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Abstract 

Nuclear densities are frequently represented by an ensemble of nuclear configurations or points in 

the phase space in various contexts of molecular simulations. The size of the ensemble directly 

affects the accuracy and computational cost of subsequent calculations of observable quantities. 

In the present work, we address the question of how many configurations do we need and how to 

select them most efficiently. We focus on the nuclear ensemble method in the context of electronic 

spectroscopy, where thousands of sampled configurations are usually needed for sufficiently 

converged spectra. The proposed representative sampling technique allows for a dramatic 

reduction of the sample size. By using an exploratory method, we model the density from a large 

sample in the space of transition properties. The representative subset of nuclear configurations is 

optimized by minimizing its Kullback-Leibler divergence to the full density with simulated 
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annealing. High-level calculations are then performed only for the selected subset of 

configurations. We tested the algorithm on electronic absorption spectra of three molecules: (E)-

azobenzene, the simplest Criegee intermediate, and hydrated nitrate anion. Typically, dozens of 

nuclear configurations provided sufficiently accurate spectra. A strongly forbidden transition of 

the nitrate anion presented the most challenging case due to rare geometries with 

disproportionately high transition intensities. This problematic case was easily diagnosed within 

the present approach. We also discuss various exploratory methods and a possible extension to 

dynamical simulations. 

 

1. Introduction 

“The first computers were much smaller than Multivac. But the machines grew bigger and they 

could tell how the elections would go from fewer and fewer votes. Then, at last, they built Multivac 

and it can tell from just one voter.” wrote Isaak Asimov in his short story Franchise in 1955.1 The 

idea to represent public meaning by a single voter has not materialized yet, although from time to 

time, we witness an effort to reduce the size of representatives in the name of cost and efficiency. 

In this work, we adopted the same spirit into the field of computational spectroscopy. 

In molecular simulations, we often replace continuous wavefunctions or densities in either 

coordinate or phase space with a set of nuclear configurations.2–6 We use this approach when we 

calculate mean values of physical quantities, their distribution functions, or in molecular dynamics 

simulations of dynamical processes. Inevitably, we have to tackle the problem of how big the set 

should be. The optimal number of the representative geometries (samples) strongly depends on the 

particular problem and the desired accuracy. If we aim at high accuracy, we need a large number 

of samples, which hampers the simulation speed (especially if costly ab initio calculations are 

involved). If we use fewer samples, the accuracy might be insufficient. In the present work, we 

aim to reduce the number of samples while maintaining the accuracy of the simulations. We show 

our approach in detail for semiclassical modeling of electronic spectra within the so-called nuclear 

ensemble method (NEM).7–9 However, an analogical approach can be applied to a large variety of 

problems involving discrete representations of continuous quantities.  
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The NEM is based on the so-called reflection principle approximation, representing the zero-order 

approximation to electronic spectroscopy.10 The absorption cross section is obtained by projecting 

the ground state nuclear density onto the excited electronic state.11 The spectral intensity for a 

given photon energy then reflects the probability of finding the molecule in a configuration with 

the corresponding transition energy. The quality of the calculations within this model strongly 

depends on (i) a proper description of the nuclear density, e.g. including nuclear quantum effects, 

(ii) the quality of the electronic structure method to calculate the transition quantities, and (iii) 

statistical convergence of the calculated quantities with the number of samples. The ground-state 

nuclear density can be sampled for example by various flavors of molecular dynamics (MD) 

simulations or by calculating the Wigner functions of (harmonic) wavefunctions.6,7,12,13 The 

computational costs then reflect an interplay between statistical convergence of the simulation and 

the quality of the electronic structure method. At least thousands of sampled geometries are 

required to obtain a reasonably converged spectrum, which might be computationally infeasible 

for larger molecules or more accurate ab initio methods.8 

We pose the following question: Can we find a small subset of geometries that would equally 

represent the nuclear density as a much larger ensemble? In other words, can we create an efficient 

“molecular parliament” representing the nuclear density? Such a problem does not have a unique 

solution. The data reduction can be achieved by minimizing the divergence between the densities 

estimated from a large set of samples and its subset. The optimization could be in principle 

performed in the original space of geometrical coordinates. However, we would soon encounter a 

problem with the curse of dimensionality: the space becomes too sparse for molecules containing 

more than 3 atoms, effectively prohibiting the optimization. Clearly, some sort of a priori 

dimensionality reduction is critical for this kind of optimization. Unfortunately, common 

dimensionality reduction methods, such as principal component analysis in the original space, are 

in general insensitive to coordinates affecting the properties of interest: the chromophore very 

often represents only a small part of the geometrical variability of the system. 

