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Abstract 

High-level quantum mechanical (QM) calculations are indispensable for accurate explanation 

of natural phenomena on the atomistic level. Their staggering computational cost, however, 

poses great limitations, which luckily can be lifted to a great extent by exploiting advances in 

artificial intelligence (AI). Here we introduce the general-purpose, highly transferable 

artificial intelligence–quantum mechanical method 1 (AIQM1). It approaches the accuracy of 

the ‘gold-standard’ coupled cluster QM method with low computational speed of the 

approximate low-level semiempirical QM methods. AIQM1 can provide accurate ground-

state energies for diverse organic compounds as well as geometries for even challenging 

systems such as large conjugated compounds (fullerene C60) close to experiment. 

Noteworthy, our method’s accuracy is also good for ions and excited-state properties, 

although the neural network part of AIQM1 was never fitted to these properties. 

Introduction 

Quantum mechanical (QM) methods used in chemistry are invaluable for today’s modern 

science as they allow insight into electronic structure on an atomistic level that is otherwise 

unattainable experimentally. This in turn helps to find answers to fundamental scientific 

questions in chemistry and related fields, such as chemical physics and biology, and assists 

applied science in designing better materials and discover new medicines. 

The usefulness of QM methods in practical applications is determined by their accuracy and 

computational cost. The trade-off between these two factors guides the choice of the QM 



Zheng, Zubatyuk, Wu, Isayev, Dral AIQM1 22.07.2021 

Page 2 of 19 
 

method. On the one side, we have very accurate, but slow high-level ab initio QM methods 

such as coupled cluster with single, double, and perturbative triple excitations, CCSD(T),1 

which has established itself as the “gold standard” in most applications, particularly, for 

closed-shell molecules.2-4 On the other side, we have very fast semiempirical QM (SQM) 

methods that have rather limited accuracy.5 The sweet spot of moderate computational cost 

and often sufficient accuracy is occupied by density functional theory (DFT) that has become 

a workhorse in the investigation of medium-sized systems (Figure 1a).6 The efforts for 

developing faster and more accurate QM methods is an active research field, but it is clear 

that traditional approaches to QM method development require years of hard human work 

and typically yield only relatively modest improvements. 

Advances in artificial intelligence (AI) bring chemistry research to a radically new level and 

provide a much-needed alternative to the traditional QM method development.7,8 AI allows to 

perform calculations with both high accuracy and very low computational cost that was 

previously unattainable with the traditional QM methods. Nevertheless, most of the 

applications of AI to quantum chemistry are either proof-of-principle or limited to specific 

applications. Developing general-purpose AI approaches with transferability of QM methods 

remains a big challenge. A significant step towards transferable accurate AI approaches is the 

family of ANI potentials9-13 that can describe energies and forces of compounds of different 

size and composition in equilibrium and non-equilibrium configurations with accuracy 

approaching DFT9-12 or even coupled cluster QM level13 (Figure 1a). They can be also 

applied to much larger systems than those included in the training dataset, because the total 

energy is calculated within the local approximation by the sum of the atomic contributions 

with each atom feeling the environment only within some cutoff. 

While impressive, ANI potentials are however less transferable than general-purpose QM 

methods, because they are limited to closed-shell, neutral organic compounds and the use of 

the local approximation imposes farther limitations on their transferability, e.g., to large, 

highly conjugated systems (Figure 1b,c). A rational approach is to exploit synergies of AI and 

QM methods by merging them.7 This approach has already given rise to an increasing 

number of hybrid AI/QM methods,7,8,14-16 although most of them are either proof-of-principle 

or based on relatively slow DFT or trained on data of limited quantity and quality potentially 

restricting their transferability and accuracy. 



Zheng, Zubatyuk, Wu, Isayev, Dral AIQM1 22.07.2021 

Page 3 of 19 
 

Here we describe the general-purpose artificial intelligence–quantum mechanical method 1 

(AIQM1) that approaches the coupled cluster accuracy with transferability of the QM 

methods and computational speed of the SQM methods (Figure 1d). 

