First-Principles Plane-Wave-Based Exploration of Cathode and Anode Materials for Li and Na-ion Batteries

Christina Ertural, Ralf P. Stoffel, Peter C. Müller, C. Alexander Vogt, and Richard Dronskowski*

KEYWORDS: First-Principles, Density Functional Theory, Plane Waves, Charges, Chemical Bonds, Battery Materials

ABSTRACT: We present a first-principles study based on plane-wave derived Löwdin population analysis and other local bonding descriptors to investigate cathode and anode materials for lithium and sodium ion batteries. By comparing the Löwdin charges of common graphite-based anode materials such as LiC$_6$ and LiC$_{12}$ to other phases such as salts of dicyanamide and nanoporous carbon-based compounds, new conclusions of an improved intercalation behavior of the latter are derived. In addition, we explore the stability of the dicyanamide salts concerning the removal of Li and Na atoms from the compounds with some of them resulting in dimerized structures. In particular, having a look at the different kinds of bonds and the corresponding covalency indicators reveals new insights into the change of the bonds during dimerization. Considering the generally high thermal stability of metal dicyanamide salts, which are solid at room temperature, their electrochemical activity as well as non-toxicity of alkali metal-based compounds, these materials are potential alternatives to commercially available electrodes, particularly for sodium ion batteries, to pristine graphite-based anode materials.

INTRODUCTION

Exploring and understanding the fundamental processes, also on an atomic scale, in materials containing lithium and sodium ions is the key for developing more efficient batteries. Such rechargeable devices for energy storage, in particular Li-ion batteries, play an increasingly important role in portable electronic devices, such as mobile phones and laptop computers, as well as in electric vehicles.\(^1\)\(^-\)\(^9\) These batteries are desired to be light, inexpensive, easy to maintain, safe and long-lived.\(^1\)\(^-\)\(^5\) That being said and despite enormous progress, the world has already witnessed serious problems such as catastrophic failure of Li-ion batteries in automotive\(^10\) and aeronautical\(^11\) applications, and there is also a growing concern as regards the environmental issues for mining its constituents (say, lithium and cobalt) from developing countries.\(^12\),\(^13\) It may well be the case that present-day battery technology is effectively unsustainable.\(^14\),\(^15\)

Nonetheless, given at least a sustainable energy production, whether from fossil fuels, from so-called renewables, or from nuclear power such as breeder/burner technology, thorium reactors, Generation IV, or small modular fission concepts,\(^16\),\(^17\) improving the current Li-ion battery technology is a topic of paramount importance, and tailoring the properties of cathode and anode materials for their particular field of application is at its very center. As alluded to already, commonly used candidates for such batteries contain lithium and sodium. While the more precious Li exhibits a high gravimetric capacity, the large natural abundance of Na makes it suitable, at least in principle, as a low-cost material, especially for stationary uses.\(^1\),\(^18\)-\(^43\) Likewise, K-based batteries are of interest due to low costs and sufficient energy density of the material, although anodes such as K$_x$Cs suffer from limited ability of cycling and instability issues.\(^44\),\(^45\) A more detailed comparison of lithium-, sodium- and potassium-ion batteries can be found in the literature.\(^45\)-\(^49\)

In batteries, energy is stored electrochemically via a reversible intercalation or conversion reaction involving metal atoms inside electrode materials. As regards the presently far more abundant intercalation batteries, the cathode materials typically consist of metal oxides, silicates, or phosphates while graphite-based compounds are used as anode materials.\(^1\),\(^7\),\(^39\)-\(^54\) In particular, the ternary oxide LiCoO$_2$ is commercially used in Li-ion batteries because of its good intercalation behavior although the toxicity, the cost and the way cobalt is being produced are clear drawbacks so that the development of alternatives containing, say, iron and manganese is pursued.\(^1\),\(^7\),\(^55\),\(^56\) For Na-ion batteries, Na$_x$MO$_2$ ($M = $ Fe, Mn) cathode materials are widely spread although Na does not go well with graphite.\(^1\),\(^57\) While anode materials for Li-ion batteries typically consist of lithium atoms intercalated into graphite sheets\(^8\),\(^50\),\(^54\),\(^58\) (LiC$_6$ or LiC$_{12}$), for Na-ion batteries nanoporous graphite-type alternatives are needed, since Na ions do not intercalate into graphite, as said before.\(^8\),\(^39\),\(^54\),\(^59\)-\(^64\) Here, a conversion reaction between Na and transition-metal carbodiimides such as FeNCN\(^65\),\(^66\) is an attractive alternative, at least in principle. Likewise, nanoporous and nanostructured materials are commonly used in Li- and Na-ion batteries to enhance the electrode performance because they can be understood as intermediates between amorphous and crystalline materials.\(^7\),\(^8\),\(^60\)

As regards computational materials design, a number of different methods\(^67\)-\(^70\) have been used to study the properties of electrode materials for metal ion batteries, among them molecular dynamics (MD) and density functional theory (DFT).\(^71\)-\(^77\) Although there can be hardly any doubt as regards the suitability of these approaches, some challenges still must be faced when describing properties such as band gap and
redox potentials from first principles, in particular for materials containing transition metals (TM). For an improved description of strong d-electron correlation in the latter, a simple Hubbard U correction can be used within DFT, and this procedure is commonly dubbed as the DFT+U method,1, 65, 78-80 with often stunningly good success, as seen later.