Any successful algorithm has to learn about the important coordinates. In our approach (later 

referred to as representative sampling), we combine a fast exploratory quantum-chemical method 

with a more accurate method for production calculations; we optimize the density in the space of 
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excitation properties calculated with the exploratory method. Specifically, we calculate the 

excitation properties for a large set of geometries with the exploratory method, perform the 

optimization and recalculate the properties for the selected subset of geometries with the target 

method. The exploratory method should be, therefore, at least one or two orders of magnitude 

faster than the target ab initio method. 

The idea is that most of the underlying physics is already covered by the cheaper method and we 

pay a disproportionate price for the last few percent of accuracy. In the present approach, we 

exploit the correlation between the two methods. Speaking in terms of errors, the representative 

sampling technique slightly increases the bias but significantly reduces the variance in comparison 

to spectra modeled from a random or equidistantly sampled subset of nuclear configurations. This 

way, it is possible to set the ratio between computational demands and accuracy almost arbitrarily, 

depending on the selected size of the subset and quantum-chemical methods used. In the present 

implementation, the subset is iteratively optimized via the simulated annealing14,15 (SA) technique 

with the Kullback-Leibler (KL) divergence16,17 as the objective function. 

The algorithm is based on the correlation between the exploratory and the target ab initio method. 

Techniques based on the correlation between high-level and low-level methods are not rare in 

theoretical chemistry.18–22 For example, higher-level correlation contribution corrections are added 

with smaller basis sets in the calculations of weak interactions.23 Here, this type of idea is extended 

into the statistical treatment of large ensembles. A similar line of thought as we propose here was 

employed by Kossoski and Barbatti24 to model temperature dependence of absorption spectra. 

While they utilized results for one ground-state density to approximate results for another density, 

we aim to reduce the density representation itself. 

2. Computational methods 

Electronic spectra within the nuclear ensemble method 

Absorption cross-section for electric dipole transitions is expressed in the time-independent 

framework as:25 
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𝜎(𝐸) =
𝜋𝑒2𝐸

3ℏ휀0𝑐
∑𝑃𝑎|〈𝜓𝑏|�̂�|𝜓𝑎〉|

2
𝛿(𝐸 − 𝐸𝑎𝑏)

𝑎,𝑏

, (1) 

where 𝐸 is the photon energy, �̂� is the position operator, 𝜓𝑎 and 𝜓𝑏 represent the wavefunctions 

of the initial vibronic state 𝑎 and the final vibronic state 𝑏, respectively, 𝐸𝑎𝑏 is corresponding 

energy difference between the two states and 𝑃𝑎 is the probability of finding the molecule in the 

state 𝑎 (also, 𝑒 is the elementary charge, ℏ is the reduced Planck constant, 휀0 is the vacuum 

permittivity and 𝑐 is the speed of light). However, evaluation of all the vibronic states is 

computationally intractable except for the smallest systems. Equation (1) can be approximated 

with the so-called reflection principle (RP):2,11,25,26 

𝜎(𝐸) =  
𝜋𝐸

3ℏ휀0𝑐
∑∫𝜚𝑎(�⃗� )|𝜇 𝑎𝑏(�⃗� )|

2
𝛿 (𝐸 − 𝐸𝑎𝑏(�⃗� )) 𝑑�⃗� , 

𝑏

(2) 

where 𝜇 𝑎𝑏(�⃗� ) is the transition dipole moment from the initial electronic state 𝑎 to the final state 

𝑏, 𝐸𝑎𝑏(�⃗� ) is the corresponding excitation energy for a given geometry �⃗�  and 𝜚𝑎(�⃗� ) represents the 

nuclear density of the initial state 𝑎. RP is a semiclassical approach, which can be derived from 

both time-dependent and time-independent frameworks.10,11,25 Perhaps the most illuminating is the 

path-integral formulation, where the RP emerges as a zero-order approximation in a semiclassical 

series.10 RP imposes neither the Condon approximation nor the harmonic approximation and thus 

naturally covers the non-Condon effects (the dependence of the transition dipole moment on the 

nuclear coordinates), symmetrically forbidden transitions, and temperature effects.24,27–29 On the 

other hand, it ignores quantum interference and it cannot describe vibrational progressions.30,31 

Because it is usually difficult to obtain an accurate analytical density, it is more common to use 

the NEM, i.e., to represent the density with an ensemble of nuclear configurations.2,6 For extended 

systems, for instance for liquids, the ground-state nuclear density can be sampled with classical 

MD. In these cases, the nuclear quantum effects are neglected. For smaller rigid systems, the 

nuclear ensemble is often generated via sampling of the ground state harmonic wavefunction or 

thermal density.2,6 Path-integral-based methodologies represent an appealing alternative, which 

covers both thermal and nuclear quantum effects and also the anharmonicity of the system.32 
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Although path integral MD (PIMD) can be quite computationally demanding, various formulations 

limiting the computational costs have been suggested, for instance a quantum thermostat.33 

