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Abstract 
The amount of data available on chemical structures and their properties has increased steadily 
over the past decades. In particular, articles published before the mid-1990 are available only in 
printed or scanned form. The extraction and storage of data from those articles in a publicly 
accessible database are desirable, but doing this manually is a slow and error-prone process. In 
order to extract chemical structure depictions and convert them into a computer-readable format, 
optical chemical structure recognition (OCSR) tools were developed where the best performing 
OCSR tools are mostly rule-based.  
 
The DECIMER (Deep lEarning for Chemical ImagE Recognition) project was launched to address 
the OCSR problem with the latest computational intelligence methods to provide an automated 
open-source software solution. Various current deep learning approaches were explored to seek 
a best-fitting solution to the problem. In a preliminary communication, we outlined the prospect of 
being able to predict SMILES encodings of chemical structure depictions with about 90% 
accuracy using a dataset of 50-100 million molecules. In this article, the new DECIMER model is 
presented, a transformer-based network, which can predict SMILES with above 96% accuracy 
from depictions of chemical structures without stereochemical information and above 89% 
accuracy for depictions with stereochemical information. 
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Introduction 
 
Scientists build on the results of their peers. Knowledge and data arising from previous research 
is shared through scientific publications and increasingly through the deposition of data in 
repositories. To enable progress in core areas of chemistry, the availability of open data has a 
beneficial impact [1]. Most of the chemical data is published in the form of text and images in 
scientific publications [2]. Retrieving and storing published information into open-access 
databases will facilitate the reuse as well as the development of new methods and products [3]. 
But most of the data published is non-machine readable and manual curation is still the standard. 
This manual work is tedious and error-prone [4]. The increase of publications with valuable 
chemical information [5] does encourage the developments of tools for automated data retrieval. 
Information retrieval with corresponding database storage is an ongoing task and multiple projects 
are working towards this. The CHEMDNER [6] challenge is one good example of it. 
 
There has been a significant amount of development in the field of chemical data mining [5] with 
a couple of open source solutions including ChemDataExtracter [4] and ChemSchematicResolver 
(CSR) [7], building upon each other. A scanned page of an article, however, cannot be handled 
by CSR, and not all publications can be processed by CSR. Although most publishers offer 
documents in markup format, many of the older publications are stored in scanned PDF files. For 
example, the Journal of Natural Products did publish scientific articles since 1978, one of their 
issues even dates back to 1949; however, these publications were not formatted in markup 
format. So retrieving this information is a difficult process. 
 
Image mining methods for chemical structure depictions and their conversion into a machine-
readable file format is a comparatively small research area [8]. The automatic recognition of 
chemical structure depictions and their conversion into machine-readable formats such as 
SMILES [9] or InChI [10], however, is an important task for creating corresponding databases. 



The publications include chemical structure depictions along with other information in textual 
format and contain some information presented as tables, graphs, spectra, etc. 
 
Optical Chemical Structure Recognition (OCSR) software was built to parse chemical structure 
depictions. However, most of these softwares\tools are unable to handle whole page articles or 
scanned ones. In order to use these tools, it is necessary to segment the chemical structure 
depictions into separate images from printed literature and then use these segmented images as 
inputs. Also, the user should ensure that the image does not contain any other elements or 
artefacts other than a representation of a chemical structure in a segmented image. All of the 
available systems vary in their accuracy, OSRA [11] and MolVec [11, 12] can resolve a chemical 
structure with 80-90% accuracy [8].  
 
With the advancements in computer vision, a few deep learning-based OCSR tools have been 
developed, e.g. by Staker et al. [13], the first machine learning-based system for segmentation of 
images and resolution into a computer-readable format. Another deep learning-based work is 
Chemgrapher [14], where multiple neural networks are combined for the recognition of molecules. 
Recently, there was a new publication called ChemPix [15], a deep learning-based method that 
was developed to recognize hand drawn hydrocarbon chemical structures. Another recent 
publication describes SMILES generation from images [16] where an encoder-decoder method 
with a pre-trained decoder is used from previous work [17]. These contributions demonstrate an 
increasing interest in this field of research. Even though they all claim to provide enhanced 
accuracy, none of them is accessible to the general public to date. 
 
The DECIMER (Deep lEarning for Chemical IMagE Recognition) project [18] is an end-to-end 
open-source system that can perform chemical structure segmentation on scanned scientific 
literature and use the segmented structure depictions to convert them into a computer-readable 
molecular file format.  
 
In our work on DECIMER-Segmentation [19], the segmentation workflow was specifically 
addressed. Here we now present a transformer-based algorithm that converts the bitmap of a 
chemical structure depiction into a computer-readable format. The system does not inherit any 
rules or make any assumptions, thus, it solely relies on the chemical structure depiction to perform 
its task. 
 
The DECIMER algorithm was primarily inspired by the successful AlphaGo Zero algorithm [20] 
developed by Google’s DeepMind. The success of AlphaGo Zero allowed us to realize that very 
challenging problems could be adequately tackled by having a sufficient amount of data and using 
an adequate neural network architecture. With dozens of millions of molecules available in the 
databases like PubChem [21], Zinc20 [22], and GDB-17 [23], we have shown in our preliminary 
communication that our goal to have a system that can work with about 90% accuracy, could be 
achieved by training the network on a dataset of 50-100 million molecules. 
 



