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ABSTRACT: Reported is the discovery of an approach to regio-
and stereoselective syn-1,2-dicarbofuctionalization of unsymmet-
rical alkynes. A cationic Pd-catalyzed three-component coupling
of two distinct carbon-bearing functionalities aryl diazonium salts
and aryl boronic acids/olefins with unsymmetrical alkynes enables
accessing to all-carbon substituted unsymmetrical olefins. The
transformation features broad scope with labile functional group
tolerance building a novel chemical space of structural diversity
(82 molecules) and is scalable. The cationic Pd species plays cru-
cial; notably, density functional theory (DFT) studies establish
this observation. Synthetic versatility of the modifiable carbox-
ylate bearing highly-substituted olefins is also presented.

Peripheral decorated tetrasubstituted- and m-extended olefins are
widespread in numerous natural products, leading drugs of biolog-
ical importance, and agrochemicals. They also exert potential
applications in electron-transport materials and light-emitting-
diodes.!? Along this line, the metal-catalyzed alkene dicarbofunc-
tionalization by interrupting two cross-coupling strategies [for
example: Suzuki and Heck/Wacker oxidation] is undisputedly
well investigated.® While such dicarbofunctionalization of alkyne,
which enables synthetically diverse tetra-substituted olefins, often
suffers from inhabitable regioselectivity issues. Mostly, the state-
of-the-art regioselective carbometalation of alkynes are confined
to electronically diverse, inherently polarized, and/or in-build
chelation species containing substrates (Fig 1a).*® Meanwhile, an
amino-pyridine directing group (DG) guided regioselective hy-
droarylation of alkyne with aryl boronic acid makes trisubstituted
olefins (Fig 1b).° As DG and electron-biasness played essential for
alkyne difunctionalization, its synthetic elaboration has therefore
been severely affected. Hence, devising a ligand free regioselec-
tive syn-1,2-dicarbofunctionalization of unactivated alkynes is
worth pursuing.

We  herein  discovered  cationic  Pd-catalyzed  1,2-
dicarbofunctionalization of unactivated alkyne, i.e. yne-acetate
(Fig 1c). The reaction relies a site-selective coordination of ligat-
ed cationic Pd(I1) species, generated in-situ by the oxidative inser-
tion of an aryl diazonium salt with Pd(0), to an electronically
unbiased yne acetate (I) to result a syn-a--arylated-Pd intermediate
Il (Fig 1c). While the lone pair repulsion between carboxylate
moiety and the ligated-Pd-complex possibly excludes syn-p-
arylated-Pd intermediate 111 (Fig 1c). Further functionalization of
vinyl-Pd(I1)-cationic species Int-11 with aryl boronic acids/olefins
would deliver highly-substituted olefins (Fig 1c). This conceptual

imprint has thus led to structurally diverse all-carbon-
functionalized olefins (82 molecules) in a single-step from easily
accessible yne-acetates. In the absence of external ligand and DG,
the transformation is highly regio- and stereoselective; DFT study
validates these observations.
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Figure 1. Background and current work

To investigate 1,2-diarylation of structurally simple yne-acetates
[i.e. propargyl acetates (PAs)], a three-component reaction of 1,3-
diphenylprop-2-yn-1-yl acetate (1a), p—methoxyphenyl diazonium
tetrafluoroborate (2a), and p—tolyl boronic acid (3a) in presence
of Pdz(dba)s catalyst and base was performed (Table 1; see Table
S3, Sl). An extensive screening led to the optimized reaction con-
ditions: [1a (1.0 equiv), 2a (3.0 equiv), 3a (1.5 equiv), Pd2(dba)s
(5.0 mol %), and K3POs (1.5 equiv), in 1,4-dioxane : DMSO (9:1)
at 25 °C overnight]; the unsymmetrical syn-diarylation product 4
was isolated in 73 % yield (Table 1, entry 1). NaHCO3 and
KH2PO4 proved to be far less efficient bases (entries 2 & 3).
Comparable results were observed when other Pd(0) catalysts
[Pd(dba)2, Pd2(dba)s*CHClIs, and Pd(PPhs)s4] were used (entries 4—
6). The solvents THF, 1,4—dioxane, DMSO, or toluene did not



benefit the reaction (entries 7-10). The current breakthrough thus
inspired us investigating the reaction scope (Scheme 1-3).
Table-1. Optimization Table?
Pda(dba)s (5 mol%) Me
K3P04 (1.5 equiv.), Ph

