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ABSTRACT:	Herein	we	disclose	a	new	photochemical	process	to	prepare	carboxylic	acids	from	formate	salts	and	alkenes.	
This	redox-neutral	hydrocarboxylation	proceeds	in	high	yields	across	diverse	functionalized	alkene	substrates	with	excellent	
regioselectivity.	This	operationally	simple	procedure	can	be	readily	scaled	with	low	photocatalyst	loading	(0.01%	photocata-
lyst)	without	the	need	for	a	flow	reactor	or	any	precautions	to	exclude	air	or	moisture.	Furthermore,	this	new	reaction	can	
leverage	commercially	available	formate	carbon	isotologues	to	enable	the	direct	synthesis	of	isotopically	labeled	carboxylic	
acids.	Mechanistic	studies	support	the	working	model	involving	a	thiol-catalyzed	radical	chain	process	wherein	the	atoms	
from	formate	are	delivered	across	the	alkene	substrate	via	CO2•–	as	a	key	reactive	intermediate.	

The	 selective	 and	 efficient	 transformation	 of	 alkenes	 into	
polar	functional	groups	is	a	fundamental	synthetic	strategy.	
Tremendous	progress	has	been	made	in	alkene	functionali-
zation;1–11	 however,	 many	 seemingly	 simple	 transfor-
mations	remain	challenging	to	accomplish.	Our	group	has	a	
growing	interest	in	advancing	new	alkene	functionalization	
strategies	designed	to	leverage	appealing	chemical	building	
blocks	 rather	 than	 high	 energy	 reagents.12	 Following	 this	
line	of	inquiry,	we	questioned	whether	synthetically	valua-
ble	carboxylic	acids13–17	could	be	prepared	by	delivering	for-
mate	salts	across	alkenes	(Figure	1,	top).	In	principle,	this	
thermodynamically	favorable18–21	transformation	could	oc-
cur	 with	 perfect	 atom22	 and	 redox23	 economy.	 However,	
while	formate	is	a	common	reductant	in	transition	metal	ca-
talysis,24–26	it	is	rarely	used	as	a	C1	source	despite	the	prac-
tical	appeal	of	such	an	approach	relative	to	gaseous	alterna-
tives.	Notably,	Shi	and	coworkers	 leveraged	 in	 situ	 gener-
ated	formate	ahydrides	as	CO-surrogates	for	hydrocarbox-
ylation	 using	 palladium-catalysis	 at	 elevated	 tempera-
ture.27–32	We	envisioned	that	a	mild	approach	to	directly	add	
formate	salts	across	alkenes	would	constitute	an	attractive	
alternative	to	this	strategy	as	well	as	established	CO-based	
hydrocarboxylation	 processes33	 and	 emerging	 methods	
that	rely	on	reductive	activation	of	CO2.34–50				
	 Our	reaction	design	was	guided	by	the	recognition	that	
formate	 is	 formally	 comprised	 of	 CO2•–	 and	 a	 hydrogen	
atom.	A	strategy	to	elicit	this	reactivity	from	formate	could	
tap	into	recently	developed	hydrocarboxylation	manifolds	
that	 proceed	 via	 SET	 reduction	of	 CO2	(Figure	1,	middle).	
Unfortunately,	reductive	approaches	to	access	CO2•–	require	
deeply	reducing	conditions	due	to	the	thermodynamic	sta-
bility	of	CO2	(E1/2(CO2/CO2•–)	=	–2.2	V	vs	SCE).51	To	access	
this	requisite	driving	force	for	CO2	reduction,	prior	efforts	
required	<300	nm	UV	 light,46,47	visible	 light	with	stoichio-
metric	 thiolate-promoters,48	 or	 deeply	 reducing	 elec-
trodes.49,50	Furthermore,	the	photochemical	approaches	re-
quire	external	hydrogen	atom	sources	while	high	electrode	

overpotentials	for	CO2	reduction51,52	erode	functional	group	
tolerance	in	electrochemical	strategies.		