Materials and Methods 
DECIMER is a completely data-driven solution to chemical image recognition. Recent impressive 
applications of deep learning, such as the AlphaGo Zero example, all relied on the availability of 
very large to unlimited amounts of training data. In our case, one of the largest chemical 
databases on the planet,  PubChem [21], was used. 

Data Preparation 
The latest version of Pubchem was downloaded from their FTP site. All explicit hydrogens were 
removed using the CDK [24] and isomeric SMILES [9] were generated, which inherit the 
canonicalisation and retain the stereochemistry information. After generating the SMILES, the 
following set of rules were used to filter the dataset for a balanced dataset. The molecules in both 
training and test set should, 
 

● have a molecular weight of fewer than 1500 Daltons, 
● not possess counter ions, 
● only contain the elements C, H, O, N, P, S, F, Cl, Br, I, Se and B, 
● not contain isotopes of Hydrogens (D, T), 
● have 3 - 40 bonds,  
● not contain any charged groups including zwitterionic forms,  
● only contain implicit hydrogens, except in functional groups, 
● have less than 40 SMILES characters, 
● no stereochemistry is allowed.  

 
The resulting main dataset contains 39 million molecules. The same rule set was used to generate 
a second dataset, but the molecules with charged groups including zwitterionic forms  and 
stereochemistry were retained. Furthermore, the molecules containing tokens that were rare in 
the dataset were removed (see section on tokenization), resulting in a dataset that contains 
approximately 37 million molecules. Adding extra information caused the SMILES character 
length to get longer. Later, when the rule that SMILES length should not exceed 40 characters 
was applied, more molecules were removed. In the end, this resulted in the dataset 2 being 
smaller in size than the dataset 1. 
 
Molecular bitmap images were generated using the CDK Structure Diagram Generator (SDG). 
The CDK depiction generator enables the generation of production-quality 2D images. In this 
work, every molecule was randomly rotated and depicted as 8 Bit PNG images with a 299x299 
resolution. It was made sure that each image contains only one structure. 
 
Using the set of images from the second dataset and introducing image augmentations the third 
dataset was generated. The image augmentations were applied using the imgaug [25] python 
package. One of the following augmentations was randomly applied to the images. 
 

● Gaussian Blur 
● Average Blur 
● Additive Gaussian Noise 
● Salt And Pepper 
● Salt 



● Pepper 
● Coarse Dropout 
● Gamma Contrast 
● Sharpen 
● Enhance Brightness 

 
Often, deep learning in chemistry is using SMILES as a textual representation of structures. 
Training Neural Networks (NNs) directly with SMILES, however, has pitfalls: In order to generate 
tokens, a set of rules has to be set up on how and where to split long strings of SMILES into 
smaller words. After training, invalid SMILES are often encountered in the predictions, which 
results in overall significantly reduced accuracy. To tackle this problem there are two new text 
representations named DeepSMILES [26] and SELFIES [27]. DeepSMILES exhibited better 
results in comparison to standard SMILES, but again invalid DeepSMILES caused similar 
problems. In the end, SELFIES were used, since they can be split easily into tokens by splitting 
the SELFIE at close (“]”) and open brackets (“[”). No further rules had to be applied to split them 
into a working token set. Also, they translate back into a SMILES string without any errors. All 
SMILES strings in our 3 datasets were converted into SELFIES using Python. 
 

 
Figure 1: SMILES, DeepSMILES and SELFIES represented as tokens with a space character as 
a delimiter. 
 
To summarize, the datasets used in this work are: 
 

1. Dataset 1: PNG images of chemical structure depictions plus corresponding canonical 
SMILES converted into SELFIES, without stereochemical information and charged 
groups. 

2. Dataset 2: PNG images of chemical structure depictions plus corresponding canonical 
SMILES converted into SELFIES, with stereochemical information and charged groups. 

3. Dataset 3: Augmented PNG images of chemical structure depictions plus corresponding 
canonical SMILES converted into SELFIES, with stereochemical information and charged 
groups. 

 
Test datasets were selected from 10% of each dataset. To ensure that the chemical 
diversity of test and training data was similar, 10% of SMILES were selected as Test dataset 



using the RDKIT MaxMin algorithm. An overview of all the train and test datasets and the 
naming of subsets can be found in table 1. 
 
Table 1: Overview of the datasets  
 

  Dataset 1 Dataset 2 Dataset 3 

Total 
Dataset 
Size 39 Million 37 Million 37 Million 

  
Subs
et 1 

Subset 
2 

Subset 
3 

Subset 
4 

Subset 
5 

Subset 
6 

Non 
augmented 
test set 

Augmented 
test set 

Train 
Dataset 
size 

921,6
00 

10,240,
000 

15,360,
000 

35,002,
240 

15,360,
000 

33,304,
320 33,304,320 33,304,320 

Test 
Dataset 
size 

102,4
00 

1,024,0
00 

1,536,0
00 

3,929,0
93 

1,536,0
00 

3,700,4
80 2,000,000 2,000,000 

 

Image feature extraction 
 
A Convolutional Neural Network (CNN) is used to parse the images, where the second last layer 
retains the features to be extracted for calculations. For training our model, we evaluated  
InceptionV3 [28] and EfficientNet-B3 [29], see Figure 2. The EfficientNet base model for an image 
size of 299 x 299 outperforms InceptionV3 in our task at hand [29].  
 