In this work, we aim to show the potential of a recently developed tool for the analytical projection of Löwdin81 (and Mulliken82) charges from plane wave calculations,83-85 namely by applying it to commonly known anode and cathode materials for Li- and Na-ion batteries. In addition, several other and chemical related materials such as Li and Na dicyanamide salt-like compounds and carbonic nanoporous systems were examined as they are compelling candidates for the application as electrode materials.8, 54, 60, 62, 65, 66, 86-90 The orbital-based population analyses have been implemented in the Local Orbital Basis Suite Towards Electronic-Structure Reconstruction (LOBSTER) code,85, 91, 92 a program to project PAW functions onto auxiliary local basis sets of contracted all-electron Slater type orbitals and thereby regain chemical information. Its suitability has been recently demonstrated for Zintl phases and polar intermetallics,83 phase change materials,93, 94 divalent 3d transition-metal carbodimides $MNCN$ ($M = Cr-Ca$)99 as well as regarding the intercalation behavior of Li and Na in several nanoporous carbon anode materials.8, 54, 85 In that work,83 a comparison was made as regards Mulliken and Löwdin population analysis with Bader’s95-100 charge analysis. The advantages in using an orbital-based approach within reciprocal space are an enhanced computational efficiency and chemically reliable charges. Additionally, plane-wave based Mulliken and Löwdin population analyses, as implemented in LOBSTER, are effectively basis-set independent.83

COMPUTATIONAL DETAILS

To start with, we investigated three standard materials presently used in commercially available rechargeable batteries: LiCoO$_2$, LiFePO$_4$, and NaFePO$_4$, as well as the delithiated/desodiated counterpart CoO$_2$ and FePO$_4$. Their crystal structures (lattice parameters and atomic positions) were computationally optimized using the projector augmented-wave (PAW) method, as implemented in the Vienna Ab initio Simulation Package (VASP).101-105 The generalized gradient approximation (GGA) as parametrized by Perdew, Burke, and Ernzerhof (PBE)106 was used to model correlation and exchange. In addition, the Hubbard U correction was employed for a better description of the 3d electronic correlation in the transition metals (Co, Fe), taking the U parameter values from the literature.78 For the Co3+ species, a U parameter of 4.91 eV was taken whereas 3.71 eV was used for Fe2+, as described in the literature.78 Figure S1 in the SI shows the comparison of the density of states for the three cathode materials with and without U parameter. Including U improves the match with the experimental band gaps.107-109 For comparing different magnetic states, all calculations for LiCoO$_2$, LiFePO$_4$ and NaFePO$_4$ were carried out without spin polarization (non-magnetic, NM) as well as spin-polarized with ferromagnetic (FM, all transition-metal ions with high spin) and antiferromagnetic (AFM) ordering with alternating half of the ions with opposite spin orientation. Experimentally, LiCoO$_2$, LiFePO$_4$ and NaFePO$_4$ have been described as being antiferromagnetic.78, 110-113 Because the calculated charges (cf. Table S1–S3) of the different magnetization models are close to each other, only the results for the AFM(+U) model are presented, matching the experimental findings.

In the case of the dicyanamide salts Li[N(CN)$_2$], Na[N(CN)$_2$], LiCs$_2$[N(CN)$_2$]$_3$, NaCs$_2$[N(CN)$_2$]$_3$, and the tricyanomelaminate salt Na$_3$[N(CN)$_3$], van-der-Waals corrections were included using the DFT-D3 method of Grimme114, 115 including Becke-Johnson damping;116 the same strategy was used upon Li/Na deintercalation of these materials, see text. Phonon calculations were performed (except for Na$_3$[N(CN)$_3$]$_3$) using the Phonopy code117 and the ab initio force constant method. The necessary forces were obtained from VASP based on supercells with cell parameters of at least 15 Å. The densities of phonon states were evaluated on dense meshes of reciprocal space points, and the vibrational properties were checked for the appearance of imaginary phonon modes; in such a case, structures were reoptimized by applying the eigenvectors of the largest imaginary modes to the respective crystal structures. For Li[N(CN)$_2$] and Na[N(CN)$_2$], this procedure led to dimerized structures, as expected for chemical radicals; the Cs containing structures, however, did not show this behavior.

The experimentally known graphite-intercalated alkaline-metal species LiC$_6$, LiC$_{12}$, K$_8$, as well as model structures NaC$_6$, and K$_6$ were structurally optimized using the meta-GGA functional SCAN (strongly constrained and appropriately normed semilocal density functional).118 For the nanoporous materials whose structures had been obtained via machine-learning-based simulations (Li$_2$C$_{194}$, Li$_2$FeC$_{196}$, Li$_3$Z$_{196}$,54 and Na$_4$C$_{206}$60), these structures were directly taken from the literature and used here without additional modification.

For the plane waves, a kinetic energy cutoff of 500 eV for Na- as well as K- and 600 eV for Li-containing compounds was used. The k-point grids were generated following the Monkhorst-Pack method,119 and the corresponding sets can be found in the SI (cf. Table S4). For partial band occupancies, the tetrahedron method with Blöchl’s correction was used. Real-space density-based charges according to Bader95-100 were calculated as reference values for comparison with wave-function-based Mulliken and Löwdin charges.83, 84 Static calculations were carried out using VASP, preceding the projection from PAW functions to local orbitals with LOBSTER.
Figure 1. Representations of the crystal structures of a) LiCoO$_2$, b) LiFePO$_4$ and c) NaFePO$_4$. The unit cells are represented with black lines. The Co$_6$ octahedra are shown in blue, PO$_4$ tetrahedra in violet and Fe–O polyhedra in brown, including the respective Löwdin charges.

For determining the activation energies of migration, the total-energy differences of all initial and transition states were calculated. The migration path for LiCoO$_2$, LiFePO$_4$, NaFePO$_4$, LiC$_6$, and LiC$_{12}$ were taken from the literature and the ones for Li$_2$[N(CN)$_2$]$_3$, Na$_2$[N(CN)$_2$]$_3$, Li$_2$Cs$_2$[N(CN)$_2$]$_3$, and NaC$_6$S$_2$[N(CN)$_2$]$_3$ were found using the nudged elastic band (NEB) method. The migration paths for the nanoporous structures were selected manually. The supercells (cf. Tab. S5) were only calculated at the Γ point.

The projected density of states (pDOS) and projected crystal orbital Hamilton population (pCOHP) plots were visualized using the software wxDragon.