The spectrum can be then modeled from the transition properties calculated for the sampled 

geometries:7,18 

𝜎𝐻(𝐸) =
𝜋

3ℏ휀0𝑐
∑

1

𝑛𝐻𝑏√2𝜋
∑𝐸𝑎𝑏(�⃗� 𝑖)|𝜇 𝑎𝑏(�⃗� 𝑖)|

2
exp(−

1

2
(
𝐸 − 𝐸𝑎𝑏(�⃗� 𝑖)

𝐻𝑏
)

2

)

𝑛

𝑖=1𝑏

, (3) 

where 𝐸𝑎𝑏(�⃗� 𝑖) and 𝜇 𝑎𝑏(�⃗� 𝑖) are the excitation energy and corresponding transition dipole moment 

between the initial electronic state 𝑎 and the final state 𝑏 for the 𝑖-th of 𝑛 geometries. Parameter 

𝐻𝑏 is called the bandwidth and it defines the broadening of the spectrum. In other words, the 

spectrum is obtained as a sum of weighted Gaussian functions centered on the excitation energies 

of the sampled geometries with 𝐻𝑏 being the standard deviation of these Gaussian functions. This 

approach corresponds to the kernel density estimation method in statistics.8 Based on the 

underlying physical phenomenon, other than Gaussian functions might be used (e.g. Lorentzian 

functions for absorption into decaying electronic states) yet the choice has only a minor effect on 

the spectrum.7 

The bandwidth 𝐻𝑏 is usually set empirically and identically for all final states. However, it can be 

also derived statistically from the ensemble of nuclear configurations.18 Here we use Silverman’s 

rule of thumb,34 originally derived for unimodal distributions based on normal distribution 

statistics, which we modified for weighted data: 

𝐻𝑏 = 1.06𝑛eff,𝑏
−1/5

𝑠𝑏, (4) 

where 𝑠𝑏 is the corrected standard deviation obtained from the unbiased estimate of weighted 

sample variance35 and 𝑛eff,𝑏 is Kish's effective sample size for state b with weights 𝑤𝑏,𝑖:
36,37 
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2
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2
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2

𝑛
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. (5) 
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We calculate the bandwidth for each excited state b separately so that the unimodality condition is 

fulfilled and the bias-variance ratio is optimized. 

In the extreme case of representing the density in Equation (3) with only one nuclear configuration, 

we naturally obtain the formula for the common empirical broadening scheme, in which the density 

is represented only by the minimal geometry.38 The empirical broadening scheme can serve as a 

fast estimate of an electronic absorption spectrum. However, it does not cover temperature and 

non-Condon effects and the broadening parameter becomes entirely empirical (with usual values 

of 0.25-0.4 eV) since it cannot be tuned statistically.38,39 To improve the model, we employ an 

exploratory method to set the broadening parameter and select the most representative geometry 

for a given temperature. We calculate the bandwidth for the selected geometry from the standard 

deviation estimated for the full spectrum with the exploratory method. In the results section, we 

compare the common empirical broadening scheme with spectra modeled from one geometry 

selected by our representative sampling; for better comparison, we use the same bandwidth for the 

empirical broadening scheme as for our representative sampling. 

Modeled spectra are accompanied by 95% confidence intervals obtained via the circular block 

bootstrap method to account for the sampling error.8,40,41 In this method, we repeatedly resample 

with replacement nuclear configurations originally sampled by MD which we subsequently use to 

form a spectrum estimate. Confidence intervals are then obtained for each point of the spectrum 

from the distribution of these estimates. 

Representative sampling 

Within the representative sampling approach, we try to find a subset of structures having the same 

density as the full sample. More technically, we select the most representative geometries by 

minimizing the divergence between the density estimated from a large number of geometries and 

the density estimated from a subset of a desired size. As described in the introduction, we perform 

the optimization in the space of excitation properties calculated with a cheap exploratory method. 

In the simplest implementation, we could optimize the density as a function of the excitation 

energy 𝜚𝑎(𝐸𝑎𝑏) only. However, it is possible to optimize the spectrum instead of the density to 
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emphasize spectrally significant parts of the coordinate space: a spectrum within the NEM 

approach is simply a weighted nuclear density. Such an approach is sufficient for the selection of 

a single representative geometry. However, restricting the optimization into a single dimension is 

in general limiting since we discard part of the information from exploratory calculations. We can 

instead optimize the density in the two-dimensional space of excitation energies and transition 

probabilities. 