Every image was scaled to a resolution of 299x299 pixels, and the pixel values were normalized 
to interval -1 to 1, which corresponds to the format used on InceptionV3 and EfficientNet-B3. Then 
the image features were extracted into a vector format using the pre-trained weights of ImageNet 
[30] on InceptionV3 and pre-trained weights of Noisy-student [31] training on EfficientNet-B3.  
 
For Inception V3 a feature vector size of 8x8x2048 and for EfficientNet-B3 a feature vector size 
of 10x10x1536 was obtained. The 8x8x2048 and 10x10x1536 dimensions are simply the shape 
of the last output layer in Inception-V3 and EfficientNet-B3 networks. Since Inception-V3 and 
EfficientNet-B3 are networks built for image classification, these features are then used in the 
final layer of these networks to classify the images. 
 
Next, these extracted feature vectors were saved into NumPy arrays.  



Tokenization 
SELFIES were tokenized into a unique set of tokens and padded to fit the maximum length of 
SELFIES strings. Here the Keras [32] tokenizer in Tensorflow 2.3 [33] was used. Table 2 
summarizes the details regarding the tokens present in each dataset. 
 
Table 2: SELFIES tokens and maximum length found on each dataset. 
 

Datasets Number of SELFIES Tokens The maximum length of the 
SELFIES strings 

Dataset 1 27 47 

Dataset 2 61 47 

Dataset 3 61 47 
 
Tokens in Dataset 1: [C], [=C], [Branch1_1], [N], [Ring1], [O], [Branch1_2], [Expl=Ring1], [=N], 
[Branch2_1], [Branch1_3], [Ring2], [S], [F], [=O], [Branch2_2], [Cl], [Branch2_3], [#C], [Br], [P], 
[=S], [I], [=P], [Expl=Ring2], [B], [#N] 
 
Tokens in Dataset 2 & 3: [C], [=C], [Branch1_1], [Branch1_2], [Ring1], [N], [O], [=O], [=N], [Ring2], 
[Branch2_1], [S], [Branch1_3], [F], [Branch2_2], [Cl], [Branch2_3], [Br], [#C], [/C], [#N], [P], 
[C@Hexpl], [C@@Hexpl], [=N+expl], [=S], [=N-expl], [I], [O-expl], [N+expl], [\C], [/N], [/O], 
[C@expl], [B], [C@@expl], [\N], [Expl/Ring1], [\O], [NH+expl], [I-expl], [Expl\Ring1], [P+expl], 
[NH2+expl], [/Cl], [/S], [NH3+expl], [Cl-expl], [/F], [#N+expl], [C-expl], [\S], [N-expl], [=NH+expl], 
[=I], [S-expl], [\Cl], [S+expl], [#C-expl], [B-expl], [/Br]  
 
Complete list of rare tokens which were removed: [=B], [=Cl], [=Br], [#I], [=I], [#S], [Expl#Ring1], 
[#B], [#P], [=Br], [Expl#Ring2] 

Generating TFRecords 
Extracted feature vectors and tokenized data must be converted into TFRecords before training 
the models on Tensor Processing Units (TPU) [34]. TFRecords stores the data in binary format 
which allows training the models faster using GPUs and TPUs. The TPUs are currently available 
through the Google Cloud Platform. TFRecords are stored in a Google cloud bucket for training. 
This reduces the training time significantly and reduces the overhead of loading the data and 
performing the calculations on a TPU. 
 
Using a custom python script all the datasets were converted into 75 MB chunks of TFRecords. 
Each TFRecord contains 128 Datapoints (128 image vectors + 128 tokenized strings). 
After generating the TFRecords locally, they were moved to a Google cloud storage bucket. 



Networks 
In this work, two different types of networks were evaluated. Initially, an encoder-decoder model 
was tested, which is based on the work by Google on their Show, Attend and Tell  [35] publication. 
The network eventually selected is a transformer-based model based on the Attention is all you 
need [36] publication by Google. The models are written using Python and Tensorflow 2.3 as a 
backend.  

Encoder-decoder network 
The encoder-decoder network used is an unaltered implementation by the TensorFlow team [37]. 
The model uses a CNN-based encoder with a ReLU activation function, a soft attention 
mechanism introduced by Bahdanau et al. [38] and the RNN based decoder uses Gated 
Recurrent Units (GRU) and two fully connected layers. The decoder consists of 1024 units and 
an embedding size of 512. 
 
The network is trained using an Adam optimizer [39] with a learning rate of 0.0005 throughout all 
learning epochs. The loss is calculated using sparse categorical cross-entropy between real and 
predicted SELFIES.  
 

 
Figure 2: Schema of the Encoder-Decoder network used in DECIMER for training. 

Transformer network 
The transformer model (Figure 3) used in this work is the model from the 2017 publication 
Attention is all you need.  It uses four encoder-decoder layers and eight parallel attention heads. 
The attention has a dimension size of 512 and the feed-forward networks have a dimension size 



of 2048. Here the number of rows and columns corresponds to our image features extracted into 
a vector format, so for the InceptionV3, the feature vector size is 8x8x2048 and for the 
EfficientNet-B3 it is 10x10x1536. A drop out of 0.1 is used to avoid overfitting.  
 
The network is trained using an Adam optimizer with a custom learning rate scheduler according 
to [36]. The loss is calculated using sparse categorical cross-entropy between real and predicted 
SELFIES. 
 

 
 
Figure 3: Schema of the Transformer network used in DECIMER for training. 