RESULTS AND DISCUSSION

A quick literature search reveals that local-orbital analytic techniques have already been used before for ab initio properties of carbonic anode materials for metal ion batteries. In this work, we look at a few more such examples as well as cathode materials. The reason to focus on Mulliken and Löwdin charge analyses is that the amount of charge transfer and the resulting Coulomb interaction will effectively influence the cycling chemistry, the rate performance of the intercalation and also the functionality (such as the charging process) of the battery itself. It was also found that the main stabilizing effect in graphite-based anode materials stems from the binding energy, composed of some covalent and mostly ionic contributions.

For cathode materials, the commonly used compounds LiCoO$_2$, LiFePO$_4$, and NaFePO$_4$, were examined, as said before. As anode materials, we first analyzed simple and commonly used Li-intercalated graphitic compounds like LiC$_6$ and LiC$_{12}$ and compared them with the model structures NaC$_6$ and KC$_6$. Additionally, we examined presumably candidates for alternative anode materials such as dicyanamide-containing and nanoporous carbon-based phases. Because of being popular in the context of plane-wave calculations, Bader charges were calculated for comparing them with Mulliken and Löwdin charges. We note, once again, that orbital-based Mulliken and Löwdin population analysis is far more economical – in terms of sheer speed by about one order of magnitude – to achieve as compared to the density-based Bader approach, but we will now show that Mulliken and Löwdin still yield chemically meaningful results when Bader’s charge analysis reaches its limits, for example in the case of complex nanoporous compounds of amorphous nature. Because Mulliken populations based non-orthogonalized basis sets are not bound between 0 and 2 for a single orbital, a problem usually considered negligible, this behavior can be solved by using Löwdin’s symmetric orthogonalization. Hence, we will mainly discuss Löwdin charges in this work.

CATHODE MATERIALS: OXIDES AND PHOSPHATES

While LiCoO$_2$ (R3m, No. 166; Fig. 1a) crystallizes in a layered structure, both ternary phosphates LiFePO$_4$ and NaFePO$_4$ exhibit the olivine-structure-type (Pnma, No. 62; Fig. 1b,c). In all three compounds the transition-metal ion is octahedrally coordinated by six oxide anions, rather regular in LiCoO$_2$ and somewhat distorted in the olivine structures. Likewise, in all three cases, the charges do not vary significantly upon different magnetization order or with usage of the U parameter (cf. Tab. S1–S3). Only in the case of the iron phosphates, Fe possesses significantly lower charges in the (completely unrealistic) non-spin polarized case than in spin-polarized reality (cf. Tab. S2 and S3). The spin-polarized pDOS for the correct AFM spin arrangements with and without U are depicted in Fig. S1. There is no significant difference between charges obtained from Mulliken’s, Löwdin’s or Bader’s method for LiCoO$_2$. In the case of the other compounds, the Bader charges for P and O with +3.6 e and −1.4 e, respectively, are higher than the Mulliken or Löwdin charges being around +2 e and −1 e (cf. Tab. S6). Comparing the three compounds with each other, the olivine-type iron phosphates exhibit
slightly higher charges for the transition metal, alkali metal and oxygen ions than the respective charges in LiCoO$_2$. Not too surprisingly, the sodium cation is slightly higher charged than lithium, the small difference between Na and Li fitting well with the Pauling electronegativity which is lower for Na than for Li.138 For a compound with Li/Na intercalated into fluorinated graphite, it was found that lower charges on Li/Na ion correlate with an improved cycling performance of the metal ion intercalation because of weaker Coulomb attraction.134 Thus, the lower charges of Co, Li and O are also in accordance with the experimentally known, good intercalation behavior of LiCoO$_2$. 1,7,55,56

ANODE MATERIALS: GRAPHITE-BASED COMPOUNDS

LiC$_6$ and LiC$_{12}$ crystallize in space group $P6/mmm$ (No. 191; Fig. 2) 64,139 and are both layered structures consisting of pristine graphite with intercalated lithium cations between the graphene sheets. The structural difference between these two compounds is that LiC$_{12}$ only contains Li ions in every second layer of LiC$_6$. Both compounds are commonly used as anode materials in batteries.50,54,58

![Figure 2](image_url)
Figure 2. Representations of the crystal structures of a) LiC$_6$ and b) LiC$_{12}$. The unit cells are represented with black lines. The respective Löwdin charges are shown.

Not surprisingly, Li exhibits exactly the same (Löwdin) charge of $+0.83\ e$ in both pristine graphite compounds. The charge transferred from lithium to carbon nicely mirrors that there is only one symmetry-dependent Li/C atom, at least in the case of Mulliken and Löwdin charges, so that every carbon atom exhibits $-0.14\ e$ and $-0.07\ e$ for LiC$_6$ and LiC$_{12}$, respectively. For some reason, possibly due to the density partitioning and some inaccuracy, the Bader charges scatter quite a lot for the carbon atoms, despite the simple structure, ranging from $-0.05\ e$ to $-0.23\ e$ for LiC$_6$ and $-0.02\ e$ to $-0.14\ e$ for LiC$_{12}$, respectively (cf. Tab. S7 and S8).

As alluded to already, only Li is known to intercalate into pristine graphite yielding the stable compound LiC$_6$, while Na does not intercalate in such material at all and K favors the composition KC$_8$, but still lacking stability.44,45 Lenchuk et al.45 further investigated this phenomenon and showed that the LiC$_6$ structure, in contrast to the model structures NaC$_6$ and KC$_8$, is stabilized by an additional covalent contribution for Li in the binding energy, which is not present for Na or K. Other work46,140 hints to the same conclusion. This assumption is easily verified using quantum-chemical analysis and displayed in Fig. 3.