	 In	contrast	to	CO2-reduction	strategies,	 formate	enters	
the	 reaction	 in	 the	 appropriate	oxidation	 state	 for	 alkene	
hydrocarboxylation	 without	 need	 of	 a	 sacrificial	 electron	
donor.	 We	 suspected	 that	 redox-neutral	 hydrocarboxyla-
tion	by	delivery	of	formate	across	alkenes	would	not	only	
improve	atom	economy	relative	to	net-reductive	strategies,	
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but	would	also	provide	an	appealing	chemoselectivity	pro-
file	by	circumventing	the	need	for	strong	reductants.53	Our	
group54	 and	others55,56	 recently	 introduced	a	 collection	of	
photoredox57–65	strategies	to	generate	CO2•–	in	situ	via	cleav-
age	of	the	formate	C(sp2)–H	bond.	In	these	prior	studies,	the	
nascent	 CO2•–	 was	 primarily	 employed	 as	 an	 SET	 reduct-
ant.66	We	hypothesized	that	our	catalytic	system	could	be	
repurposed	 	 as	 a	 general	 and	 functional	 group	 tolerant	
strategy	 to	 access	 CO2•–	 for	 C–C	 bond-forming	 reactions.	
Overall,	this	would	introduce	a	mechanistically	distinct	ap-
proach	to	promote	hydrocarboxylation	reactions	via	a	mild	
oxidation	event	(Eox(CHO2–)	=	+1.25	V	vs	SCE)	or	hydrogen	
atom	abstraction	(BDE	=	86	kcal/mol)20	instead	of	the	diffi-
cult	SET	reduction	of	CO2.	Herein,	we	report	a	redox-neutral	
approach	 to	 hydrocarboxylation	 via	 addition	 of	 formate	
across	alkene	substrates	(Figure	1,	bottom).		
	 We	selected	styrene	as	a	model	alkene	substrate	as	di-
verse	analogs	are	commercially	available	and	3-aryl	propi-
onic	acids	are	well-represented	in	bioactive	molecules.14,15	
Of	note,	the	anticipated	linear	selectivity	will	complement	
CO2-based	 transition-metal-catalyzed	 processes	 that	 fur-
nish	 branched	 products	 from	 alkenylarenes35,37,38,40,42,44,45	
with	one	notable	recent	exception	from	König	and	co-work-
ers.40	Accordingly,	we	evaluated	our	previously	developed	
conditions	for	CO2•–	generation	from	formate54	in	the	pres-
ence	of	styrene.	These	conditions	fully	converted	styrene	in	
20	hours	and	provided	a	25%	yield	of	the	linear	carboxylate,	
3,	along	with	37%	ethylbenzene.	Reaction	optimization–in-
cluding	 adjusting	 the	 irradiation	 wavelengths	 away	 from	
those	that	excite	reduced	4DPAIPN67–resulted	in	improved	
conditions	that	furnish	nearly	quantitative	yield	of	3	with-
out	observable	ethylbenzene.		Furthermore,	these	reaction	
conditions	provided	complete	conversion	in	two	hours	with	
low	loadings	of	photoredox	and	thiol	catalysts	(Table	1,	en-
try	1).	Control	experiments	confirmed	that	no	conversion	of	
styrene	was	observed	in	the	absence	of	the	photoredox	cat-
alyst	(entry	2).68	
	 The	structure	of	the	thiol	hydrogen	atom	transfer	(HAT)	
catalyst	was	identified	as	a	key	parameter.	Omission	of	the	
thiol	from	the	reaction	resulted	in	diminished	rate	and,	con-
sequently,	reduced	chemical	yield	(entry	3).		The	alkyl	thiol	
we	employed	in	related,	formate-based	hydroarylation	pro-
cesses,54	 CySH,	 was	 similarly	 ineffective	 (entry	 4).	 While	
several	 thiolphenols	 and	 electron-deficient	 thiols	 per-
formed	comparably	to	T1	(see	Table	S1),	when	T1	was	sub-