Training the models 
Initially, all the models were trained using an in-house server equipped with an Nvidia V100 Tesla 
with 32GB GPU, 384 GB of RAM and two Intel(R) Xeon(R) Gold 6230 CPUs. The details 
regarding the scaling & performance were explained in our previous publication [18]. For this 
work, a model with a dataset of one million molecules is initially trained using the same GPU 



equipped server. A batch size of 512 images is used to train the model, resulting in an epoch time 
of 29 minutes and 48 seconds, on average. For a complete convergence of the model, it took 
about 1 day, 5 hours and 48 minutes on the hardware mentioned above.  
 
On a TPU v3-8 (TPU version 3 with 8 nodes) the same model was trained with a batch size of 
1024 which is distributed between 8 nodes, and it took on average 8 minutes and 41 seconds per 
epoch and for a complete convergence of the model, it took 8 hours 41 minutes and 4 seconds. 
This is a reduction of 71.9% in computation time and we, therefore, decided to train all models 
with the TensorFlow distributed training API using the Tensor Processing Units v3-8. 
 

Testing the models 
All the models were trained until their training loss converged, then each model was tested with 
a test data size of 10% of the training data. Throughout the process of selecting molecules for the 
test dataset, the RDKit [40] MaxMin algorithm is used to select a diverse test dataset covering the 
same chemical space as the training dataset.  
 
Test dataset evaluations were performed on the GPUs. Predicted SELFIES were decoded back 
to SMILES and then the Tanimoto Similarity Index was calculated for the original and predicted 
SMILES using PubChem fingerprints, included in the CDK. The Tanimoto Similarity Index 
provides useful information because it makes a difference whether a wrong prediction is 
completely wrong or provides a result very similar to the correct molecule.  was used because the 
predictions do not always correspond to the same molecule. The Tanimoto similarity thereby 
provides a quantitative measure of how well the network is able to “understand” graphical 
chemical structure representations. 
 
Apart from that for the predictions with the Tanimoto similarity index of 1.0, we additionally 
generated InChIs using the CDK to perform an isomorphism check and determined whether 
Tanimoto 1.0 predictions are a good proxy for structure identity.  
 
Models trained with augmentations were tested with augmented images and with images without 
any augmentation. 

Results and Discussion 

Computational considerations 
Training large datasets such as the ones used here on deep neural networks takes months even 
on GPUs, let alone regular CPUs. For performance measure, a dataset with one million molecules 
was trained for 50 epochs on an Nvidia Tesla V100 GPU and the same model was also trained 
on a TPU V3-8 (version 3 TPU with 8 nodes) and TPU V3-32 (version 3 TPU with 32 nodes). 
 



Training a model on a V3-8 TPU helped by increasing training speed up to 4 times compared to 
a V100 GPU and by using a V3-32 TPU a 16 times faster training speed was achieved, see figure 
4. Concerning these results and considering the costs of V3-32 TPUs, it was decided to train all 
the models on a V3-8 TPU. 
 
 
 

 
Figure 4: Training time comparison between a GPU and TPUs (lower is better) 
 
To evaluate if testing accuracy could be improved by increasing the training dataset size, different 
subsets generated using dataset 1 were trained on TPU V3-8. The maximum length of SELFIES 
strings stayed the same throughout the training. As shown in Figure 5, training time increases 
with the increase in datasets.  
 



 
Figure 5: Average training time per epoch with increasing training dataset size. 
 
It would take a considerable amount of time to examine the performance of the network using a 
bigger dataset. For the initial tests, Subset 1: a subset of 1 million was used, which was derived 
from Dataset 1. We split the dataset into 90% training data (921600) and 10% test data (102400) 
using the RDKIT MaxMin algorithm to ensure that the test data picked are diverse and resemble 
the training dataset. 

Image feature extraction test  
Correct extraction of the image features will result in an improved overall model at the end. In our 
previous work, the InceptionV3 model was used for image feature extraction. InceptionV3 is a 
state-of-the-art image classification network. A newer network, called EfficientNet, was created to 
enable better classification accuracy, and the results of noisy-student training using EfficientNet 
[31] were better than the InceptionV3 network. The EfficientNet-B3 model was then compared to 
InceptionV3 while still using the same image size (299x299) to test whether EfficientNet-based 
image feature extraction would improve our models' accuracy. 
 
To compare the InceptionV3 feature extraction with EfficientNet-B3 feature extraction a subset of 
1 million molecules was used. Using these models, the features were extracted and then used to 
train encoder-decoder based networks for 60 epochs until the training loss converged. The 
training time for the network that uses the features extracted using the InceptionV3 model was 
found to be shorter than the network which uses the EfficientNet-B3 model.  
 



After training, the models were tested with a test dataset. The predicted SELFIES were 
retranslated into SMILES strings and the Tanimoto similarity index was calculated between 
original SMILES and the retranslated SMILES. Here, no errors have occurred in translating 
SELFIES to SMILES. Table 3 summarizes the evaluation. 
 
 
Table 3: 1 million molecules model testing results for comparing InceptionV3 and EfficientNet-B3 
feature extraction. 
 

Metrics InceptionV3 EfficientNet-B3 

Average Training time per epoch 7mins 34secs 8mins 57Secs 

Tanimoto 0.5459 0.6345 

Tanimoto 1.0 1.41% 7.03% 

 
The Tanimoto 1.0 count indicated that the EfficientNet-B3 model led to a remarkable overall 
performance increase, so it was used for the entire work. 