As the metal–carbon bond distance increases from the Li to the Na and eventually to the K compound, the covalency of the bond decreases (as reflected from the IpCOHP values), in perfect accord with chemical knowledge. Clearly, the Li phase stands out in terms of higher covalency. Likewise, the Löwdin charge on the metal also increases in the same order such that the K phase is the most ionic, also in accord with the course of the electronegativities. For illustration, the Löwdin charge of K in KC$_8$ is $+0.85\ e$, while for C it is $-0.11\ e$ but the integrated project COHP (IpCOHP) for the shortest K–C bond (3.04 Å) is smallest, namely $-0.07\ e$. Hence, there is a competition between ionicity and covalency, and the more covalent Li–C interaction stands out, in agreement with literature findings.45

![Figure 3](image_url)
Figure 3. Comparison of Löwdin and Bader charges as well integrated projected COHP (IpCOHP) of LiC$_6$, NaC$_6$ and KC$_8$.

Puzzlingly, Bader charges arrive at non-chemical values as they suggest the K phase to be less ionic, in clear conflict with electronegativities. Interestingly and despite being non-chemical, they are comparable with reported Bader charges for Li, Na and K from the literature45 with $0.87\ e$, $0.86\ e$ and $0.75\ e$ respectively. Like in the case of LiC$_6$, the Bader charges on carbon scatter a lot for NaC$_6$ and KC$_8$ (cf. Tab. S8 in the SI). The Bader charge of K in KC$_8$ is $+0.82\ e$ and scatter for C from $+0.05\ e$ to $-0.25\ e$ (also see Tab. S7).
Figure 4. Representations of the crystal structures of a) Li_{12}C_{194} b) Li_{28}C_{196} c) Li_{32}C_{196} and d) Na_{14}C_{206}.

NANOPOROUS MATERIALS

We now move on to amorphous materials. Huang et al.54 and Deringer et al.60 presented ways to generate carbonaceous host frameworks of the nanoporous anode materials, such as Li_{12}C_{194}, Li_{28}C_{196}, Li_{32}C_{196},54 and Na_{14}C_{206},60 via a machine-learning-based interatomic potential for carbon, and they optimized these structures after insertion of the metal ions using first principles methods.

Exactly these structures were taken and reused for our study by courtesy of the authors without further modification. The original work on Na_{14}C_{206} utilizing Bader charge analysis arrived at negative charges for some of the Na ions60 which contradicts chemical intuition, to say the least. Additionally, based on small-angle X-ray scattering data, an intercalation behavior for nanoporous sodium compounds was proposed that implies the formation of metallic species inside the pores.141,142 Operando solid-state NMR measurements on Li143 and Na,144 however, evidence that the alkali metal atoms exhibit a cationic or almost metallic character during cycling, but not an anionic one. Negative and generally unreasonable Bader charges were also found for the MD-simulated compound Li_{48}C_{216}, whereas L"owdin charge analysis yields positive values only and gave more insight into the structural landscape.54,85 To probe if this phenomenon persists for other nanoporous carbon anode compounds, the Bader charges of Li_{12}C_{194}, Li_{28}C_{196}, Li_{32}C_{196}, and Na_{14}C_{206} were (re)calculated and compared to L"owdin charges obtained by LOBSTER (\textit{cf.} Tab. S7). For Li_{12}C_{194}, L"owdin and Bader charges are almost identical. In contrast, for all three Li_{28}C_{196}, Li_{32}C_{196} and Na_{14}C_{206} models, negative Bader lithium charges up to −1.64 e (\textit{cf.} Tab. S7) are found for those atoms that are known to chemically act as cations.

The L"owdin population analysis, however, delivers chemically plausible charges of +0.63 to +0.91 e for Li_{12}C_{194} (Fig. 4a), +0.00 to +0.85 e for Li_{28}C_{196} (Fig. 4b), and +0.22 to +0.86 e for Li_{32}C_{196} (Fig. 4c). The charges on Li decrease with increasing Li to C ratio, as expected, so that Li gets more metallic, agreeing with experimental findings.141-144 In the case of Na_{14}C_{206} (Fig. 4d), L"owdin charges ranging from +0.21 to +0.85 e are found, which are comparable to the charge of Li_{32}C_{196}.

Figure 4. Representations of the crystal structures of a) Li_{12}C_{194} b) Li_{28}C_{196} c) Li_{32}C_{196} and d) Na_{14}C_{206}.

[Diagram showing crystal structures of Li_{12}C_{194}, Li_{28}C_{196}, Li_{32}C_{196}, and Na_{14}C_{206}.]

Figure 5. Representations of the crystal structures of a) Li[N(CN)₂], b) Na[N(CN)₂], c) Na₃[N(CN)₂]₃, d) LiCs₂[N(CN)₂]₃ and e) NaCs₂[N(CN)₂]₃. Löwdin charges are included.
We conclude that by using nanoporous carbonaceous materials one triggers partially reduced charges of the Li and Na ions which are likely to improve the materials’ intercalation behavior, because smaller charges must result in weaker Coulomb attractions given that the interatomic distances stay the same.

