the 

combined in-stock library provided by eMolecules 

and Enamine. Prevalent monofunctional BB 

classes in the resulting dataset are secondary and 

primary amines, aryl halides, and carboxylic acids 

(Figure 4). Due to their participation in common 

DNA-compatible combinatorial reactions (such as 
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condensation of carboxylic acids with amines, 

aldehyde reductive amination, bromo-Sonogashira 

coupling, etc.), there is an active development of 

such BBs, making these four classes more 

structurally rich and widely available 

commercially. Note that in this work, all structures 

were stereochemistry-depleted (a unique skeleton 

graph being used to represent all stereoisomers). 

Therefore, the number of different BBs is higher.  

In the case of bifunctional BBs (Figure 5), 

protected amino acids (AA) (such as amino esters, 

N-Boc-AA, N-Fmoc-AA, etc.) represent the most 

abundant class (3,796). The reason for such 

abundance is the popularity of peptide bond 

formation for DEL compounds’ synthesis that 

requires this type of reagents. However, the number 

of actual AA fragments available from BBs with 

multiple protective groups is slightly smaller 

(2,885). It appears that the majority of AA 

fragments (2,173) occur in only one protected 

form, and only 712 AA were found in the library 

more than once with different protecting groups. 

Figure 6 (I) shows an example of AAs that occur 

in the maximum number of protected combinations 

in the BB library. 

 

 

Figure 6. AA (I) and diamines (II), represented in the commercially available libraries of DNA-

compatible BBs with the highest number of protected variations (N-Boc, N-Fmoc, various esters etc.) 
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Figure 7. Trifunctional DNA-compatible commercially available BBs. 

  

Figure 8. Frequency of the use of a particular reaction in DELs generation. 

A similar tendency is also observed for 

protected diamines that occupy third place in the 

bar chart in Figure 5 after BBs containing both aryl 

halide and carboxylic functionality (2 359). A total 

of  737 protected diamines are equivalent to only 

632 unique diamine fragments. Among them, 510 

are represented by only one protected variant, 

while the other 122 occur in several differently 

protected copies. Four diamines, each occurring in 

the highest observed protected variations, are 

shown in Figure 6 (II). The number of trifunctional 

BBs is significantly lower than other reagents due 



Preprint___________________________  

Y.Zabolotna et al., 2021, Repository : ChemRxiv   10 

to higher structural complexity (Figure 7). The 

most highly populated class of trifunctional BBs is 

haloaryl nitrocarboxylic acids containing 110 

members. In DEL technology nitro group usually 

pose as a latent amino group that can be obtained 

upon reduction.  

Using these BBs and user-defined library 

limitations in eDesigner, 2,495 DELs were 

designed. The maximal number of heavy atoms in 

DEL compounds was set to be 45, and at least half 

of all compounds in the library needed to have less 

than 35 non-hydrogen atoms. The frequency of the 

use of a particular reaction to generate all DELs is 

shown in Figure 8. The most frequently used 

reactions, each being exploited in more than 500 

libraries, were: condensation of carboxylic acids 

with amines (R1), aldehyde reductive amination 

(R2), 1,2,3-triazole synthesis (R3), guanidinylation 

of amines (R4), Migita thioether synthesis (R5), 

and bromo-Sonogashira coupling with TMS-

acetylene (R6). The high frequency of reaction 

usage is mainly caused by the prevalence of the 

respective BB classes in the input library (B1, B2, 

B3, B4 in Figure 4). Indeed, the amines are 

coupling partners in three reactions mentioned 

above (R1, R2, and R4), aryl halides - in two (R5 

and R6), and carboxylic acids in R1. 

Not all compounds were enumerated for 

every DEL, but random sets of 1M representative 

compounds were produced by eDesigner. In order 

to verify that such a library core is indeed 

representative, the whole library of 88M has been 

enumerated for one of the DELs, and density 

landscapes have been built for the whole library 

and 1M dataset on the same density scale. As one 

can see in Figure 9, each region of the map, 

occupied by the members of the whole library, also 

has representatives in the 1M randomly generated 

dataset – colored regions coincide on both maps, 

and only the density of residents differs. Therefore, 

1M randomly enumerated compounds will be 

considered in this work as a sufficient 

representation of large DELs for GTM-based 

analysis. 

 

Figure 9. Comparison of the density distribution for the 1M randomly generated compounds and the 

whole DEL(88M). The color scale encodes the corresponding number of compounds residing in each 

colored node of the map. 