1 ,4-dioxane:DMSO |

AcO
(9:1), 0.15M, 25 °C
Ph
OMe

N,BF,  B(OH),

Leg

4

conditions 4 (%) conditions 4 (%)
1 None 73% 6 Pd(PPha), 47%
2 NaHCO; 56% 7 THF 26%
3 KH,PO4 62% 8 1,4-dioxane 49%
4 Pd(dba), 58%" 9 DMSO 55%
5 Pd,dba;.CHCl; 63% 10 toluene 23%

2lsolated yield. 1a (0.2 mmol), 2a (0.6 mmol), 3a (0.3 mmol), cat. (0.01
mmol) and base (0.45 mmol). ®10 mol %.

The reactivity of aryl boronic acid partners was at first probed
(Scheme 1). The reaction of electron-rich p-substituted aryl bo-
ronic acids [p-Me (3a), p-OCFs (3b)] with 1a and 2a provided 4
and 5 in good yields. Likewise, the tetrasubstituted olefins 6-9
(62-76 %) were constructed from phenyl boronic acid (3c) and
electron-poor [p-CO2Me (3d), p-CFs (3e), p-CN (3f)] aryl boronic
acids when exposed independently to 1a and 2a. Being the halo
groups are amenable to cross-couplings under Pd(0)-catalysts, to
our delight, the respective halo [p-F (3g), p-Cl (3h), p-Br (3i)]
bearing aryl boronic acids were compatible to make 10-12 in
good yields. The transformation was susceptible to meta- and
ortho-substituted aryl boronic acids; accordingly, densely func-
tionalized tetrasubstituted olefins 13-17 (59-84%) were made.
The desired 2-naphthyl, 4-ethylthiophenyl, 3-thienyl-bearing al-
lyl-acetates 18—20 (58—69%) were constructed. The unsubstituted
propargyl acetate 1c was also amenable; various aryl boronic
acids [p-Me (3a) and p-OMe (3r), phenyl (3c), p-NO: (3s), and p-
I (3t)] were coupled to provide 21-25. The bulky 9-phenanthere
boronic acid was not an exception providing m-extended product
26 in 61% yield. Next, the three-component couplings of aryl
diazonium tetrafluoroborates 2 with 1b and 3r/3d were surveyed
(Scheme 1). An independent reaction of 1b, 3r with respective
arene diazonium salts [phenyl (2b), electron-rich m-Me (2c), elec-
tron-poor m-CFs (2d), modifiable p-Br (2e), and m,p-diCl (2f)]
provided 27-31 in good yields. A carbazole bearing diarylation
product 32 was isolated in 75% yield. The OBn protecting group
and the oxidizable SePh group were unaffected under the Pd-
catalysis giving access to 33 and 34. Likewise, 35 (51%) was
made from the reaction of 1c with 2j and 3r.

We next scrutinized the reactivity of unsymmetrical alkynes di-
versity (Scheme 2). The reaction of PAs [having aryl motifs: (p-
Me and p-OMe), labile halo group (p-F and p-Br), and modifiable
(p-CF3, p-COMe, p-CO2Me, m-CN, m-NOz, m,m'-diNO2, and
m,p-methylenedioxy) at the alkyne terminus] with 2a and 3c in-
dependently furnished the desired products 36-47 (62-93%).
Likewise, m-extended 2-naphthyl (48), and heteroaryl 2-thienyl
(49) enabled tetrasubstituted olefins were constructed. Irrespective
of n-propyl and various aryl-moieties in the propargyl position of
PAs, the diarylation was equally effective making 50-57. In gen-
eral, sterically bulky substituents severely affect the cross-
couplings. Despite these challenges, syn-diarylation of cyclohex-
yl, and cyclobutyl tethered PAs with 2a and 3c provided all-
carbon-substituted olefins 58-59. X-ray analysis confirms the
structure 58. A macrocycle dodecane tethered diarylation product
60 was also fabricated. The product complexity justifies moderate
yield (< 50%); in such cases, the reaction was incomplete with
recovery of unreacted PAs.

To understand coordination proximity of the carboxylate group,
diarylation of yne-acetates with different chain length among
alkyne and acetate group was probed.