DICYANAMIDE SALTS

We now turn to next-generation nitrogen-based materials involving complex anions such as carbodiimide, NCN, and dicyanamide, N(CN)2. While carbodiimide salts have already shown their ability to act as anode materials or energy materials in general,66 we chose to computationally study various alkali-metal dicyanamides as presumably candidates for such application, say, in Li-ion batteries, not only because of their low molecular weight. An additional advantage over traditional graphite-based materials is that dicyanamide should provide an alternative to intercalate Na since this is impossible in pristine graphite, as alluded to already.8,62,65,66,86-90 This is the reason to study some Li- and Na-containing dicyanamides, namely Li[N(NCN)]2 (P21/c, No. 13; Fig. 5a), Na[N(NCN)]2 (P21/c, No. 14; Fig. 5b), LiCs2[N(CN)2]3 (P63/m, No. 176; Fig. 5d) and NaCs2[N(CN)2]3 (P63/m, No. 176; Fig. 5e), and compare them with graphite-based materials. In Na[N(NCN)]2 (P21/c, No. 14; Fig. 5c), the dicyanamide units are trimerized to begin with and form tricyanomelaminate units. In their electronic ground states, Li and Na in Li[N(NCN)]2, Na[N(NCN)]2 and Na3[N(NCN)]2 (Fig. 5a-c) arrive at Löwdin charges of about +0.7 e, which is somewhat smaller than the cationic Löwdin charge of +0.8 e in LiC6 and LiC12 (Fig. 2). The Li/Na charges further decrease when going to LiCs2[N(CN)2]3 and NaCs2[N(CN)2]3 (Fig. 5d and e) despite the fact that a charge of +0.9 e for Cs yields this alkaline metal as being more ionized compared to Li and Na, fitting well with the electronegativity of these elements (cf. Tab. S9).138,146 Because lower charges on ions correlate with an improved intercalation,134 Cs-induced charge reduction of Li and Na in case of the dicyanamide salts can be expected to lead to an improved intercalation behavior. To at least theoretically check that working hypothesis, we calculated the corresponding activation energies E_a from the total energies of an initial and a transition state of the compounds observed in this work according to the approach by Islam et al.146 and others120-131 (see also SI). In Fig. S2 of the supplement, the Löwdin charges of the migrating ion (Li or Na) are plotted against E_a. The respective migration paths are given in Figs. S3–S5. Quite surprisingly, a convincing correlation between charge and ion-migration activation barrier, often used to describe the intercalation behavior,120-131,149 was not clear, though (cf. text in the SI). The intercalation process is presumably too complex to be approximated as a simple, static diffusion process for the observed compounds. Coming back to the dicyanamide compounds, carbon and nitrogen atoms show reasonable Löwdin charges with a range of +0.3 to +0.4 e and −0.4 to −0.5 e, respectively, thereby nicely reflecting the expectation from chemical intuition, where as Bader’s method predicts rather unreasonably high charges of approximately +1.6 e and −1.3 e, for C and N respectively (cf. Tab. S9). Analogous results were obtained in a recent study of divalent 3d transition metal carbodiimides.99 The presence of nitrogen leads to a positive charge on the tightly bound carbon inside the complex anion instead of a slightly negative one as it is found in LiC6 and LiC12. In conclusion, the cation charges on Li (and Na) are reduced in the nitrogen containing compounds compared to the graphite-based ones.

Since carbodiimide and dicyanamide compounds are electrochemically active65,66,86,150 (but dicyanamide compounds have only been probed for electrolytes156 so far, to the best of our knowledge), it is interesting to explore the stability during ion removal by the battery (dis)charging process, at least theoretically, that is, removal of all Li and Na atoms from the dicyanamide compounds. The structures of Na[N(NCN)]2 and Na3[N(CN)2]3 both turn into different crystals of the composition “CsNv” with an odd valence-electron count of 2 × 4 + 3 × 5 = 23 indicating radical character, and change significantly after repeated electronic structural relaxation including spin polarization (cf. Tab. S10); we will denote them as $v_{Na}^3[N(CN)]_2^2$ and $v_{Na}^3[N(CN)]_3$ in which v_{Na}^3 represents the vacant Na atom position. Likewise, Li[N(NCN)]2 turns into “CsNv” whereas both LiCs2[N(CN)2]3 and NaCs2[N(CN)2]3 turn into “Cs2Nv”; we will denote them as $v_{Li}^3[N(CN)]_2$ and $v_{Li}^3[N(CN)]_2$ and $v_{Na}^3[N(CN)]_3$ from now on. The three latter compounds (cf. Tab. S10) show the best structural stability (before phonon relaxation) among the five dicyanamide salts tested here. In particular, the Cs ions seem to maintain the overall structure by providing cationic charge. Representative dicyanamide units are shown in Fig. 6.

In the case of ($v'_{Na}^3[N(CN)]_2$)6 dimerized tricyanomelaminate units are observed (as shown in Fig. 6c and later in Fig. 8c), while such dimerization does not occur in the other cases; as indicated later by phonon calculations, however, there are imaginary modes hidden in the phonon density of states hinting towards structural instability and, hence, likewise dimerization of the dicyanamide units to be anticipated. The charges of the carbon atoms (around +0.3 e) do not change much in comparison with the ones shown in Fig. 5, but the charges for nitrogen vary between −0.2 e and −0.4 e in comparison to around −0.5 e in Fig. 5. Clearly, it is the central N atom on which the radical leftover electron is to be expected.

Figure S6 in the SI contains the projected densities of states from the spin-polarized structural relaxation calculations. It is apparent from the pDOS plots in Fig. S6 a) and b) that especially the structures of $v'_{Li}^3[N(CN)]_2$ and $v'_{Na}^3[N(CN)]_3$ did not...
reach an energetically favorable ground state yet, visible from a non-existent or too small band gap, indicating metallic or semi-conducting behavior. \(v'_1 [\text{N(CN)}_2] \) and \(v'_3 [\text{N(CN)}_2] \) result in a non-magnetic structure, with an atomic and total magnetic moment of 0 \(\mu_B \), which is also a hint towards a non-favorable structure since a radical character and, therefore, a certain magnetization is expected. \((v'_n)_{2}[\text{N(CN)}_2]_3 \) exhibits a total magnetic moment of +2.8 \(\mu_B \), with most of the magnetization located on the outer nitrogen atoms with a charge of -0.19 e and -0.25 e (cf. Fig. 6c), each one showing an atomic magnetic moment of around +0.3 \(\mu_B \). The rather insignificant magnetic moments of the other nitrogen atoms in \((v'_n)_{2}[\text{N(CN)}_2]_3\) vary between 0.0 and +0.08 \(\mu_B \), and for the carbon atoms, the magnetic moments lie between 0.0 and -0.06 \(\mu_B \). \(v'_1 \text{Li}[\text{N(CN)}_2]_3 \) and \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \) both exhibit a magnetic moment of +1.4 \(\mu_B \), in both cases with contributions of +0.09 \(\mu_B \) (C) and -0.02 \(\mu_B \) (C) but nothing for Cs.