Physicochemical properties of generated 

libraries 

Out of total 2,495 generated DELs, 77 are 

produced by a single coupling reaction of 2 BBs 

(hence the label “2BB libraries”). The remaining 

2,418 DELs are “3BB libraries”. The 

physicochemical properties were calculated using 

RDKit33. Drug-like34 (MW ≤ 500; LogP ≤ 5; the 

number of H-bond donors ≤ 5; the number of H-

bond acceptors ≤ 10; ring counts ≤ 10) and lead-

like35 (MW ≤ 400; -3.5≤LogP ≤ 4; the number of 

H-bond donors ≤ 5; the number of H-bond 

acceptors ≤ 8; ring counts ≤ 4; rotatable bonds≤10) 

filters were applied. Figure 10 depicts how many 

of 2BB and 3BB libraries (in percentage) contain a 

specified portion of drug-like (Figure 10 (I)) and 

lead-like (Figure 10 (II)) compounds. 
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Figure 10. Comparison of (I) drug- and (II) lead-likeness of 2BB and 3BB libraries: percentage of 2BB 

and 3BB libraries having a particular portion of compounds satisfying respective filters is given. 

As expected, 2BB libraries contain smaller 

compounds, and thus the portion of drug- and lead-

like compounds for them is higher than for 3BB 

DELs. For almost a half of 2BB libraries, all 

generated compounds fall into the category of 

drug-like, while in the case of 3BB DELs, only 2% 

of libraries are fully drug-like. However, the 

content of such compounds in 3BB libraries is still 

relatively high – the majority of DELs (68%) 

contain at least 50% of drug-like compounds. At 

the same time, the number of lead-like compounds 

is significantly lower for both categories of DELs. 

Almost a quarter of all 2BB libraries do not contain 

them, and another quarter is less than 50% lead-

like. In the case of 3BB libraries, the lead-like 

compounds are almost entirely absent – 70% of 

DELs do not contain such molecules at all, and the 

remaining 30% of libraries have only up to 30% of 

lead-like molecules.  

Search for the “golden” DEL 

The “golden” DEL can be defined as a library 

that is diverse enough to cover the highest possible 

proportion of biologically relevant compounds 

from ChEMBL. This coverage was calculated in 

terms of common responsibility patterns (RPs) 

explained in Methods section. In Figure 11(a) one 

can see the number of libraries with particular 

coverage of ChEMBL RPs. The majority of 

libraries cover 10-20% of ChEMBL chemical 

space in terms of unweighted RPs coverage score. 

64 DELs showed the highest coverage of ChEMBL 

RPs – 30-33%. Figure 11 (b) depicts the coverage 

of the ChEMBL RPs weighted by the number of 

compounds that correspond to each RP. This time, 

90 DELs showed high coverage of ChEMBL 

chemical space, ranging from 50 to 60%. 

Figure 12 displays three comparative 

landscapes: DEL1857 with 13%, DEL167 with 

27%, and DEL2568 with 60% coverage of 

ChEMBL (here, weighted coverage is considered). 

Dark grey zones are populated exclusively by 

ChEMBL molecules, while all other colors indicate 

areas also containing DEL compounds in a 

different ratio. Below each landscape, the IDs of 

reactions used for the corresponding library 

generation are given (see Figure 8 for reaction 

IDs). From the landscape of DEL1857, it is 

apparent that this library does not cover many areas 

of ChEMBL chemical space – there are few 

multicolored spots on the landscape. It is an 

indicator that DEL1857 is not chemically diverse 

enough, and there are plenty of biologically 

relevant chemotypes absent from this library. 

DEL167, in its turn, allows achieving higher 

coverage of ChEMBL. However, DEL2568 is the 

leader among all 2,5K DELs - multicolored areas 

are not focused in one place of the map, but rather 

distributed on different islands that correspond to 

different chemotypes, and dark grey areas are less 

present. 
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Figure 11. (a) Number of DELs with different coverage of ChEMBL responsibility patterns (RPs) (b) 

Number of DELs with different percentages of ChEMBL RPs coverage weighted by the RPs population 

(number of ChEMBL compounds per RP).   

 

Figure 12. Class landscapes comparing a particular DEL with ChEMBL. From left to right: comparison 

of ChEMBL to DEL1857, DEL167, and DEL2568. Dark grey zones are populated exclusively by 

ChEMBL compounds, while all other colors indicate areas also containing DEL compounds in a different 

ratio. White regions correspond to the empty areas of the chemical space. Below each landscape, , a library 

ID and IDs for corresponding reaction types are given. 