Encoder-Decoder model vs. Transformer model 
In our previous work [18], the encoder-decoder network was extensively explored. Meanwhile, 
great progress was made in transformer-based networks and the results seemed promising, so 
we decided to implement a transformer-based network in this work as well. 
 
First, the transformer network was tested with InceptionV3 based image feature extraction, then 
it was tested using the EfficientNet-B3 based image feature extraction. The extracted image 
features with tokenized SELFIES were used as inputs for the transformer. For this work, the same 
1 million molecules subset was used with a 90:10 split for training and testing. 
 
The models were trained on TPU V3-8 until the training loss converged. The average time for 
transformer-based models was higher than the other, and the highest average training time was 
recorded for the EfficientNet-B3 Transformer network. Once the training was completed, the 
models were tested using the same test set. Table 4 summarizes the final evaluation. 
 
Table 4: Comparing the encoder-decoder- and transformer-based approach with a 1 million 
images test dataset 
 

Metrics 

encoder-decoder Transformer 

InceptionV3 EfficientNet-B3 InceptionV3 EfficientNet-B3 
Average Training time per 
epoch 7mins 34secs 8mins 57Secs 8mins 33secs 9Mins 27 secs 



Tanimoto 0.5459 0.6345 0.8764 0.9371 

Tanimoto 1.0 1.41% 7.03% 55.29% 74.57% 

 
 
By comparing the Tanimoto 1.0 count, the transformer-based models clearly outperformed the 
encoder-decoder based models. 
 
With these results, it was decided to train all the other datasets using transformers with image 
features extracted using EfficientNet-B3 based image feature extraction. 
 

Image feature extraction comparison using EfficientNet-B3 and B7  
The work described in [29] indicated that EfficientNet-B7 outperforms EfficientNet-B3 marginally 
by 2.7%. We, therefore, implemented EfficientNet-B7 image feature extraction and training on the 
extracted features. The number of parameters to train using EfficientNet-B7 (66 million 
parameters) compared to B3 (12 million parameters) is almost 5.5 times larger, however, which 
makes the network rather big and complex. Furthermore, images had to be rescaled to 600x600 
for B7, in which the chemical structure depictions had to be magnified twice the normal scale. For 
B3, it is easy to use the images with a scale of 299x299 without any alterations.  
 
To test these two image feature extraction methods and to see how well this helps us to achieve 
our main goal, a 1 million molecules image subset was used to train the transformer networks 
and the final models were evaluated using respective Images generated using the same test set. 
Table 5 summarizes the results. 
 
 
Table 5: Comparison of evaluation of using EfficientNet-B3 and B7 for image feature extraction. 
 

Metrics EfficientNet-B3 EfficientNet-B7 

Train Data Size 921,600 921,600 

Test Data Size 102,400 102,400 

Train Data size 0.46 TB 2.8 TB 

Average training 
time 9Mins 27 secs 11mins 42secs 

Tanimoto 0.9371 0.9669 

Tanimoto 1.0 74.57% 84.82% 



 
 
It is evident that the Image feature extraction using EfficientNet-B7 outperforms B3. We found, 
however, that most of the chemical structure depictions found on printed literature can easily fit 
the scale of 299x299, so to use the 600x600 scale the images should be upscaled. Upscaling will 
result in losing information which will be a major downside for this approach since the models 
majorly rely on the image features.  
 
Chemical structure depictions larger than 299x299 square pixels can be downscaled easily to be 
used in our models without losing any pixel information. Thus, the size of the image was decided 
to be 299x299 and the feature extraction performed using EfficientNet-B3. 
 
It may be possible in the future to use EfficientNet-B7 to extract image features for chemical image 
depictions with higher resolutions. 

The performance measure with increasing dataset size 
To evaluate how the split percentage of training and test data affected the training efficiency, we 
use a small toy dataset (subset 1). The data was split into different sizes (see Table 6) of train 
and test sets using the RDKit MaxMin algorithm, and then each model was trained separately and 
evaluated. Table 6 summarizes the results. 
 
Table 6: Results of training the Subset 1 with different train and test dataset sizes. 
 
 

 No 
Train Data 

Size 
Test Data 

Size Split 
Average Time per 

epoch 
Average 
Tanimoto Tanimoto 1.0 

1 102,400 921,600 10|90 42.22 0.86 45.05% 

2 204,800 819,200 20|80 69.95 0.91 63.59% 

3 307,200 716,800 30|70 199.52 0.93 71.63% 

4 409,600 614,400 40|60 276.09 0.94 73.93% 

5 512,000 512,000 50|50 320.25 0.95 77.37% 

6 614400 409600 60|40 392.51 0.96 84.50% 

7 716800 307200 70|30 448.91 0.97 85.38% 

8 819200 204800 80|20 535.57 0.96 82.89% 



9 921600 102400 90|10 560.47 0.94 75.06% 
 

 
 
 

 
 
Figure 6: Average Tanimoto similarity indices and Tanimoto similarity 1.0 count with dataset 
number. 
 