stituted	for	an	electron-rich	analog,	T2,	the	yield	was	sub-
stantially	diminished,	reverting	to	nearly	 that	of	 the	reac-
tion	performed	without	thiol	(entry	5).	Overall,	these	data	
cannot	 be	 rationalized	 using	 thermodynamic	 parameters	
such	as	BDEs69,70	 but	 are	 fully	 consistent	with	 substantial	
polar	effects	on	the	HAT	transition	structures.71		
	 The	formate	counterion	also	had	an	impact	on	the	reac-
tion.	Substitution	of	potassium	for	sodium	slows	the	reac-
tion	and	results	in	lower	yield	(entry	6).	Replacement	of	po-
tassium	with	cesium	delivers	a	similar	yield	and	modestly	
accelerates	the	rate	(entry	7,	see	Table	S6	for	details	regard-
ing	rate	changes).	We	attribute	this	effect	to	differential	sol-
ubility	of	the	formate	salts	in	DMSO.	Potassium	formate	was	
selected	for	further	study	as	it	furnishes	nearly	quantitative	
product	in	only	two	hours	and	is	inexpensive.72	

	 The	photoredox	catalyst	identified	(4DPAIPN)	was	par-
ticularly	 effective;	 however,	 a	 variety	 of	 other	 photocata-
lysts	promote	the	reaction.	For	example,	iridium-based	pho-
tocatalysts	could	be	used	in	place	of	4DPAIPN,	albeit	with	
extended	reaction	times	(entry	8).73	We	found	that	the	gen-
eration	of	these	carboxylic	acid	products	is	robust;	no	pre-
cautions	to	exclude	air	or	moisture	are	necessary	and	the	
process	tolerates	the	deliberate	addition	of	water	(entry	9).		
	 We	 next	 examined	 the	 scope	 of	 this	 new	 alkene	
hydrocarboxylation	 reaction.	We	 found	 that	 these	 simple	
conditions	promote	 the	delivery	of	 formate	across	a	wide	
range	of	alkenylarene	substrates	with	exquisite	functional	
group	 tolerance	 (Table	 2).	 Diverse	 electron-donating	 and	
electron-withdrawing	substituents	could	be	introduced	on	
the	arene	(3–8)	without	a	substantial	impact	on	reaction	ef-
ficiency.	Since	the	reaction	conditions	are	only	mildly	basic,	
protic	substrates	were	well-tolerated.	Alkenylarenes	bear-
ing	carbamates	(5),	carboxylic	acids	(7	and	14),74	and	un-
protected	 alcohols	 (9	 and	13)	 each	underwent	 hydrocar-
boxylation	in	high	yield.	Furthermore,	a	substrate	contain-
ing	a	synthetically	versatile	but	Lewis	acidic	boronic	acid	pi-
nacol	ester	(8)	was	efficiently	converted	into	the	linear	car-
boxylic	 acid.	This	 redox-neutral	process	also	 tolerates	 re-
ductively	sensitive	functional	groups,	such	as	aryl	chlorides	
(6).	 This	 substrate	was	 of	 particular	 interest	 because	we	
have	previously	engaged	aryl	chlorides	in	reductive	radical	
coupling	 reactions	 under	 similar	 formate-based	 reaction	
conditions.75	Hydrocarboxylation	of	2-vinylpyridne	(10)	il-
lustrated	the	suitability	of	vinyl	heterocycles	as	substrates.	
The	reaction	was	insensitive	to	additional	alkene	substitu-
ents;	a-	and	b-methyl	styrenes	were	each	converted	to	car-
boxylic	acids	(11	and	12).	Additionally,	functionalized	alkyl	
groups	 such	 as	 unprotected	 alcohols	 or	 acids	 in	 the	 b-
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position	 did	 not	 disrupt	 the	 hydrocarboxylation	 process	
(13	and	14).		