Scheme 1: Scope of Propargyl Acetates, Aryl Boronic Ac-
ids, and Aryl Diazonium Salts?
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Irrespective of the acetate position in yne-acetates, syn-diarylation
of alkyne-motifs was highly regioselective making 61-63 in mod-
erate yields (Scheme 2). Next, the reaction of O-benzoate and O-
benzyl protected propargyl alcohols with 2a and 3c, respectively,
afforded 64 (56%), and 66 (42%) (Scheme 2). While reaction of
O-tosyl protected alkyne led to complex mixture providing 65
(<5%); the low turnout is possibly due to the facile cleavage of
labile C-OTs bond.

The m-conjugated skeletons are widely found in the molecules of
pharmaceutical importance and light-emitting-diode materials.
We thus realized to trap the vinyl-cationic palladium species,
obtained in the aryl-palladation of alkyne moiety, with olefins for
constructing peripheral decorated m-conjugated diene skeleton
(Scheme 3). As envisaged, the reaction of 1b, 2a, and ethyl acry-
late (67a) under the optimized conditions of entry 1, Table 1 suc-



cessfully led to 68 in 67% yield. To enhance the reaction produc-
tivity, bases and solvents were further screened (Table S4, SI).
The Na2zHPO4 base and DMSO:DMF (1:1) solvent combination

Scheme 2: Scope of Diarylation of Alkynes?
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was found optimum; 68 was isolated in 82% yield. Next, the reac-
tion of wide ranges acrylates and acrylonitrile with 1b and 2a
under the modified catalytic systems furnished the conjugated
dienes 68—71 (Scheme 3). Methyl vinyl ketone is susceptible to
polymerization; despite the challenges, 72 was isolated in 54%
yield. This difunctionalization was even worked with styrene
affording 73 in 82% yield. The products 74 (63%) and 75 (44%)

were made from the couplings of 1b and 67a with 2e and 2k,
respectively. The PAs [having aryl motifs: electron-rich (p-Me),
labile (p-F and p-Br), n-extended 2-naphthyl or 2-thienyl at the

Scheme 3: Scope of Aryl-Olefination of Alkynes?
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alkyne terminus)] were independently coupled with 2a and 67a to
deliver 76-80. Likewise, 81-84 were made albeit in moderate
yield from the reaction of PAs [with variation of substituents,
m,p-methylenedioxy-phenyl, 2-naphthyl, n-Pr, and cyclopropyl in
the propargy! position] with 2a and 67a. Even the sterically en-
cumbered di-Me, cyclopentyl, and cyclobutyl tethered PAs were
successfully provided unusual w-conjugated dienes 85-87
(42-86%). Thus, the cationic Pd-catalytic systems did not virtual-
ly affect the reaction outcome; and the strained cyclopropy! ring,
labile halo groups, and easily modifiable functional groups are
well tolerated (Scheme 1-3).

To gain insight into the reaction mechanism and the ste-
reo/regioselective 1,2-diarylation of PAs, DFT calculations were
performed (Figure 2, see the Sl). The transformation begins with
the barrier less oxidative insertion of Pd(DMSO): (1) to the phe-
nyl diazonium tetrafluoroborate 2b to provide the cationic Pd-
complex tA. Next, coordination of *A with propargyl acetate 1c is
possible with the concomitant replacement of N2. However, this
process could happen in three different ways, via, i) the co-
ordination of C=C bond in 1c to form complex B by releasing 6.7
kcal/mol free energy (Fig. 2; blue) ii) the co-ordination of both
C=C bond and ester group in 1c to provide 1E with the release of
4.5 kcal/mol free energy (Fig. 2; red), and iii) the co-ordination of
ester group in 1c to generate 'G; the process is endothermic re-



quiring 1.8 kcal/mol (Fig. 2; grey). Thus, the ester group partici-
pation for the replacement of N2 in A is ruled out. Next, a supra-
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Fig-2. DFT calculation

B (syn-insertion)proceeds through a transition state 1TS%ac,
found at 6.3 kcal/mol on the free energy surface, and results the
Pd-alkenyl ester complex C® (vide-infra). The complex C® lies
at —19.1 kcal/mol with trans-relationship of two phenyl groups.
While intramolecular neighboring group participation (NGP) of
the ester group at C* of !B can provide Pd-alkenyl heterocyclic
complex D through *TSgp (12.6 kcal/mol); this process needs an
additional 6.3 kcal/mol energy barrier to overcome TS®sc and
thus ruled out. Alternatively, a-aryl migration of ester chelate 'E
forms intermediate 'F* (-14.3 kcal/mol) through TS%er (10.7
kcal/mol). The energy barrier is 2.2 kcal/mol higher than TS%sc;
this pathway is thus not preferred. A detailed comparison of all
the options justify the feasibility of bottom pathway
1B-!Ce (marked in blue). Like normal Suzuki reaction,
transmetalation of 1C with aryl boronic acid followed by reductive
elimination gives the final diarylation product.