To further check for structural instabilities, in particular for those compounds which did not dimerize during the optimization of the electronic structure, phonon calculation were carried out whose results are displayed in Fig. 7.

The phonon densities of states evidence that the regular dicyanamide units in \(v'_1[\text{N(CN)}_2] \), \(v'_3[\text{N(CN)}_2] \) and tricyanomelamine units in \((v'_n)_{2}[\text{N(CN)}_2]_3\) have become dimerized as anticipated from their radical character. The resulting phonon DOS for the dimerized \(v'_1[\text{N(CN)}_2] \) and \(v'_3[\text{N(CN)}_2] \) structures is shown in Fig. 57 in the SI. The structures of \(v'_1 \text{Li}[\text{N(CN)}_2]_3 \) and \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \), however, did not change much, the only significant difference being a small stretch (12%) of the unit cell along the \(c \) lattice parameter compared to the original structure (cf. Fig. 5 d and e). One may assume that the ionic character of the Cs compounds and their inherent Madelung field leads to some extra stabilization, thereby also compensating the radical character.

Having a look at the projected electronic DOS of the final structures (Fig. 9) reveals that, in case of \(v'_1[\text{N(CN)}_2] \) and \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \), the unfavorable electronic state has disappeared. The resulting dimerized compounds now show a wider band gap (Fig. 9 a, b) and no magnetization whatsoever. The projected DOS for \(v'_1 \text{Cs}[\text{N(CN)}_2]_3 \) and \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \), do not vary much from the one before structural relaxation (Fig. 9 d, e vs. Fig S6 d, e) due to a lack of structural change.

\(\text{NaCs}_2[\text{N(CN)}_2]_3 \) may be more robust than \(\text{Li}[\text{N(CN)}_2] \) and \(\text{Na}[\text{N(CN)}_2] \) upon delithiation and desodiation.

Eventually, Fig. 8 displays the resulting structures after relaxation by applying the eigenvectors of the most imaginary modes to the crystal structures, except for \((v'_n)_{2}[\text{N(CN)}_2]_3\) (Fig. 8c), because the structure was already dimerized as mentioned above.

\[\text{LiCs}_2[\text{N(CN)}_2]_3 \]
\[\text{NaCs}_2[\text{N(CN)}_2]_3 \]

Figure 8. Final structures after phononic relaxation of a) \(v'_1[\text{N(CN)}_2] \), b) \(v'_3[\text{N(CN)}_2] \), c) \((v'_n)_{2}[\text{N(CN)}_2]_3 \), d) \(v'_1 \text{Cs}[\text{N(CN)}_2]_3 \) and e) \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \).

The structures reflect that the dicyanamide units in \(v'_1[\text{N(CN)}_2] \), \(v'_3[\text{N(CN)}_2] \) and tricyanomelamine units in \((v'_n)_{2}[\text{N(CN)}_2]_3\) have become dimerized as anticipated from their radical character. The resulting phonon DOS for the dimerized \(v'_1[\text{N(CN)}_2] \) and \(v'_3[\text{N(CN)}_2] \) structures is shown in Fig. 57 in the SI. The structures of \(v'_1 \text{Li}[\text{N(CN)}_2]_3 \) and \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \), however, did not change much, the only significant difference being a small stretch (12%) of the unit cell along the \(c \) lattice parameter compared to the original structure (cf. Fig. 5 d and e). One may assume that the ionic character of the Cs compounds and their inherent Madelung field leads to some extra stabilization, thereby also compensating the radical character.

Having a look at the projected electronic DOS of the final structures (Fig. 9) reveals that, in case of \(v'_1[\text{N(CN)}_2] \) and \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \), the unfavorable electronic state has disappeared. The resulting dimerized compounds now show a wider band gap (Fig. 9 a, b) and no magnetization whatsoever. The projected DOS for \(v'_1 \text{Cs}[\text{N(CN)}_2]_3 \) and \(v'_3 \text{Na}[\text{N(CN)}_2]_3 \), do not vary much from the one before structural relaxation (Fig. 9 d, e vs. Fig S6 d, e) due to a lack of structural change.

8
The contribution of Cs compounds, de/tricyanomelaminate salts with Li and NaCs \([\text{N(CN)}]_{3}\), are red. The ioni−2 and \(\text{N(CN)}\) ions are together form the dicyanamide/tricyanomelaminate units (pCOHP) and visualized as regards the terminal C≡N triple bonds in Fig. 10.

All dicyanamide/tricyanomelaminate units in Li\([\text{N(CN)}]_{3}\), Na\([\text{N(CN)}]_{3}\), Na\([\text{N(CN)}]_{3}\), Li\([\text{N(CN)}]_{3}\), and NaGd\([\text{N(CN)}]_{3}\), are chemically very similar to each other in terms of the C≡N triple bonds (1.17 Å, IpCOHP about −20 eV) and the C−N single bonds (1.29 Å, IpCOHP about −14 eV), and that does not change significantly for \(v_{\text{IpCOHP}}\) for the C≡N triple bond and \(v_{\text{IpCOHP}}\) for the C−N single bond (cf. Fig. 11 d, e); as indicated before, the Madelung field of the Cs-containing salts stabilizes those in terms of structure and energy. The energetic order of magnitude of the IpCOHP for the C−N bonds agree with values that have been reported before.\(^{151}\) In the structures dimerizing upon Li/Na removal, however, one C≡N triple and one C−N single bond turn into two C≡N double bonds (1.23 Å) due to the formation of a new N−N bond (cf. Fig. 11 a, b, c). The double bond corresponds to those in metal carbodiimide compounds, about 1.22 Å, \(v_{\text{IpCOHP}}\) about −20 eV, whereas other C=N bond types like in imines arrive at around 1.3 Å.\(^{157}\) It is noteworthy mentioning that DFT-based energetic evaluation of bonds with differing bond orders can be misleading due to a DFT delocalization error,\(^{158}\) falsely predicting the relative stabilities of mercury carbodiimide and cyanamide, HgNCN; experimentally, the cyanoamide phase with a C≡N triple and a C−N single bond is the more stable polymorph.\(^{152}\) Hence, we used tabulated bond dissociation energies\(^{159}\) \(D_{0}\) to estimate the energetic situation upon dimerization. Based on \(D_{0}\) for HC≡H, H₂C≡NH, H₂C−NH₂, and H₂N−NH₂ (cf. Tab. S11), the energy gain for cleaving a C≡N triple and a C−N single bond as well as forming two C≡N double and a new N−N single bond lies around −263 kJ mol\(^{−1}\), clearly indicating that dimerization is energetically favored.