 

Figure 1. Simplified scheme of quantum chemistry approximations. Traditional quantum 

mechanical approaches such as the “gold-standard” coupled cluster (CC), “work-horse” 

density functional theory (DFT), “fast and approximate” semiempirical quantum mechanical 

(SQM) methods, artificial intelligence-based ANI, and the new artificial intelligence–

quantum mechanical method 1 (AIQM1). They are compared with respect to a) cost and 

accuracy, b) cost and transferability, c) accuracy and transferability, d) cost, accuracy, and 

transferability. The accuracy of ANI is with respect to what it is applicable to. 
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Results 

Method structure 

The AIQM1 method consists of three main parts (Figure 2): 1) SQM Hamiltonian, 2) neural 

network (NN) correction to the potential, 3) dispersion corrections. The AIQM1 total energy 

EAIQM1 is the sum of the contributions from these three parts, ESQM, ENN, Edisp, respectively: 

𝐸AIQM1 = 𝐸SQM + 𝐸NN + 𝐸disp. (1) 

 

 

Figure 2. The structure of the AIQM1 method. 

 

For the first part, we have chosen the orthogonalization- and dispersion-corrected method 2 

(ODM2) Hamiltonian,17 which provides the most consistent and accurate predictions across 

different properties (from ground-state to excited-state and noncovalent interactions) among 

other SQM methods, particularly those based on neglect of diatomic differential overlap 

(NDDO) approximation. We remove the original D3-based dispersion corrections from the 

ODM2 approach and denote the modified approach as ODM2*. Instead, we add the state-of-

the-art D4 dispersion corrections18,19 including with Axilrod–Teller–Muto three-body 



Zheng, Zubatyuk, Wu, Isayev, Dral AIQM1 22.07.2021 

Page 5 of 19 
 

contributions20,21 — the third part of AIQM1 method. These corrections are essential to 

describe properly dispersion terms in noncovalent interactions as they are described poorly by 

both SQM5 and local NN approaches such as ANI-1ccx22. For the second part, we took the 

ANI-type of NN potentials. We preserved the NN-architecture of ANI-1x that predicts ENN 

by summing over Natoms atomic contributions EA:12 

𝐸NN = ( 𝐸!

"atoms

!

. (2) 

We made only two minor modifications to NN model based on ANI-1x. First, we changed 

the activation function to GELU instead of CELU, because GELU is infinitely differentiable. 

This is important for applications where higher derivatives are required, e.g., geometry 

optimization and frequency calculations. Second, we increased the angular cutoff to 4 Å to 

assist with a better description of long-range interactions. Note that within ANI framework, 

atomic contributions are centered before fitting NN, i.e., the atomic contributions also include 

element-dependent terms obtained by linear fitting to the reference scalar values. 

Method training and validation 

The NN weights were obtained in two steps. In the first step, we fitted NN weights on the 

differences between the ground-state potentials calculated at DFT ωB97X/def2-TZVPP and 

ODM2* for the 4.6M geometries of the ANI-1x data set10. These DFT energies were used to 

train another successful general-purpose NN potential AIMNet.23 This step is based on the Δ-

learning24 approach introduced by one of us and used here to correct the low-level SQM 

method to the target accuracy of the higher-level DFT method with comparatively small 

additional computational cost. (Calculations for the entire ANI-1x data set on a single CPU 

are ca. 10 times faster with a single ANI-type network NN compared to SQM calculations, 

but the difference should become larger for bigger systems and parallel computing.) The loss 

function L in this step is the geometric mean of the loss functions for energy differences 

between DFT and ODM2* (LE, scalar values) and differences in forces (LF, energy gradients 
#$NN
#𝑅  taken with opposite sign, vector values) contributions: 

𝐿 = +𝐿$𝐿% , (3) 

with LE and LF defined analogously to the loss functions for energies and forces used in ANI-

2x9. 
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In this way we trained an ensemble of eight NN models, which provides better accuracy than 

a single NN13 (see Methods). The method obtained in this first step is denoted by 

AIQM1@DFT* and it approaches DFT accuracy at the SQM cost for the hold-out test set as 

its mean absolute deviation (MAD) is only 0.7 kcal/mol for energies and 1.6 kcal/mol/Å for 

forces (Figure 3a). 