There are around 60 libraries with similar 

chemical space coverage and diversity, but here, 

we will limit the discussion to the DEL2568 as an 

example of a “golden” DEL. 88 Million 

compounds from this DEL can be obtained by 

sequentially employing three reactions: aldehyde 

reductive amination, Migita thioether synthesis, 

and guanidinylation of amines (see 

Figure 14, DEL2568). BBs used for this DEL 

design are three aromatic mercaptoaldehydes, 

8,914 aryl bromides, and 3,311 amines. As was 

discussed earlier, the last two are the classes with 

the highest number of diverse BBs (Figure 4). 

Therefore, a random selection of BBs for DEL 

generation from such various and numerous 

collections results in higher coverage of ChEMBL 

chemical space. DEL2568 was chosen here as an 

example of a “golden” library because it outruns all 
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other libraries by 3% of weighted ChEMBL 

coverage, corresponding to approximately 45K of 

biologically relevant compounds. However, if the 

presence of thioether or guanidine groups is not 

desirable, there is still a diverse choice of DELs 

that do not contain such moieties.  

Search for the “platinum” set of DELs 

As shown on the class landscape for 

DEL2568 in Figure 11, there are still some dark-

grey zones left that are not covered even by this 

“golden” DEL, which means there is space for 

improvement. To fill uncovered parts of the 

chemical space, the approach of library pools36, 37 

was considered. According to it, several distinct 

DELs may be further combined to create another 

more complex mixture, called “library pool”, 

which can then be simultaneously screened. In 

order to obtain the highest coverage of ChEMBL, 

composing DELs for constructing such library 

pools should be complementary to each other, and 

each new DEL should cover previously 

unrepresented areas of the biologically relevant 

space.  

To achieve that, first of all, 64 DELs that 

have the highest coverage of ChEMBL RPs were 

chosen. Each of these DELs was then iteratively 

completed with up to 14 other libraries. Every 

complementary DEL was chosen in a way to cover 

the maximal portion of the ChEMBL chemical 

space that was not covered in the previous steps. 

Each time a complementary DEL was added to the 

pool, the weighted ChEMBL coverage was 

calculated. The chart in Figure 13 was used to 

identify a pool of DELs that can enhance ChEMBL 

coverage to the highest possible extent. It shows 

how the weighted ChEMBL coverage increases 

over the addition of complementary libraries. 

According to this chart, after the fifth DEL, each 

complementary library provides less than 1% of 

additional weighted ChEMBL coverage. 

Considering that the size of each DEL can vary 

from 1M to 1B compounds, adding a library of 

such large size to the pool only to increase 

ChEMBL coverage by 1% is not worth it. 

Therefore, it is irrational to use a pool of DELs 

composed of more than five libraries. 

 

Figure 13. The percentage of the ChEMBL coverage, weighted by the number of compounds sharing 

common RPs, as a function of the number of libraries in the set. Green and blue dashed lines highlight the 

points for three and five DELs.  
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Figure 14. Reactions and BBs required for synthesis of the “golden” DEL and libraries composing 

“platinum” pools of libraries. 

If described above DEL2568 is used as a 

starting DEL, the “platinum” pool of five DELs 

will be composed of such libraries: DEL2568, 

DEL1613, DEL159, DEL845, and DEL3589. 

Overall, they contain 665M compounds. Reactions 

used for the generation of these five DELs are 

shown in Figure 14: aldehyde reductive amination 

(R2), Migita thioether synthesis (R5), Ullmann-

type N-aryl coupling (R7), condensation of 

carboxylic acids with amines (R1), and 

guanidinylation of amines (R4). All of them are 

among the most frequently used reactions for DEL 

generation (Figure 8) that employ BBs from highly 

represented classes (Figure 4). On the other hand, 

a pool of three DELs (DEL2568, DEL1613, 

DEL3589) can be even more convenient since it 

contains fewer compounds (524M) and yet still 

allows to cover a large portion of ChEMBL (78%).  

The physicochemical properties of the 

selected libraries have been calculated and 

analyzed (Table 1). It appears that half of 

DEL2568 compounds are drug-like, while the 

portion of lead-like molecules is almost negligible. 

Complementary DELs forming a “platinum” pools 

of three and five DELs possess higher drug- and 

lead-likeness, which influenced the number of 

corresponding compounds. Indeed, the percentage 

of drug-like compounds is increasing for the pool 

of 3 DELs (60.8%) and even more so in the case of 

5 DELs (70.4%). Likewise, the portion of lead-like 

compounds peaks at 21% for the pool of 5 DELs.  