	 We	 found	 that	 the	 reaction	 was	 not	 limited	 to	
alkenylarene	 substrates;	 electron-deficient	 alkenes	 suc-
cessfully	underwent	hydrocarboxylation	to	furnish	succin-
ate	derivatives	(Table	3).	Hydrocarboxylation	of	these	sub-
strates	was	unperturbed	by	substitution	at	either	the	a-	or	
b-position	(15–17),	providing	access	to	differentially	sub-
stituted	1,4-dicarbonyl	compounds.	Hindered	b,b-disubsti-
tuted	 substrates	 converted	 at	 diminished	 rate	 under	 the	
standard	 conditions;	 however,	 substitution	 of	 potassium	
formate	for	an	excess	of	more	soluble	cesium	formate	accel-
erated	the	rate	and	delivered	product	(18)	in	high	yield	in	
two	hours.	Further	investigation	of	this	sterically-congested	
substrate	class	 illustrated	 that	 this	new	reaction	provides	
efficient	 access	 to	heterocyclic	 building	blocks	bearing	a-
quaternary	 carboxylic	 acids	 (19–21).	 Since	 aliphatic	 al-
kenes	 did	 not	 undergo	 hydrocarboxylation,	 a	 substrate	
bearing	both	an	unactivated	and	activated	alkene	(22)	un-
derwent	 chemoselective	 hydrocarboxylation	 at	 the	 elec-
tron-deficient	alkene	to	provide	23.		

	 Given	that	scaling	photochemical	reactions	can	be	tech-
nically	challenging,76	we	evaluated	the	viability	of	perform-
ing	this	process	on	preparative	scale.	Using	a	simple	batch	
setup	with	no	precautions	 to	exclude	air	or	moisture,	 the	
carboxylate	 salt	24	 was	 synthesized	 in	 79%	 yield	 (7.4	 g,	
39.5	mmol)	in	under	nine	hours	using	only	0.01	mol%	of	the	
photocatalyst,	4DPAIPN	(Scheme		1).	This	preparative	scale	
reaction	 is	 not	 only	 technically	 simple	 to	 execute	 but	 the	
carboxylate	salt	can	be	purified	from	the	reaction	mixture	
by	crystallization	with	neither	chromatography	nor	exten-
sive	aqueous	washes	to	remove	non-volatile	DMSO.	Overall,	
these	results	illustrate	the	immediate	practical	utility	of	this	
new	formate-based	hydrocarboxylation	reaction.		

	
	 Based	on	our	working	mechanistic	model,	we	anticipate	
that	the	formate	salt	is	incorporated	as	the	carboxylic	acid	
in	the	final	product.	This	opens	up	an	appealing	avenue	to	
prepare	 isotopically	 labeled	 molecules	 because	 both	 13C-	
and	 14C-labeled	 sodium	 formate	 salts	 are	 commercially	
available.	We	first	adjusted	the	reaction	conditions	to	em-
ploy	limiting	sodium	formate	as	this	would	be	particularly	
attractive	for	14C-radiolabeling	applications.77	Under	these	
modified	conditions,	we	found	three	distinct	bioactive	mol-
ecules	(25–27)	could	be	produced	with	near	perfect	13C-in-
corporation	 (Table	 4).	 This	 offers	 a	 simple	 but	 effective	
complement	to	recently	developed	carboxylic	acid	isotopic	
exchange	reactions.78–86	These	equilibrium	methods	cannot	
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simultaneously	 deliver	 high	 specific	 activity	 and	 radio-
chemical	yield	whereas	this	hydrocarboxylation	process	of-
fers	both.	Finally,	 each	of	 these	bioactive	 carboxylic	acids	
can	also	be	synthesized	efficiently	under	our	standard	lim-
iting-alkene	conditions	in	high	yields	(see	Figure	S9).		