On the other hand, the C*-arylation process is always favored
over the CP-arylation (see: right side in Figure 2). To rationalize
this selectivity, a distortion analysis of the aryl migration transi-
tion states 'TS%sc and ‘TSPsc (that includes substrate fragment
and aryl-palladium fragment) are performed. The large rotation
angle for B-aryl migration (see the SI: 36.12° for TSPgc and
7.34° for 1TS%sc) contributes to excess distortion energy [+6.0
kcal/mol; that includes both arylpalladium (+3.68 kcal/mol) and
substrate (+2.32 kcal/mol) distortion]. In addition, a large level of
non-covalent lone pair repulsion of the carboxylate moiety with
ligated DMSO for !TSPgc (+4.1 kcal/mol) relative to 'TS%sc was
detected.

To further understand the reactivity behavior, a crossover experi-
ment of electronically-diverse diazonium salts 2a and 2d, with 1b
and 3s was performed (Scheme 4, eq 1). Formation of 29 (33 %)
and trace 22" clearly justifies that the oxidative addition of 2d
with Pd(0) is facile over 2a. Likewise, probing the reaction 1a and
2a with electronically-different 3a and 3d gave 4 (21 %) and 7
(27 %) [Scheme 4, eq 2]. Thus, activated boronic acid 3d under-
goes transmetalation faster over 3a; a feature is very common in
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cross-couplings. On the other hand, isolation of 68 (46%) in a
competitive reaction of 1b, 2a, 3c, and 67a suggests that the aryl-
olefination is preferred over di-arylation [Scheme 4, eq 3].

The reaction is scalable to the gram-scale preparation 38 (1.2 g,
73 %) from the coupling of 1a (1.0 g, 2.67 mmol), 2a (1.77g, 8.01
mmol), and 3c (0.5g, 4.00 mmol) in Pdz(dba)s (3.0 mol %)
[Scheme 4]. We next probed synthetic versatility of the newly
constructed tetrasubstituted allyl-acetates (Scheme 4). The p-TSA
driven intramolecular Friedel-Crafts arene cyclization with the
acetate center of 58/59 led to unusual cyclohexyl/cyclobutyl spi-
ro-fused indene derivatives 88 (65 %) and 89 (83%), respectively,
and peripheral-substituted indenes 38—90 (89%) and 4-91
(79%). Likewise, electrophilic cyclization of 23 provided inda-
none 92 in 58% vyield. Fully substituted propargyl alcohols
[38—-93 (81%); 23—-94 (77%)] were accessed from the KOH
facilitated hydrolysis of acetate-motif. Dess-Martin periodinane
(DMP)-mediated oxidation of 93 and 94 delivered peripheral
decorated methyl-vinyl ketone 95 (78%) and acrolein 96 (72%),
respectively; further functionalization of carbonyl groups is there-
fore possible. Allylation and hydrolysis of m-extended ester 68
yielded allylic-3°-alcohol 97 and a.,B-unsaturated carboxylic acid
98 (Scheme 4).

In summary, a regio- and stereoselective insertion of structurally
distinct carbon functionalities to the unactivated alkynes has led to
discovery of dicarbofunctionalization of unsymmetrical alkynes.
The cationic Pd"-catalyst plays essential modulating regioselec-
tive insertion of aryl-diazonium salts, and boronic acids/olefins to
the unsymmetrical alkynes. The transformation proceeds at room
temperature and tolerates oxidizable halo-species (I/Br), easily
transformable functionalities (CO2Me, CN), and strained rings
exhibiting a broad chemical space [82 examples], and even suc-
cessful on a gram scale. DFT studies rationalize the o-arylation
preference over B-arylation of PAs and discard direct participation
of DG. The highly-substituted olefins are subsequently used for
the construction of functionalized indene, methyl-vinyl ketone,
and acrolein skeletons. The current finding paves the way in dis-



covering unknown difunctionalization strategies of unactivated
alkynes.

Scheme 4: Competitive Experiments, Gram Scale Prepara-
tion, and Synthetic Application
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