For ease of comparison, we offer a closer and simplified look at the transformation of the dicyanamide/tricyanomelaminate monomer to the dimerized unit in Fig. 11, including the energy integrals of the projected COHP value for the individual C−N and N−N bonds.

Figure 9. Projected density of states (pDOS) plots for the dicyanamide-containing compounds without Li and Na. a, b, d, and e show the DOS after phononic relaxation. c shows the same pDOS as Fig. S6 c.

Figure 10. Projected COHP plots for the terminal C≡N triple bond f) in the dicyanamide/tricyanomelaminate salts with Li and Na compared to the ones without Li and Na.
In general, the salts of the dicyanamides tested here seem to be robust against the removal of Li or Na cations due to dimerization of the $[\text{N}(\text{CN})_2]^-$ radicals, with the fortunate exception of the Cs-containing compounds which are stable even without dimerization. Hence, LiCs$_2[\text{N}(\text{CN})_2]^-$ and NaCs$_2[\text{N}(\text{CN})_2]^-$ are most suitable among the dicyanamide salts tested here to act as electrode material. The occurrence of stable nitrogen-centered (and also phosphor-centered) radicals is at least not uncommon and was also reported in the literature for other compounds.160-162

To ultimately test if the dicyanamide and tricyanomelaminate compounds have cathodic or anodic character, the reaction equations (1–5) in scheme 1 can be formulated for the reactions of the dicyanamide and tricyanomelaminate salts with commercial cathode materials LiCoO$_2$ and NaFePO$_4$ within a battery. The respective reaction enthalpy ΔH_r is estimated from total energies83,163 of the involved compounds. The resulting electrochemical potential ΔE is approximated via the battery equation $\Delta H_r \approx \Delta G = -nF\Delta E$.

Since the reaction enthalpies turned out to be positive for all five compounds, it seems that these materials rather have a cathodic character than an anodic one. Admittedly, the activation energy for ion migration – an important measure for Li and Na ion mobility in battery materials – of LiCs$_2[\text{N}(\text{CN})_2]^-$, NaCs$_2[\text{N}(\text{CN})_2]^-$, Na$_3[\text{N}(\text{CN})_2]^-$ and Na$_3[\text{N}(\text{CN})_2]^-$ lie around 1 eV and that for Li[\text{N}(\text{CN})_2]^-$ around 0.5 eV, whereas commercially available materials like LiCoO$_2$ excel with about 0.3 eV (cf. Fig. S2), but as discussed above, this finding can also be due to a too simple diffusion model.
Metal dicyanamides and related compounds are stable in acid and basic media, and are generally known for a high thermal and chemical stability. Thermally induced polymerization is known for some compounds to happen after being heated above 500 °C. In case of alkali metal dicyanamide salts (M[N(CN)]$_2$, M = Na, K, Rb), thermally induced trimerization is reversible in general and therefore any (partial) oligomerization/polymerization during the discharge process in a battery can be reversible, as well. With a relative density to LiCoO$_2$ of -1.2 for LiCs$_2$[N(CN)]$_2$ and NaCs$_2$[N(CN)]$_2$, these compounds can also compete in terms of bulk properties with commercially used electrode materials.

Based on the intriguing properties of dicyanamide salts reported in the literature and the findings of the current work, we encourage experimentalists to evaluate dicyanamide salts for the application as electrode materials in battery technology.

CONCLUSIONS

In conclusion, Löwdin’s population analysis has been utilized to investigate cathode and anode materials for Li and Na ion batteries. Generally speaking, such wavefunction-based analysis is able to yield chemically reasonable charges. In case of the cathode materials LiCoO$_2$, LiFePO$_4$ and NaFePO$_4$, the magnetic order or the use of a U parameter did not have a major influence of the compounds’ charges and the trend of the charges among the three compounds agreed with the experimentally known, good intercalation behavior of LiCoO$_2$. New insight towards the improvement of the intercalation behavior in electrode materials was given by switching from graphite based materials to dicyanamide salts and nanoporous compounds, due to a decrease in cation charge. Moreover, the structure of LiCo is stabilized through a significant covalent contribution from the Li–C bond, despite the dominant ionic bonding character. On the other side, nanoporous materials such as LiK$_2$C$_{196}$, LiZnC$_{196}$, LiZnC$_{196}$ and NaK$_2$C$_{206}$ display various cationic Löwdin charges, and these charges are likewise reduced for compounds such as Li[N(CN)]$_2$, Na[N(CN)]$_2$ and Na$_3$[N(CN)]$_2$, which are clearly smaller than in LiCo and LiFeO$_4$, the strongest reduction being found for the Cs-containing phases like LiCs$_2$[N(CN)]$_2$ and NaCs$_2$[N(CN)]$_2$. Upon delitiation and desodiation, dicyanamide salts behave differently as a function of their complexity: LiCs$_2$[N(CN)]$_2$ and NaCs$_2$[N(CN)]$_2$ devoid of Li/Na stay structurally almost the same, in particular as regards the dicyanamide units; remaining phononic instabilities are negligible. In the case of the binary dicyanamides, energetically beneficial dimerization and the formation of a new N–N single bond appears, in addition to changing neighboring C–N single/triple bonds to double bond character. With low densities for all five dicyanamide compounds and electrochemical activity, in addition to the high thermal stability, these materials can theoretically compete with commercially available electrode materials. We hope to have stimulated independent experimental results as regards the suitability of dicyanamide salts as electrode materials in Li and Na batteries.