Figure 6 shows that model performance increases with training dataset size.  The test data 
performance increases up to a 70:30 split and then drops slightly, for which we have no 
explanation. Since we assumed that for our much larger final training data (30 mio) it would be 
beneficial for the network to see as much training data as possible, we used a 90:10 split for our 
final training. To see how well the transformer performs with an increased number of data another 
subset of 10 million molecules images which was derived from the Dataset 1 (Subset 2) was 
utilized. The image features were extracted using the InceptionV3 based network and the 
EfficientNet-B3 based network. Every dataset was converted into TFRecords and moved to the 
Google cloud. Two different models based on these two different image feature extractions were 
trained. After the model completed the training, they were tested using a test dataset size of 1 
million molecule images of chemical structure depictions. Table 7 summarizes the results. 
 



Table 7: Testing results of the models trained on 10 million molecule images of chemical structure 
depictions 
 

Metrics InceptionV3 EfficientNet-B3 

Train Data Size 10,240,000 10,240,000 

Test Data Size 1,024,000 1,024,000 

Tanimoto 0.9310 0.9695 

Tanimoto 1.0 74.52% 87.85% 

 
Looking at the Tanimoto similarity average and the Tanimoto 1.0 count one can see that the 
dataset trained with the EfficientNet-B3 based image feature extraction method outperforms the 
InceptionV3 based method. This also was evident in the previous training with 1 million molecule 
images. With these results, the next set of training included only the EfficientNet-B3 based image 
feature extraction. 
 
A total of four subsets were now extracted from Dataset 1, the train and test datasets were created 
using the RDKit MaxMin algorithm. All four datasets included the same number of tokens. All four 
datasets were converted into TFRecords and stored on Google Cloud Storage Buckets and used 
to train the models. Table 8 summarizes the overall results for different subsets. 
 
 

    Table 8: Test data results for subsets. 

Metrics Subset 1 Subset 2 Subset 3 Subset 4 

Train Data Size 921,600 10,240,000 15,360,000 35,002,240 

Test Data Size 102,400 1,024,000 1,536,000 3,929,093 

Tanimoto 0.9371 0.9691 0.9779 0.9923 

Tanimoto 1.0 74.57% 87.88% 91.02% 96.47% 

 
 
These results demonstrate an increasing trend of accurate predictions due to increasing data in 
the training datasets. In addition, with 35 million molecules training, we reached an average 
Tanimoto similarity of 0.99, along with a 96.47% Tanimoto 1.0 count. Because of using SELFIES 
as the input textual data, all of the predictions were successfully retranslated into valid molecules. 
An isomorphism check using InChIs was carried out in order to find out how many molecules in 
Tanimoto 1.0 are fully isomorphic. 
 



InChI strings were generated using the CDK for all the predictions with a Tanimoto similarity index 
of 1.0 and then checked whether they are isomorphic or not by string matching. 
 
 
Table 9: Results of isomorphism calculations for the subsets of Dataset 1 

Metrics Subset 1 Subset 2 Subset 3 Subset 4 

Train Data Size 921,600 10,240,000 15,360,000 35,002,240 

Test Data Size 102,400 1,024,000 1,536,000 3,929,093 

Predictions with Tanimoto 1.0 74,176 899,941 1,398,028 3,790,273 

Isomorphic Predictions 98.63% 99.45% 99.59% 99.75% 

Non-Isomorphic Predictions 1.37% 0.55% 0.41% 0.25% 

 
Table 9 shows that 99% of all predictions which have Tanimoto 1.0 are structurally identical to 
the depicted molecule. Also with the increasing Training dataset size, the isomorphic structure 
count kept increasing slightly.  

Analysis of the predictions with low Tanimoto similarity indices. 
The model trained with subset 4 was able to extract machine-readable representations of 
molecules depicted in the test dataset with near 100% accuracy. In order to understand why 
predictions with low Tanimoto scores were not predicted correctly, the following analysis was 
performed. 
 
Table 10 : Predicted SMILES with lower Tanimoto similarity indices compared with the Original 
SMILES.  

No Original SMILES Predicted SMILES 

Tanimoto 
Similarity 
Index 

1 
P#CP=PP=PP=PP=PP=PP=PP=PP=PP=PP
=PP=P 

N#CC=NSSSSSSSSSSSSSSSSC
=N 0 

2 N1=NOO1 C=1=NOC1 0.14 

3 OC1OC(C=2C(F)=C(F)C(F)=C(F)C21)C)C 
O=C(OCOCCC(F)=C(F)C(F)=C(F)
C)NC 0.35 

4 OCC(C)(CO)C12CCC(C1)C3SSSC32 OCC(C)(CO)C1C=2SSSC2CCC1C 0.59 

5 O=C1N=CC2=CC(=O)C=CC2=N1 O=C1N=CC2=NC(=O)C=CC2=N1 0.81 



 
 
 

 
Figure 7: Depictions of chemical structures with lower Tanimoto similarity indices. 
 
In most cases the network was able to interpret the skeleton of the chemical structure well. 
Semantically small errors such as the miss of a ring closure will lead to seemingly large errors in 
the eyes of a chemist, as can be seen in case 3.  
 
In the majority of cases, the Tanimoto similarity was low due to the predicted SMILES, 

● having one or more wrong atoms. 
● missing a bond. 
● having a wrong bond. 
● missing an aromatic ring. 

 



A strategy to overcome such issues could be to use multiple depictions of the same chemical 
structure in the training set with different rotations so that the network sees more examples of the 
same set of input data. Also implementing different and more image augmentation methods and 
training the augmented images along with the non augmented images might enable the network 
to see the chemical structures clearer. 