In the present implementation, we optimize a 2D analogue of the spectrum with an additional 

coordinate of transition probability: as in the 1D case, we weigh the samples by their spectral 

intensities to emphasize spectrally significant parts of the distribution. The distributions are then 

estimated from the samples by the multivariate kernel density estimation method in a similar 

fashion as the electronic spectra themselves: 

𝜎𝐇(𝑥 ) =
𝜋

3ℏ휀0𝑐
∑

|𝐇𝑏|
−1/2

2𝜋𝑛
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2
exp (−

1

2
(𝑥 − 𝑥 𝑎𝑏,𝑖)

T
𝐇𝑏

−1(𝑥 − 𝑥 𝑎𝑏,𝑖))

𝑛

𝑖=1𝑏

, (6) 

where 𝑥  is a point in the 2D space of excitation properties and 𝑥 𝑎𝑏,𝑖 is a vector of excitation 

properties between states a and b for the i-th geometry: 

𝑥 𝑎𝑏,𝑖 = (𝐸𝑎𝑏(�⃗� 𝑖), |𝜇 𝑎𝑏(�⃗� 𝑖)|
2
) . (7) 

The bandwidth is now a 22 square matrix which takes the following form:34 

𝐇𝑏 = 𝑛eff,𝑏
−1/3

𝐒𝑏 , (8) 

where 𝐒𝑏 is the weighted sample covariance matrix. Analogously to spectral evaluation, we use 

the sample covariance estimated for the unreduced density when selecting only one geometry. 

To perform the optimization, we need to define the objective function first. The simplest option is 

to use the ordinary mean square error. However, as we work with densities, it is natural to use 

some divergence or distance metric comparing two probability density functions (PDFs) or their 

corresponding cumulative distribution functions. There is not a single optimal option and we can 

choose from several metrics based on our preferences. It is possible to use metrics based on two-



9 

 

sample test statistics such as Kolmogorov-Smirnov, Kuiper, Cramér-von Mises, or Anderson-

Darling statistics.42 Alternatively, one can use information-theoretic metrics such as Kullback-

Leibler (KL) or Jensen-Shanon divergence.16,43 The third option is to employ the Wasserstein 

distance also known as earth mover's distance which is defined as the minimal cost of turning one 

PDF into the other.44,45 

We tested several metrics and they provide comparable results; here we use the KL divergence. 

Compared to other divergences, it emphasizes distribution tails which are often important in 

spectroscopy. It is also conveniently asymmetric; the KL divergence can be interpreted as the 

information content lost when approximating one PDF with another.17 Minimizing the KL 

divergence is also equivalent to maximum likelihood estimation if we define the problem as fitting 

of a gaussian mixture model.46 The KL divergence is usually defined for normalized PDFs but we 

use here a generalized form suitable for unnormalized data to account for the weighting:16,47 

𝐷KL(𝑃‖𝑄) = ∫ (𝑝(𝑥) ln
𝑝(𝑥)

𝑞(𝑥)
+𝑞(𝑥) − 𝑝(𝑥))

∞

−∞

𝑑𝑥, (9) 

where P is the target PDF and Q is an approximate PDF. We normalize both distributions by the 

norm of P for the sake of comparison among different systems. Note that the distribution Q might 

still not sum to unity. 

Optimization procedure 

Our goal is to find a subset of geometries that provides the minimal KL divergence. However, it 

is computationally intractable to test all possible combinations of geometries except for the 

smallest subset sizes. Instead, we can easily perform the optimization by some local or random 

search algorithm. We can use for example the hill-climbing technique, i.e., gradually replace 

geometries in the (initially random) subset while accepting only those changes that improve the 

solution. Alternatively, it is possible to apply more appropriate but also more complex methods of 

global optimization as we do here. 
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Here, we use the simulated annealing algorithm which is a metaheuristic devised by Kirkpatrick 

and co-workers15 in 1983 to approximate global optimization. The algorithm is stochastic and the 

obtained minimum is not guaranteed to be the global minimum, yet it is supposed to be sufficiently 

close. We first generate an initial solution, i.e., an initial random subset of geometries. We then 

iteratively test a randomly selected neighboring solution which we define by replacing exactly one 

geometry in the subset. The neighboring solution is always accepted if its KL divergence is 

smaller. Contrary to the hill-climbing method, even worse solutions can be accepted with some 

probability. This probability should initially approach 100% and slowly decrease (cool down) until 

it reaches zero at the end of the simulation. In this way, we limit the chance of getting stuck in 

local minima. We use naturally inspired Boltzmann distribution to define the probability of 

accepting a worse solution:15 

𝑃(𝛥𝑓) = exp (−
𝛥𝐷KL

𝑇
) , (10) 

where 𝛥𝐷KL is a difference in the KL divergence between the two solutions and 𝑇 is a virtual 

temperature. 