ASSOCIATED CONTENT

Supporting Information.

Table S1. Mulliken and Löwdin charges for different magnetization models for LiCoO$_2$.

Table S2. As before but for LiFePO$_4$.

Table S3. As before but for NaFePO$_4$.

Table S4. Lattice parameters and k-point set for the compounds presented in this work.

Table S5. Supercell size, defect structure and activation energies of the Li and Na-compounds presented in this work.

Table S6. Mulliken and Löwdin charges of cathode materials LiCoO$_2$, LiFeO$_4$ and NaFePO$_4$ in comparison with Bader charges.

Table S7. Mulliken and Löwdin charges of several Li, Na and K containing graphite-like anode materials in comparison with Bader charges.

Table S8. Detailed comparison of Mulliken, Löwdin and Bader charges for LiCo, LiFeO$_4$ and model structures NaCs and KC$_6$.

Table S9. Mulliken and Löwdin charges of Li[N(CN)]$_2$, Na[N(CN)]$_2$, Na$_3$[N(CN)]$_2$, LiCs$_2$[N(CN)]$_2$ and NaCs$_2$[N(CN)]$_2$ in comparison with Bader charges.
Table S10. Lattice parameters of the relaxed structures (before phonon calculations) of the dicyanamide-containing compounds without Li and Na and the change of the lattice parameter with respect to the relaxed structures containing Li and Na.

Table S11. Bond dissociation energies D_b for HC≡H, H$_2$C=NH, H$_2$C-NH$_2$ and H$_2$N-NH$_2$ given for the homolytic reaction of A-B \rightarrow A$^+$ + B$^-$. Figure S1. Comparison of projected density of states (pDOS) without and with U parameter of a) LiCoO$_2$, b) LiFePO$_4$ and c) NaFePO$_4$ in the antiferromagnetic states.

Figure S2. Löwdin charge of the migrating ion vs. activation energy E_A.

Figure S3. Migration paths of the ions in the cathode materials. a) LiCoO$_2$: Li$^+$ ions move from octahedral site to octahedral site via passing a tetrahedral site along the a axis. b) LiFePO$_4$: Li$^+$ ions move between octahedral and interstitial sites along the b axis. c) NaFePO$_4$: Na$^+$ ions also move along the b axis. d) LiCo and LiC$_{12}$Li$^+$ ions show the smallest migration activation energy barrier for the shown path.

Figure S4. Migration paths of a) Li$^+$ in Li$_2$[N(CN)$_2$], b) Na$^+$ in Na$_2$[N(CN)$_2$], c) Na$^+$ in Na$_3$[N(CN)$_2$], d) Li$^+$ in Li$_2$C$_3$[N(CN)$_2$]$_3$, and e) Na$^+$ in Na$_3$[N(CN)$_2$].

Figure S5. Migration paths of a) Na$^+$ through the carbon backbone and b) Na$^+$ through a pore in Na$_2$C$_{206}$, as well as c) Li$^+$ along a graphen-like layer in Li$_2$C$_{194}$ and d) Li$^+$ along a graphen-like layer in Li$_2$C$_{196}$.

Figure S6. Projected density of states (pDOS) plots for the dicyanamide-containing compounds without Li and Na after structural relaxation and before phononic relaxation.

Figure S7. Phonon density of states for ν_N, ν_{Li}, and ν_{Na}.

This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
Richard Dronskowski –Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany; Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, China; orcid.org/0000-0002-1925-9624; Email: drons@HAL9000.ac.rwth-aachen.de

Authors
Christina Ertural –Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
Ralf P. Stöffel –Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany

Peter C. Müller –Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
C. Alexander Vogt –Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany

ACKNOWLEDGMENT

The authors wish to thank the IT Center of RWTH Aachen University for providing the computational time as well as the resources under project jara0033. We also want to thank Prof. Dr. Volker L. Deringer for providing excellent ideas for the basic concept of this work, Dr. Markus Mann for suggesting to investigate dicyanamide and related salts and Jan Hempelmann for proof-reading.

This publication is dedicated to the memory of our colleague, dear friend and software developer Dr. Bernhard Eck, inventor of the beautiful tool wxDragon, who passed away last year. Without him, this and other works of the past would have been much more difficult to accomplish.

REFERENCES

Peter C. Müller –Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
C. Alexander Vogt –Chair of Solid-State and Quantum Chemistry, Institute of Inorganic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany

Notes

The authors declare no competing financial interest.
19. Masquelier, C.; Croguevecq, L., Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 2013, 113 (8), 6552–91.
32. Gong, Z.; Yang, Y., Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ. Sci. 2011, 4 (9), 3223–3242.
33. Fergus, J. W., Recent developments in cathode materials for lithium ion batteries. J. Power Sources 2010, 195 (4), 939–954.
50. Wu, Y. P.; Rahm, E.; Holze, R., Carbon anode materials for lithium ion batteries. J. Power Sources 2003, 114 (2), 228–236.

114. Kresse, G.; Marsman, M.; Furthmüller, J., Vienna Ab Initio Simulation Package (VASP), The Guide. Computational Materials Physics, Faculty of Physics, Universität Wien: Vienna, Austria, 2014.

118. Nakayama, M.; Yamada, S.; Jalem, R.; Kasuga, T., Density functional studies of olivine-type LiFePO4 and NaFePO4 as positive electrode materials for rechargeable lithium and sodium batteries. Solid State Ionics 2016, 286, 40–44.

For Table of Contents Only

Studying several commonly used and new Li and Na compounds for the utilization as anode and cathode materials in rechargeable batteries with the robust Löwdin population analysis tool and other covalent bonding indicators reveals new insight into the intercalation behavior of these materials.