 

Figure 3. Correlation between AIQM1 variants and reference methods for the hold-out 

test set. a) Correlation between AIQM1@DFT* and ωB97X/def2-TZVPP energies and 

forces. b) Correlation between AIQM1 and CCSD(T)*/CBS. Root-mean-squared errors 

(RMSEs), mean absolute deviations (MADs), and squared correlation coefficients R2 are also 

shown on the plots. 
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Since AIQM1@DFT* has no explicit dispersion corrections, we add the D4 dispersion 

corrections fitted19 for the DFT functional ωB97X and denote the resulting method as 

AIQM1@DFT. 

In the second step of NN fitting, we used transfer learning25 to reach coupled cluster accuracy 

using the 0.5M data points as was done for creating ANI-1ccx method13. Transfer learning is 

a powerful technique allowing to leverage more abundant training data for a related task to 

obtain the model for the target task using much fewer training points. For developing the 

AIQM1 method, we adjusted the weights of the first and third hidden layers of NN from the 

first step to minimize the loss function LE for differences between the ground-state energies at 

CCSD(T)*/CBS and ODM2* with D4 corrections. The resulting approach is our final 

AIQM1 method and it approaches closely coupled cluster level for the hold-out test set as its 

MAD for energies is 0.8 kcal/mol (Figure 3b). 

Performance for energies 

AIQM1 has an excellent accuracy in energies for a broad range of data sets not used for 

fitting its NN part. A very important energy-based property is heat (enthalpy) of formation – 

a fundamental thermochemical quantity, which is notoriously difficult to accurately predict 

with quantum chemistry. Typically, only very computationally expensive QM methods are 

able to achieve the desired “chemical accuracy” for heats of formation (errors below 

1 kcal/mol). Thus, AI was suggested as a potent approach to specifically target accurate and 

cost-efficient predictions of heats of formation by improving upon predictions made by the 

low-cost QM methods (DFT26-28 and SQM29 methods). In contrast, in our approach we did 

not fit NN-part to better reproduce the heats of formation, we merely had to offset the bias in 

AIQM1 heats of formations at 298 K with respect to the experimental reference data in the 

CHNO data set30 (popular data set to develop SQM methods) by just fitting four 

parameters — atomic energies of H, C, N, and O elements (see Methods). 

AIQM1 performance is remarkable for heats of formation as it easily reaches chemical 

accuracy for the CHNO data set (MAD of 0.9 kcal/mol), even though this property was not 

included in the training set of its NN part. It is the first time that a QM method with 

semiempirical speed has broken this threshold as, e.g., ODM2 method with the best reported 

accuracy among semiempirical methods to date has three times higher MAD of 2.6 kcal/mol. 

Similarly, AIQM1 has MAD of 0.9 kcal/mol in heats of formation for the CHNO subset31 of 
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the independent G3/99 test set32, a set that formed a backbone for developing and testing 

many QM methods such as popular, but very expensive composite approaches G433 and 

G4MP234 targeting the coveted chemical accuracy. Thus, AIQM1 can be used as a 

computationally-efficient alternative to such composite methods. 