We also need to define the cooling scheme, i.e., the initial temperature, its evolution, and the 

terminating condition. As indicated above, the initial temperature should allow an arbitrarily 

wrong solution to be accepted and the probability of the acceptance should reach zero for the final 

temperature. However, if the temperature range is too wide, the program spends too much time in 

the initial or final phase not converging. We avoid it by performing a short simulation tracking the 

biggest and the smallest change in the KL divergence as the first step. We then plug each of these 

values together with a desired acceptance probability at the beginning or at the end of the 

simulation into Equation (10) to calculate the initial and the final temperature, respectively.48 We 

set here the initial probability to 0.9 and the final probability to 0.1 and we decrease the temperature 

geometrically in time as proposed by Kirkpatrick.14 

We perform the whole optimization multiple times in parallel with a smaller number of iterations 

as it is more efficient than one very long optimization due to the stochasticity of the algorithm.49 

Overall, the only input parameters that influence the quality of the solution and the optimization 
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time are the numbers of iterations and parallel jobs. Other parameters are either predefined or set 

automatically via a simulation. We benchmarked the SA algorithm against the exhaustive search 

for the selection of one or two representative geometries, where it is computationally feasible, and 

obtained the globally optimal solutions. 

Computational details 

We used the density functional theory (DFT) and the density functional based tight-binding 

(DFTB) for the ground-state calculations. Zerner's intermediate neglect of differential overlap for 

spectroscopy (ZIndo/S),50 the third-order algebraic diagrammatic construction (ADC(3))51, and the 

time-dependent DFT (TDDFT) methods were employed for excited-state calculations. ZIndo/S, 

DFT, and TDDFT calculations were performed in the Gaussian 09 package,52 revision D.01. DFTB 

calculations were employed as implemented in the DFTB+ code,53,54 release 18.2. ADC(3) 

calculations were performed in the Q-Chem 4.3 code.55 

For dynamical simulations, we used the PIMD in combination with a quantum thermostat based 

on colored-noise generalized Langevin equation (GLE) to efficiently incorporate nuclear quantum 

effects within the so-called PI+GLE method.33 All MD simulations were performed using our in-

house program ABIN56 interfaced with various ab initio codes. The parameters for the GLE 

thermostat were obtained from the online library.57 

3. Results and Discussion 

We used several molecular systems as a testbed for our approach. The presented spectra are always 

shown on the absolute scale and they are not scaled on the energy or intensity scale. The 95% 

confidence intervals and corresponding experimental spectra accompany the simulated data for a 

better comparison of the accuracy. It has been previously shown that up to tens of thousands of 

geometries are needed to obtain fully converged spectra.8 However, typically only hundreds of 

nuclear configurations are used in production simulations.2,58 In the present study, we model the 

electronic absorption spectra with 1000 geometries (the full, unreduced size). 

Azobenzene: multichromophoric system 
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We first tested the approach on the UV/Vis absorption spectrum of the (E)-azobenzene molecule 

in methanol which represents a medium-sized system with several absorption bands and excited 

states including a symmetrically forbidden transition to the first excited state. Azobenzene is an 

archetypal molecular photoswitch that isomerizes upon exposure to the UV light of certain 

wavelengths.59 Nuclear configurations were sampled by the PI+GLE MD simulation on the 

semiempirical DFTB potential and the transition properties were subsequently calculated at the 

CAM-B3LYP/6-31+g* level: a combination of methods that we previously verified for this 

system.8 The solvent effects were included via an implicit solvation model. 

 

Figure 1: Comparison of simulated and exprimental8 UV/Vis absorption spectra of the (E)-azobenzene molecule in methanol. 

Simulated spectra are modeled with 1000 geometries sampled with PI+GLE MD on the DFTB potential. Transitions to the first 7 

excited states are considered at different levels of theory. The simulated spectra are accompanied by 95% confidence intervals 

accounting for the sampling error. 

We use here the ZIndo/S method for exploratory calculations; semiempirical methods represent 

the natural choice since they are several orders of magnitude faster than any ab initio or TDDFT 

method. The comparison of spectra modeled from 1000 geometries with both the exploratory and 

the target method is captured in Fig. 1. Such a comparison would not be available in production 

runs but we present it here to provide further insight into the approach. Although the ZIndo/S 
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spectrum significantly deviates from both the experiment and the spectrum calculated with the 

target method, the correlation between the ZIndo/S and the CAM-B3LYP methods is very strong. 

We optimized representative subsets of nuclear configurations for several subset sizes on the 

ZIndo/S level and used these geometries to recalculate spectra at the CAM-B3LYP level. For the 

illustration of the optimization procedure, the density estimated from 30 geometries at the end of 

the optimization is compared to the density modeled from all the samples in Fig. 2. 