Performance of the network with training data using 
stereochemistry information - Dataset 2 
 
To assess the performance of the transformer network on chemical structure depictions with 
stereochemistry and ions, the same dataset was used but stereochemistry and ion information 
were included. By including this information the unique number of tokens increased, and the 
molecules with the least number of tokens were removed after the calculation of the token 
distribution. A new dataset with 37 Mio molecules was created and split into training and test 
datasets using the RDKit MaxMin algorithm. This whole dataset is called Dataset-2 from now on. 
 
By adding stereochemical information and ions, the number of unique SELFIES tokens increased 
from 27 to 61, almost twice the number of the tokens found on Dataset 1. From Table 11 one 
could see the same molecule with and without stereochemistry and how it affects the number of 
tokens present in the SELFIES and the depicted structure. 
 
Table 11: Analysis of a molecule for with and without stereochemical information 
 

  Molecules with stereochemical 
information 

Molecules without stereochemical 
information 

01. SMILES 
(Canonical/Is
omeric) 

C1=CC2=C(C=C1C=O)C(C(O2)
Br)Br 

C1=CC2=C(C=C1C=O)[C@@H]([
C@H](O2)Br)Br 

SELFIES [C][=C][C][=C][Branch1_1][Branc
h1_3][C][=C][Ring1][Branch1_2][
C][=O][C][Branch1_1][Branch2_
1][C][Branch1_1][Ring2][O][Ring
1][Branch2_2][Br][Br] 

[C][=C][C][=C][Branch1_1][Branch
1_3][C][=C][Ring1][Branch1_2][C][
=O][C@@Hexpl][Branch1_1][Bran
ch2_1][C@Hexpl][Branch1_1][Rin
g2][O][Ring1][Branch2_2][Br][Br] 

Number of 
Unique 
SELFIES 
tokens 

12 14 



Depicted 
Structure 

  

02. SMILES 
(Canonical/Is
omeric) 

CC1C(=C(N(N1)C)OC2CCC=
CC2)C=NO 

CC1C(=C(N(N1)C)OC2CCC=C
C2)/C=N/O 

 SELFIES [C][C][C][Branch2_2][Ring1][Rin
g2][=C][Branch1_1][Branch2_1][
N][Branch1_1][Ring2][N][Ring1][
Branch1_1][C][O][C][C][C][C][=C
][C][Ring1][Branch1_2][C][=N][O] 

[C][C][C][Branch2_2][Ring1][Ring2
][=C][Branch1_1][Branch2_1][N][B
ranch1_1][Ring2][N][Ring1][Branc
h1_1][C][O][C][C][C][C][=C][C][Rin
g1][Branch1_2][/C][=N][/O] 
 

 Number of 
Unique 
SELFIES 
tokens 

11 13 

 Depicted 
Structure 

  



 
Inclusion of stereochemistry increased the amount of tokens, but also introduced new artifacts in 
chemical structure depictions such as wedged and dashed bonds. Including the cis/trans 
information reduced the amount of curly bonds in the new dataset. 
 
Including the information about the ions also increased the number of tokens, also this introduced 
new artifacts to the chemical structure depictions such as the “+,-” signs and arrows, see figure 
8. 
 

 
Figure 8: Chemical structure depictions with ions 
  
 
Two subsets of Data Set 2 were generated, one with the 15 million training molecules plus 1.5 
million test molecules and another with 33 million training molecules plus 3.7 million test 
molecules. TFRecords were generated from the chemical structure depictions using these 
datasets and moved into Google cloud storage buckets. Finally, two models were trained using 
these two datasets. Table 12 summarizes the results. 
 
 

Table 12: Results on the subsets of Dataset 2. 
 

Metrics Subset 5 Subset 6 

Train Data Size 15,360,000 33,304,320 

Test Data Size 1,536,000 3,700,480 

Tanimoto 0.9372 0.9761 

Tanimoto 1.0 75.23% 89.87% 

 
It can be seen from the results shown in Table 12 that the average Tanimoto is lower compared 
to dataset 1 that was seen in Table 8. The Tanimoto 1.0 count is also lower. This is mainly due to 
the new artefacts included in the new dataset and now the number of tokens in use also doubled. 
Increasing the data for the newly introduced tokens can improve the results significantly. To check 



how many of the predicted structures are isomorphic the InChIs were generated for the original 
and predicted structures and a string matching was performed as explained before, see Table 13.  
 
Table 13: Results of isomorphism calculations for the subsets of dataset 2. 

Metrics Subset 5 Subset 6 

Train Data Size 15,360,000 33,304,320 

Test Data Size 1,536,000 3,700,480 

Predictions with Tanimoto 1.0 1,155,483 3,325,656 

Isomorphic Predictions 96.42% 98.50% 

Non Isomorphic Predictions 3.58% 1.50% 

 
Table 13 shows that more than 96% of the predicted SMILES are isomorphic for a training data 
set of 15 mio compounds. By approximately doubling the training dataset size, the number of 
isomorphic structures increased to over 98%, which is similar to the results for dataset 1. We also 
analysed the non isomorphic predictions to see why they had Tanimoto similarity of 1.0. Figure 9 
demonstrates that the non-isomorphic structures are identical  to the original structures, except 
for an incorrectly predicted stereochemistry. This can very likely be improved by training the 
network with more molecules with stereochemistry.  
 

 



 
 
Figure 9: Non-isomorphic structures with Tanimoto similarity index of 1.0. The constitution is the 
same but predicted stereo-chemistry differs. 
 