Heats of formation can be considered as “absolute energies”. In chemistry, we often have to 

deal with relative energies such as isomerization energies, reaction energies and enthalpies as 

well as relative energies between conformers, because relative energies determine the 

outcome of reactions and 3D structures of molecules in thermal equilibrium. AIQM1 not only 

has good accuracy for absolute energies, but also faithfully reproduces relative energies. One 

example is the heats of formation and isomerization enthalpies at 298 K of organic 

compounds in the ISOMERS44 data set,31,35 for which AIQM1 has MAD of 0.4 and 0.5 

kcal/mol, respectively.  

Other types of relative energies, such as zero-point energy-excluded reaction energies at 0 K 

are also reproduced with AIQM1 very well. For example, isomerization energies in the 

IsoL6/11 data set36 are reproduced by AIQM1 with chemical accuracy (MAD 0.6 kcal/mol, 

Figure 4a), while errors of ODM2 and ANI-1ccx are much larger (both with MAD of 1.5 

kcal/mol)13,17. AIQM1 accuracy is very close to CCSD(T)*/CBS (MAD 0.5 kcal/mol)13. 

Similarly, for another data set, reaction energies in the HC7/11 set,37 AIQM1 accuracy is also 

very close to that13 of CCSD(T)*/CBS (MADs of 1.4 and 1.6 kcal/mol, respectively) and 

clearly outperforms both ODM2 and ANI-1ccx with MADs of 5.37 and 2.53 kcal/mol,13,17 

respectively (Figure 4b). Curiously, for both IsoL6/11 and HC7/11 data sets, even 

AIQM1@DFT (MADs 1.5 and 9.2 kcal/mol, respectively) is much better than more 

expensive ωB97X/6-31G* tested previously13 (MADs 3.8 and 16.4 kcal/mol, respectively). 

Relative energies of the configurations of the same molecule are also important as they 

determine, e.g., what rotational conformers are more stable, which is crucial for determining 

3D structures of flexible molecules. AIQM1 confidently handles this task as its median MAD 

for the popular torsion benchmark set38 is just 0.19 kcal/mol, which is much lower than that 

of ODM2 and ANI-1ccx13 (0.74 and 0.23 kcal/mol, respectively) and much more expensive 

ωB97X/6-31G* (0.33 kcal/mol)13 and B3LYP-D3/6-311+G** (0.24 kcal/mol)38. AIQM1 is 

only slightly inferior to MP2/CBS (median MAD 0.11 kcal/mol),38 which is in turn much 

slower than DFT. Now we can turn into investigating the performance of AIQM1 for 

predicting geometries themselves. 
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Figure 4. Performance of AIQM1 for ground-state energies. Comparison between errors 

of CCSD(T)*/CBS, AIQM1, ANI-1ccx, AIQM1@DFT, ωB97X/6-31G*, and ODM2 for the 

reaction energies in the a) IsoL6/11 and b) HC7/11 benchmark sets. Values for 

CCSD(T)*/CBS, ANI-1ccx, and ωB97X/6-31G* are taken from Ref. 13, values for ODM2 – 

from Ref. 17. 
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Performance for geometries 

Theoretical prediction of molecular geometries is one of the most common applications of 

quantum chemistry, which is essential for chemical research as conclusive geometries are not 

always available from experiment. Geometry optimization is an iterative procedure requiring 

forces (and often Hessians), which makes it much more computationally expensive than 

energy calculations for a single geometry. SQM methods are much less accurate for 

geometries than common DFT methods and general-purpose NN potentials fail to deal with 

subtle conjugation effects, e.g., ANI-1ccx predicts that all bond lengths in C60 are equal to 

1.451 Å, while it is known from experiment39-42 that bond length between two adjacent 

hexagon rings is shorter than bond length between pentagon and hexagon rings (Figure 5a). 