 

Figure 2: Weighted ground-state density for (E)-azobenzene in the space of excitation properties calculated at the exploratory 

ZIndo/S level for (a) all the samples and (b) optimized subset of 30 geometries. 

The final values of the KL divergences (see Table 1) measure how well we approximated the 

density. The KL divergence for identical distributions would vanish. Values approaching 0.01-

0.02 seem to be sufficient (as shown below). The KL divergence for one geometry is smaller than 

for 3 nuclear configurations; the reason is that we do not estimate the sample covariance in the 

case of a single geometry but we take it from the full density. The optimization is then simpler but 

we use larger subsets to encode the covariance for a better description of the density. We can 

compare the minimal structure and the most representative structure selected by the representative 
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sampling technique (see Fig. 3); while the minimal geometry is planar, the selected representative 

geometry is already twisted, allowing for symmetry-forbidden transitions. 

Table 1: Optimized KL divergences for different subset sizes for the (E)-azobenzene molecule in methanol. 

N 1 3 5 10 30 50 

DKL 0.146 0.208 0.111 0.066 0.026 0.016 

 

 

Figure 3: The minimal nuclear configuration (left) and the most representative nuclear configuration selected by the proposed 

scheme (right). Values of the C-N=N-C dihedral angle are presented below respective structures. 

The resulting absorption spectra modeled with the target CAM-B3LYP method are compared for 

different subset sizes in Fig. 4. Spectra modeled only from dozens of geometries selected by the 

representative sampling approach are in very good agreement with the full spectrum. Small 

deviations for the third absorption band can be partially attributed to a different order of excited 

states between the exploratory and the target method for some geometries. These minor deviations 

could be further reduced by including more excited states while optimizing the spectrum only up 

to a fixed energy/wavelength. The spectrum is sufficiently converged already with 30 geometries 

as it coincides with the full spectrum within the confidence intervals. For comparison, we also plot 

in Fig. 4 the spectrum modeled from 30 geometries selected equidistantly from the MD. Our 

approach clearly surpasses this naive reduction. Reduced spectra modeled with less than ten 

geometries deviate significantly from the full spectrum. However, the spectrum from one 

representative geometry surpasses the empirical broadening scheme: not only is the overall 

agreement with the full spectrum better but it also contains the first band which is symmetry-

forbidden in the minimal geometry and thus completely missing in the empirical broadening 

scheme. 
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Figure 4: Comparison of the (E)-azobenzene UV/Vis absorption spectrum modeled with 1000 geometries with an experiment8 

(solid lines), absorption spectra modeled from subsets of geometries selected via the representative sampling scheme (dashed 

lines), equidistantly sampled geometries, and empirical broadening scheme (dotted lines). Transitions to the first 7 excited states 

were calculated at the CAM-B3LYP/6-31+g* level with the reduction performed at the ZIndo/S level. The full spectrum is 

accompanied by 95% confidence intervals accounting for the sampling error. 

Criegee intermediate: representative sampling with a reduced basis set 

As a second test case, we selected the simplest Criegee intermediate CH2OO. It is a very small 

system with only one bright state, but it requires high-level ab initio treatment because of its 

problematic electronic structure.18 Criegee intermediates play a key role in tropospheric chemistry; 

they serve as a non-photolytic source of OH radicals and contribute to the removal of volatile 

organic compounds from the atmosphere.60 Based on our previous work,18 we sampled the nuclear 

configurations by PI+GLE MD on the PBEPBE/aug-cc-pVDZ potential energy surface and we 

calculated the transition properties at the ADC(3)/aug-cc-pVDZ level. 
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In contrast to the azobenzene case, we used here a different strategy for exploratory calculations. 

Instead of changing the electronic structure method, we only reduced the basis set. Such an 

approach is especially advantageous for high-level electronic structure methods as they scale 

unfavorably with the basis set size. We used here a small 6-31g basis set without polarization or 

diffuse functions; it consists of only 31 basis functions for the studied molecule compared to 87 

basis functions in the target aug-cc-pVDZ basis set. The ADC(3) method scales formally as O(n6) 

with the basis set size,61 and the exploratory calculations were almost by two orders of magnitude 

faster than the production calculations. It is also possible to further extend the approach by using 

several exploratory basis sets and reducing the number of geometries gradually: a methodology 

similar to the virtual screening of molecules where a smaller number of candidates is selected in 

each iteration by a more accurate method.62 

 

Figure 5: Comparison of simulated and experimental63 UV/Vis absorption spectra for the simplest Criegee intermediate CH2OO. 