 
Increasing the training data points will likely increase isomorphic structure predictions in general. 
Due to the applied ruleset, only a limited amount of data is available to work with. Therefore, the 
next step will be to train these models on augmented images to assess whether or not they 
improve overall accuracy. 
 
 

Performance of the network with training data using stereo-
chemistry and image augmentation - Dataset 3 
 
By applying image augmentation to dataset 2 we generated dataset 3. The resulting images look 
similar to Figure 10. 
 

 



Figure 10: Images augmented with parameters within a given range. 
 
The parameters were restricted to reflect the real world images, not to add extreme 
augmentations. The parameter is shown in Table 14 during augmentations. Here the list of 
parameters provided is the ones that were implemented to augment the images, for more details 
about the parameters and how they are implemented, we refer our readers to the imgaug 
documentation [41]. 
 
 
 
 
 
 
Table 14: Image augmentations and their parameters. 
 

Image augmentations  Parameters (imgaug) 

Gaussian Blur 0-1.8 

Average Blur k=0-3 

Additive Gaussian Noise scale=(0, 0.1*255) 

Salt And Pepper 0-0.05 

Salt 0-0.05 

Pepper 0-0.05 

Coarse Dropout 0-0.01, size percent = 0.9 

Gamma Contrast 0.5-2.0 

Sharpen alpha=(0.0, 1.0), lightness=1.0 

Enhance Brightness factor=(0.95, 1.5) 

 
 
The generated dataset was then used to train two models. One model was trained from scratch 
using augmented images. Another model previously trained on Dataset 2 was used as the 
pretrained model and then refitted with the augmented images (see Table 15). Both of them were 
tested on a dataset size of 4 million images, which includes 2 million images with augmentations 
and 2 million images without any augmentations. Table 15 summarizes the results. 
 



The first two columns of the table explain the performance of the model trained only on augmented 
images and tested on augmented and non-augmented images. The last two columns summarize 
the evaluation of the model which was previously trained on non-augmented images and refitted 
with dataset 2.  
 
In refitting, we used weights from the best model previously trained on non-augmented images 
instead of random weights as a starting point for training. This was done to see whether using the 
weights from a previously trained model would improve the performance of the newly trained 
model trained using a similar type of data. 
 
 
Table 15: Results on Dataset 3 and Dataset 2+3 
 

  Augmented Dataset (3) 
Pretrained model+Augmented Dataset 

(2+3) 

Metrics 

Non 
augmented test 

set 
Augmented 

test set 
Non augmented 

test set Augmented test set 

Train Data Size 33,304,320 33,304,320 33,304,320 33,304,320 

Test Data Size 2,000,000 2,000,000 2,000,000 2,000,000 

Tanimoto 0.9663 0.9501  0.9708 0.9521 

Tanimoto 1.0 86.43% 80.26%  88.04% 80.87% 

Isomorphic 
Predictions 97.89% 97.46% 98.15% 97.61% 

Non Isomorphic 
Predictions 2.11% 2.54% 1.85% 2.39% 

 
The above results clearly show that our models were able to retain the Tanimoto average of above 
0.95 and Tanimoto 1.0 of above 80%. Also, the isomorphic results are high in all cases, and this 
was similar to the earlier results. The overall accuracy of these models could be improved by 
increasing the number of Augmented and Non-Augmented training images.  
Very likely, training with more data will improve the outcome.  

Conclusion and Future work 
In our preliminary communication [18], we claimed that with data around 50-100 million molecule 
images will help us obtain a model that can predict SMILES with about 90% accuracy. Here, we 
have now presented a solution based on a transformer network that delivers this promise.  



 
Using the improved EfficientNet-B3 method rather than Inception-V3 for image feature extraction 
helped in extracting relevant features required for network training. Through the implementation 
of the new transformer-based models, we've been able to improve the accuracy of our Image-to-
SMILES models overall.  
 
We have achieved an accuracy level of about 96% for chemical structure depictions using 
DECIMER's new algorithm without stereochemistry training the network using 30-35 Million 
molecules.  
 
When the models were extended to include stereochemical information and ions, a near 90% 
accuracy was achieved, despite increasing the number of tokens twofold. This can be further 
improved by increasing the data on stereochemical information and ions. This also applies to the 
models trained using image augmentations. In order to improve these models, more data should 
be incorporated into training.  
 
With TPUs, the models could be trained within days, and the largest model took less than 14 days 
to train. That means even bigger models could be trained within a month using TPUs rather than 
training on GPUs, which may take several months to complete. It is also cost-effective as well as 
energy-efficient to implement the TPU solution on the Google cloud platform rather than relying 
on the local hardware setup.  
 
Our results showed that DECIMER was achieving the intended objective with synthetic data. 
Further steps in future will include training with more data, refining models using a variety of real-
world examples and image datasets with more augmentations. Additionally, training images 
created by using a variety of tools will contribute to the model's improved accuracy. Ultimately, 
the DECIMER project aims to provide an open-source tool that is capable of performing optical 
chemical structure recognition (OCSR) reliably on segmented images from the scanned literature. 
 
The DECIMER software is fully open-source and hosted on GitHub. All data and trained models 
are openly available. 
 

Availability of data and materials 
The code for DECIMER and the trained models are available at 
https://github.com/Kohulan/DECIMER-TPU , https://doi.org/10.5281/zenodo.4730515. 
The data is available as SMILES at: https://doi.org/10.5281/zenodo.4766251 
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