 

Figure 5. Performance of AIQM1 for finding ground-state minimum geometries. a) Short 

and long bond lengths in C60 as calculated at different levels of theory and compared to 

experimental values39-42. b) Hydrogenic bond lengths (MGHBL9 benchmark)43 and 

nonhydrogenic bond lengths (MGNHBL11 benchmark)43,44. c) Geometry of a water molecule 

(CHNO benchmark)30. Bond lengths are in Å. 
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AIQM1 successfully distinguishes these two bond types in C60 and predicts short and long 

bond lengths to be 1.393 and 1.467 Å, respectively (Figure 5a). For this molecule, we cannot 

compare AIQM1 predictions with CCSD(T)*/CBS due to the staggering cost of this coupled 

cluster approach, while experimental data are not conclusive as they range from 1.355 to 

1.401 Å for short bond length and from 1.432 to 1.467 Å for long bond length depending on 

measurement conditions39-42. Instead, we compare AIQM1@DFT* predicting 1.388 and 

1.464 Å to ωB97X/def2-TZVPP predictions of 1.379 and 1.449 Å, which are in acceptable 

agreement (Figure 5a), while the cost of geometry optimization with AIQM1@DFT* is 14 s 

on a single CPU core vs 31 min on 32 CPU cores at DFT. 

For smaller molecules, where reliable experimental and theoretical data is available, AIQM1 

has very good accuracy, much better than, e.g., the accuracy of ODM2 or ANI-1ccx. For the 

CHNO data set30 with experimental reference data, the MADs of AIQM1, ODM2, and ANI-

1ccx are 0.007, 0.015, and 0.011 Å in bond lengths, 0.72°, 2.04°, and 1.00° in bond angles, 

and 2.38°, 4.07°, and 5.86° in dihedral angles, respectively (see, e.g., excellent prediction of 

water geometry, Figure 5b). Similarly, for hydrogenic (MGHBL9)43 and nonhydrogenic bond 

lengths (MGNHBL11)43,44 data sets with accurate theoretical data used to test DFT methods, 

MAD of AIQM1 in bond lengths is 0.004 and 0.002 Å (Figure 5c), respectively, which is 

again much better than ODM2 (0.023 and 0.026 Å) or ANI-1ccx (0.093 and 0.004 Å). 

Performance for noncovalent interactions 

AIQM1 is transferable to noncovalent interactions too, which are very challenging even for 

the state-of-the-art QM methods and NN potentials. For the standard benchmark set S66x845 

with CCSD(T)/CBS reference noncovalent interaction energies, AIQM1 has rather good 

accuracy as its MAD is 0.6 kcal/mol (Figure 6), which is comparable to ODM2 (0.8 kcal/mol) 

and DFT, e.g., ωB97X-D/6-31G* (1.2 kcal/mol) and ωB97X-D4/def2-TZVPP (0.5 kcal/mol). 

Hence, AIQM1 is a good cost-efficient alternative to such DFT methods. 

The method performance is particularly good for hydrogen-bonded complexes. For clusters 

of neutral water molecules (H2O)n, and charged clusters H+(H2O)n and OH−(H2O)n 

(WATER27 data set46 with revised values47 for (H2O)20 clusters), AIQM1 has MAD of only 

2.1 kcal/mol (Figure 6) compared to 4.5 of ODM2. This makes the method competitive in 

terms of accuracy with popular dispersion corrected DFT approaches, which have similar 

errors,47 but are much slower. AIQM1 is therefore promising method for simulating chemical 

processes in water solutions, essential for biological processes. It is noteworthy that this data 
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set contains charged species, which cannot be adequately described by ANI-1ccx, which 

brings us to the next topic. 

 

Figure 6. Performance of AIQM1 for noncovalent interactions. Selection of complexes 

with errors (in kcal/mol) ranging from smallest to median to largest values for a) the S66x8 

benchmark and b) the WATER27 benchmark. 