Simulated spectra are modeled with 1000 geometries sampled with PI+GLE MD on the PBEPBE/aug-cc-pVDZ potential. Only the 

transition to the second excited state is considered. The simulated spectra are accompanied by 95% confidence intervals accounting 

for the sampling error. 

The comparison of spectra modeled with both the exploratory and the target basis set is shown in 

Fig. 5. Both basis sets provide similar spectra yet with statistically significant differences. The 
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spectrum modeled with the exploratory basis set is broader and shifted to higher energies. The 

values of KL divergence for optimized subsets (see Table 2) are in general very low indicating an 

easily reproducible density. The KL divergence is approaching 0.02 already for 10 nuclear 

configurations. 

Table 2: Optimized KL divergences for different subset sizes for the CH2OO molecule. 

n 1 3 5 10 30 50 

DKL 0.085 0.052 0.042 0.023 0.009 0.006 

 

 

Figure 6: Comparison of the CH2OO UV/Vis absorption spectrum modeled with 1000 geometries with an experiment63 (solid lines), 

spectra modeled from subsets of geometries selected via the representative sampling scheme (dashed lines), equidistantly sampled 

geometries, and empirical broadening scheme (dotted lines). Only the transition to the second excited state is considered. 

Transition properties were calculated at the ADC(3)/aug-cc-pVDZ level with the reduction performed on the ADC(3)/6-31g level. 

The full spectrum is accompanied by 95% confidence intervals accounting for the sampling error. 
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Simulated results for reduced ensemble sizes are compared in Fig. 6. In agreement with the KL 

divergence values, the spectrum modeled from as little as 10 geometries is in very good agreement 

with the full spectrum. By contrast, the spectrum modeled from 10 equidistantly sampled 

geometries completely fails to reproduce the target spectrum. Smaller reduced subsets deviate a 

little but the accuracy is still acceptable. Our selection of one representative geometry again 

outperforms the empirical broadening scheme as it provides a better maximum position. 

Nitrate anion: the case of a symmetry forbidden excitation 

Strongly forbidden absorption into the first excited state of the nitrate anion serves as a complex 

third test case. The transition dipole moment for the excitation into the first excited state has a zero 

value in the optimal structure; the first and second derivatives of the transition dipole moments 

have zero values as well. A coupling between at least two vibrational modes is needed to observe 

the transition for an isolated nitrate anion.27 Yet this weakly absorbing dark state is responsible for 

a significant generation of OH radicals in aqueous systems,64 explaining e.g. extraordinary 

oxidation capacity of the polar troposphere.65 The absorption is enhanced by several orders of 

magnitude by solvation which breaks the symmetry of the nitrate electronic wavefunction. We 

employed a hybrid solvation model: we included explicitly ten water molecules and used the 

polarizable continuum model to account for bulk solvent effects. The explicit solvation is essential 

for a proper description of the absorption.27 

We sampled the nuclear configurations by PI+GLE MD on the DFTB potential energy surface 

with the DFT-D366,67 dispersion correction and we calculated the transition properties at the 

previously proposed27 CAM-B3LYP/aug-cc-pVDZ level. We used a smaller basis set as the 

exploratory method again, specifically the 3-21g basis set. Spectra modeled from 1000 geometries 

with both basis sets are compared in Fig. 7. We were able to recover the integral intensity from the 

experiment even though the transition is strongly forbidden. However, theoretical spectra are 

shifted to lower energies. The spectrum modeled with the 3-21g basis set is significantly broader, 

more intense and shifted to lower energies in comparison with the target aug-cc-pVDZ basis set.  
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Figure 7: Comparison of simulated and experimental68 UV/Vis absorption spectra for the first absorption band of hydrated nitrate 

anion. Simulated spectra are modeled with 1000 geometries sampled with PI+GLE MD on the DFTB+D3 potential. Only the 

transition to the first excited state is considered. The simulated spectra are accompanied by 95% confidence intervals accounting 

for the sampling error. 

Table 3: Optimized KL divergences for different subset sizes for the first absorption band of the nitrate anion. 

N 1 3 5 10 30 50 

DKL 0.503 0.710 0.637 0.671 0.454 0.376 

 

The final KL divergence values (see Table 3) obtained from the optimization are very large for all 

sample sizes in comparison with previous cases, which signalizes that the reduction does not work 

properly in this case. We plot the sampled points recalculated at the exploratory level together with 

the weighted density in Fig. 8, both for all the samples and for 30 representative geometries. We 

can see that a large fraction of the intensity is caused by only a few isolated geometries with non-

proportionally strong transition probabilities; most of the geometries have transition probabilities 

close to zero. Such density cannot be easily approximated by a small number of samples. The 

character of the excitation process is reflected also in the relatively large error bars of the simulated 

spectra.  
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Figure 8: Weighted ground-state density for hydrated nitrate anion in the space of excitation properties calculated at the 

exploratory CAM-B3LYP/3-21g level for (a) all the samples and (b) optimized subset of 30 geometries. 