To better illustrate how ChEMBL coverage 

increases when a pool of DELs is used instead of a 

single DEL, four comparative landscapes – 

featuring the “golden” DEL, the “platinum” pools 

of three and five DELs, and  ≈2,5K DELs against 

ChEMBL were created (Figure 15). Structural 



Preprint___________________________  

Y.Zabolotna et al., 2021, Repository : ChemRxiv   15 

analysis of underrepresented in DELs zones was 

carried out (Figure 16). The obtained landscapes 

show that as we go from one (Figure 15 (I)) to 

three DELs (Figure 15 (II)), the ChEMBL 

coverage increases drastically. On the landscape of 

the “platinum” pool of three DELs, the ChEMBL 

areas from A1 to A7 became a lot more populated. 

However, the addition of the following two 

libraries does not have the same impact. There are 

almost no new previously uncovered areas, only 

the increase in the population of previously 

occupied areas is observed (Figure 15 (III)).

 

Table 1. The portion of drug-like and lead-like compounds in the selected “golden” DEL and “platinum” 

pools of three and five DELs.   

 Portion of drug-like 

compounds 
Portion of lead-like compounds 

“Golden” DEL2568 50% 1.5% 

“Platinum” pool of 3 DELs 60.8% 6.2% 

“Platinum” pool of 5 DELs 70.4% 21.7% 

 

  

Figure 15. Comparison of ChEMBL and I) “golden” DEL, II) a pool of three DELs, III) a pool of five 

DELs, and IV) all 2,5K DELs. Multicolored zones are populated by both ChEMBL and DEL compounds, 

dark grey zones – only by ChEMBL compounds. White regions correspond to the empty areas of the 

chemical space. Examples of compounds populating highlighted areas A1-A9 are provided in Figure 16 
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Figure 16. Examples of CHEMBL compounds populating areas from A1 to A9 highlighted in landscapes 

in Figure 15. 
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However, neither three nor five libraries 

succeeded in covering areas A8 and A9 

completely. To see whether it is even possible to 

do so, a comparative landscape for all DELs 

versus ChEMBL was created (Figure 15 (IV)). It 

appears that neither of the DELs can cover these 

regions of the chemical space – areas A8 and A9 

remained dark-grey. This result is not surprising 

because they contain natural products (NP) and 

NP-like compounds such as cardiac glycosides, 

steroids, and steroid-like compounds, saccharides, 

nucleotides, oligopeptides, coumarins, 

macrolides, chalcones, etc., which are indeed 

inaccessible by DEL technology as employed in 

this analysis. 

CONCLUSIONS 

In this work, for the first time, the ultra-large 

chemical space of DNA-encoded libraries (DELs) 

containing 2,5B compounds in total (2.5K 

libraries 1M each) was designed and generated 

using eDesigner and analyzed with the help of 

GTM. Owing to the probabilistic nature of GTM 

and efficiency of the libraries analysis and 

comparison based on the responsibility patterns, it 

was possible to develop a GTM-based approach 

for quick selection of DELs occupying the same 

areas of the chemical space as a reference library. 

In this work, the goal was to detect the “golden” 

DEL or “platinum” pool of DELs for primary 

screening - the libraries containing the highest 

portion of biologically relevant chemotypes. 

Therefore, ChEMBL, as the largest database of 

dose-response activity tests and thus an optimal 

representation of biologically relevant space, was 

used as a reference. However, the approach 

described herein could be applied to any reference 

library, e.g., actives of a particular biological 

target.  

This approach allowed to identify the so-

called “platinum” pools of five and three DELs 

providing the highest coverage of ChEMBL 

chemical space – 82% and 78%, respectively. Our 

results suggest that an optimal set for primary 

screening is the one encompassing three DELs, 

which, even though containing fewer compounds 

than in five DELs, still succeeds in covering a 

large portion of ChEMBL chemical space. 

Analysis of physicochemical properties of the 

“golden” DEL revealed that half of the compounds 

are drug-like, and in the case of the pool of 3 

DELs, this percentage rises to 60%. The portion of 

lead-like molecules, however, is negligible. 

In this project, only a brief structural 

analysis of DEL chemical space was performed. 

Without a doubt, a more detailed GTM-based 

analysis of chemical structures composing DELs 

and their comparison to ChEMBL and 

commercially available HTS libraries will 

improve our understanding of the chemical space 

accessible via this technology. Further GTM 

analysis and comparison of generated DELs can 

be helpful for the enhancement of available BBs 

libraries and prioritizing some promising synthetic 

procedures in order to improve the biological 

relevance of DEL chemical space.  
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