 

Beyond closed-shell, neutral molecules 

AIQM1 is transferable beyond closed-shell, neutral species used for fitting its NN part and 

even improves upon the ODM2 method (ANI potentials cannot be used at all for such 

simulations). We saw before that AIQM1 performs well for charged protonated and 

deprotonated water clusters. Other examples are proton affinities, where MAD is improved 

from 16.6 (ODM2) to 10.5 (AIQM1) kcal/mol for the PA data set,46 MAD in adiabatic 

ionization potentials (IP21 set)46 from 15.6 to 2.2 kcal/mol, and MAD in adiabatic electron 

affinities (EA13 set)46 from 12.7 to 7.7 kcal/mol. 

Interestingly, geometries are also improved for charged species as for the CATIONS41 data 

set,31,48 the MADs of AIQM1 and ODM2 are 0.018 and 0.030Å in bond lengths, 1.36° and 
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2.41° in bond angles, and 1.27° and 2.96° in dihedral angles, respectively. 

Beyond ground-state properties 

Finally, AIQM1 method is also transferable to electronically excited states and, e.g., it can be 

used for multi-reference configuration interaction (MRCI) calculations to predict excitation 

energies, oscillator strengths and nonadiabatic couplings for simulating spectra and 

performing nonadiabatic excited-state dynamics. AIQM1/MRCI is three orders of magnitude 

faster than popular linear-response time-dependent (TD) DFT approaches such as TD-B3LYP, 

while its accuracy is similar for vertical excitation energies (MAD of AIQM1/MRCI is 0.35 

eV, which is close to TD-B3LYP/TZVP with MAD of 0.33 eV49 for the Thiel’s data set49, 

Figure 7a). 

It makes AIQM1 attractive for performing more computationally expensive tasks such as 

optimization of excited-state geometries (required, e.g., for simulating fluorescence spectra). 

We tested its performance on the ExGeom set17,49 with excited-state geometries and AIQM1 

MAD for bond lengths is 0.018 Å vs CC2 reference (with TZVP basis set) and 0.019 Å vs 

TDDFT reference (specifically, TD-B3LYP/TZVP). This is rather good result given than 

uncertainties of the reference calculations are in the same order of magnitude (MAD of 

TDDFT reference vs CC2 reference is 0.014 Å, Figure 7b).49 Accurate experimental values 

are very hard to obtain. However, for the available experimental bond lengths in the ExGeom 

data set, AIQM1 gives better or similar predictions compared to TDDFT and CC2 for C–O 

bond in 1nπ* and 3nπ* excited states, while its error is much bigger for the 3ππ* excited state 

of formaldehyde (Figure 7c). 

Overall, AIQM1 seems to be a better choice than current routinely used QM methods in 

terms of performance/cost ratio at least for some types for excitations, which holds a great 

promise for using this method for exploration of dynamical properties arising from the 

manifold of electronic states, e.g., by performing nonadiabatic excited-state dynamics, which 

should be an interesting topic for future explorations. In any case, the AIQM1 method is only 

the first step in the direction of creating a general-purpose AI-based method for excited-state 

simulations — an important, but open topic in chemistry50 — as obviously training models on 

excited-state properties will be crucial for future improvements. 
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Figure 7. Performance of AIQM1 for excited states. a) Mean absolute error (MAD) in 

vertical excitation energies for Thiel’s benchmark set49. b) MAD in bond lengths for the 

ExGeom benchmark set17,49. c) Bond length for C–O bond length for formaldehyde and 

acetaldehyde as compared to experiment (one value for TDDFT is missing due to the failed 

geometry optimization at this level49). Values for TDDFT, CC2, TDDFT vs CC2, and 

experiment are taken from Ref. 49. 

Discussion 

After initial excitement about great promises AI holds for substituting QM methods, the focus 

is shifting towards tighter integration of AI with QM instead of substituting QM altogether. 

This shift is motivated by the need to incorporate correct physical behavior of QM methods, 

while at the same time exploiting great ability of AI to improve low-level QM methods’ 

accuracy without compromising their speed. 