The comparison of spectra obtained with the representative sampling procedure (using the 3-21g 

basis set as the exploratory approach) is shown in Fig. 9. As already indicated by the KL 

divergences and densities plots, the agreement is suboptimal yet still acceptable considering the 

complexity of this case, computational savings, and larger uncertainty of the full spectrum. Spectra 

modeled with 30 and 50 geometries can be found mostly within confidence intervals. The 

representative sampling approach also outperforms the equidistant sampling as we show on spectra 

modeled from 50 geometries. Spectrum modeled from just one selected geometry is slightly more 

intense and a little bit shifted to lower energies than the full spectrum. In this case, the empirical 

broadening scheme cannot be applied in a simple fashion; the peak is not present for the isolated 

anion and there is a huge number of local minima on the potential energy surface when including 

water molecules explicitly. We found the limit of the present approach. However, we were able to 

identify the problem already with the exploratory method and the results are still acceptable. 
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Figure 9: Comparison of the UV/Vis absorption spectrum modeled with 1000 geometries with an experiment68 (solid lines), spectra 

modeled from subsets of geometries selected via the proposed scheme (dashed lines), equidistantly sampled geometries, and 

empirical broadening scheme (dotted lines) for the hydrated nitrate anion. Only the transition to the first excited state is considered. 

Transition properties were calculated at the CAM-B3LYP/aug-cc-pVDZ level with the reduction performed on the CAM-B3LYP/3-

21g level. The full spectrum is accompanied by 95% confidence intervals accounting for the sampling error. 

4. Conclusions 

We proposed and tested a scheme to reduce the number of geometries representing nuclear density 

in the NEM for simulations of the electronic spectra, such as UV absorption or photoelectron 

spectra. We tested the proposed sampling scheme for several cases, including larger multi-

chromophoric systems (azobenzene), molecules with problematic electronic structure (Criegee 

intermediate), symmetry-forbidden transition, and solvated molecules (nitrate anion). The error 

introduced by the reduction scheme is usually much smaller than the discrepancy between 

theoretical and experimental spectra caused by the electronic structure itself. Simulated reduced 



22 

 

spectra also usually coincide with full spectra within confidence intervals when we sample the 

system with as little as dozens of points. However, the quality of this approach is given to large 

extent by the selected exploratory method. 

Several possible exploratory methods were tested and discussed. One can use a completely 

different electronic structure method with semiempirical methods being especially efficient. We 

successfully tested the ZIndo/S method. We also tested another scheme for the exploratory 

method: the target electronic structure method but with a reduced basis set. This approach proved 

to be especially efficient for high-level ab initio methods due to their unfavorable scaling with the 

number of basis functions. However, many other options could be possibly used. For example, the 

simplified Tamm-Dancoff approach (sTDA)69 or simplified TDDFT (sTD-DFT)70 semiempirical 

methods can utilize already calculated ground-state wavefunctions when using DFT potential for 

the ground-state MD. 

One might ask whether there is some deeper physical wisdom hidden in the procedure of reducing 

the ensemble size. The algorithm is stochastic and the geometries produced are thus not unique. 

However, the inspection of a small number of geometries provides information about important 

geometrical features contributing to the electronic transitions. When we look for a single most 

representative sample, as in Asimov’s short story, we can examine the character of the excitation 

by looking at the difference between the minimal and the most representative geometry. 

Another important piece of information from the simulation process is the minimum size we can 

reach. Dozens of geometries seem to be sufficient to reproduce the full spectrum within confidence 

intervals. However, it was demonstrated on the example of the nitrate anion that for symmetry 

forbidden transitions we need a large number of samples. This is unfortunate from the perspective 

of computational efficiency yet it does not invalidate the algorithm. We diagnosed the problem 

based on the KL divergences before performing the full set of calculations at the higher level. 

Furthermore, a difficult reduction is indicative of the character of electronic transitions – with rare 

but important events playing a major role. 

The present technique can be easily extended to other types of processes. For example, we usually 

represent an initial wavefunction or density matrix by a swarm of points in the phase space, giving 
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rise to classical trajectories in the mixed quantum-classical simulations.3–5 Such simulations are 

computationally demanding and a justified reduction of the number of trajectories would be rather 

helpful. Setting a suitable objective function would allow for example combining different 

electronic structure methods (e.g. CASSCF/CASPT2 methods for excited-state calculations). 

Alternatively, the ensemble used for the simulation of the electronic spectrum of the system can 

be used as a reasonable starting point for subsequent dynamical simulations as well. 
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