In this work, we have made a step towards creating general purpose AI-improved QM 

methods useful for a variety of applications out-of-the-box. Our approach AIQM1 

synergistically combines the best of two worlds — transferability of QM and high accuracy 

of AI approaches. The success of this approach only became possible with great advances 
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over recent years in methodology development of both QM and AI components as well as 

generation of numerous carefully curated, high quality reference data. Thus, AIQM1 allows 

very accurate prediction of ground-state properties such as energies and geometries of closed-

shell, neutral organic compounds approaching the gold-standard CCSD(T)/CBS at the speed 

of semiempirical QM methods. Remarkably, it has improved accuracy also for other cases, 

not explicitly considered during training of its NN part, e.g., for charged species, showcasing 

the benefits of using physically-motivated AI. Thus, AIQM1 method has the potential to 

become a very useful tool for routine simulations with high accuracy. 

It is only the beginning of the exciting road for AI-improved QM methods for general-

purpose applications. In the near future we expect tighter integration of AI with QM, further 

optimizing both AI and QM parts, training on more and higher quality reference data, and 

further extending transferability and accuracy for all properties of interest to chemists and 

physicists. 

Methods 

Neural network training 

The neural network training and evaluation was performed with the TorchANI software51. 

Each NN-part of AIQM1@DFT* consists of an ensemble of eight ANI-type NNs, which 

provides better accuracy according to our tests. The ensemble was trained similar to the 

previous procedure,13 i.e., the data set was split into 9 equal parts, with one part held out for 

testing and the remaining 8 parts were used as cross-validation splits for training eight 

networks. Each network was trained on 7 cross-validation splits and validated on one split 

using standard rotation of splits. During the training of AIQM1@DFT*, we stopped training 

NN after 1000 epochs, because we found that longer training does not improve much the 

performance for the validation set, but deteriorates performance for some of the external data 

sets. Transfer learning was then used to refit above eight ANI-type networks to 80% of the 

entire set with CCSD(T)*/CBS values to obtain the final NN part of AIQM1 consisting of 

ensemble of 8 NNs; other 10% were used as the validation set and remaining 10% as the 

hold-out test set. The atomic contributions obtained by linear fitting13 are listed in the 

Supplementary Information for our methods. 

Calculation of enthalpies 

The enthalpies at 298 K were calculated within harmonic oscillator and rigid rotor 



Zheng, Zubatyuk, Wu, Isayev, Dral AIQM1 22.07.2021 

Page 16 of 19 
 

approximation in our locally modified version of the MNDO program52. Calculating heats of 

formation requires the evaluation of the atomization energies, which depend on the choice of 

the atomic energies. Atomic energies calculated with CCSD(T)*/CBS used for fitting NN-

part of AIQM1 lead to large errors in atomization energies even for moderate-sized 

molecules such as naphthalene (error of 25.4 kcal/mol with respect to CCSD(T)/CBS, where 

the two-point extrapolation scheme was used with cc-pVDZ cc-pVTZ basis sets), thus we 

fitted atomic energies of H, C, N, and O elements to reduce the error in heats of formation in 

the CHNO set. Atomic energies are reported in the Supplementary Information. 

Electronic structure and benchmark calculations 

All ODM2 and ODM2* calculations were carried out with the MNDO program.52 

CCSD(T)*/CBS calculations were performed with the ORCA 4.2.0 software package53,54 

using the procedure described previously.13 The ωB97X-D4 calculations were performed 

with ORCA 4.2.0, and ωB97X-D calculations were performed with Gaussian 1655. The 

ωB97X/6-31G* calculations were performed with Gaussian 16, while ωB97X/def2-TZVPP 

calculations were performed with ORCA 4.2.0. D4-dispersion corrections were calculated 

with the dftd4 program.56 We performed benchmarks of AIQM1 and AIQM1@DFT with the 

locally modified version of the MNDO program52 interfaced to TorchANI51 and dftd456. All 

the data for energy benchmarks can be found in the Supplementary Information. 
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