	
	 We	next	questioned	whether	the	hydrogen	atom	incor-
porated	in	the	final	product	is	derived	from	formate.		To	this	
end,	we	subjected	D-formate	to	our	reaction	conditions	and	
observed	high	but	 incomplete	deuteration	(Table	5,	entry	
1).	This	is	consistent	with	formate	acting	both	as	a	C1	and	
hydrogen	atom	source	but	also	suggests	a	secondary	pro-
cess	to	account	for	the	incomplete	deuterium	incorporation.	
We	questioned	whether	a	parallel	electron-transfer-proton-
transfer	(ETPT)	pathway	may	also	occur.	In	this	process,	the	
benzylic	radical	would	be	reduced	(Ered	=	–1.4	V	vs	SCE)87	
and	 subsequently	 protonated,	 by	 solvent	 or	 adventitious	
water.88	 	 However,	 running	 the	 reaction	 in	 DMSO-d6	 re-
sulted	in	no	measurable	deuterium	incorporation	(entry	2).	
Given	 that	 both	 DMSO	 and	 water	 would	 spontaneously	
quench	a	benzylic	anion	and	DMSO	is	present	in	vast	excess,	
these	data	indicate	that	ETPT	is	not	responsible	for	incom-
plete	 transfer	 of	 the	deuterium	 label	 from	 formate	 to	 the	
carboxylic	acid	product.	Given	our	working	model	that	the	
thiol	catalyzes	the	reaction	by	shuttling	hydrogen	atoms,	we	
suspected	that	proton	exchange	between	the	thiol	co-cata-
lyst	and	adventitious	water	could	explain	these	data.	Addi-
tion	 of	 D2O	 to	 otherwise	 standard	 conditions	 resulted	 in	
substantial	deuterium	incorporation	(entry	3).	Conversely,	
when	a	D-formate	reaction	was	conducted	in	the	presence	
of	H2O,	deuterium	 incorporation	was	not	observed	(entry	
4).	Taken	together,	these	data	are	consistent	with	our	work-
ing	model	wherein	the	thiol	catalyzes	HAT	from	formate	to	
transient	C(sp3)-radical	intermediates.89	

	
	 Based	on	these	results,	we	propose	a	working	mechanis-
tic	model	based	on	a	thiol-catalyzed	radical	chain	process	
(scheme	2).90	Thiyl	radicals	generated	in	situ	could	abstract	
a	hydrogen	atom	from	formate	to	generate	CO2•–.	This	radi-
cal	anion	intermediate,	in	turn,	reacts	with	the	alkene	sub-
strate	to	furnish	a	new	C–C	s-bond	and	a	C(sp3)	radical.	This	
radical	intermediate	is	quenched	by	HAT	from	the	thiol,	re-
generating	 the	 thiyl	 radical.	We	 envisioned	 two	 plausible	
mechanisms	 for	 initiation	of	 this	chain	process.	First,	SET	
oxidation	of	formate	in	DMSO	is	known	to	result	in	a	second	
order	 decomposition	 to	 formic	 acid	 and	 CO2•–	 (initiation	
A).91	Second,	SET	oxidation	of	the	thiol	followed	by	a	proton	
transfer	could	directly	generate	the	key	thiyl	radical	inter-
mediate	(initiation	B).	Stern–Volmer	analysis	indicated	that	
both	a	soluble	formate	salt	(tetrabutylammonium	formate)	
and	the	thiol	catalyst,	T1,	quenched	the	excited	state	of	the	
photoredox	catalyst	4DPAIPN.	However,	the	rate	of	photo-
catalyst	quenching	by	T1	is	approximately	an	order	of	mag-
nitude	faster	than	formate	and	potassium	formate	is	spar-
ingly	soluble	 in	DMSO.92	Accordingly,	we	favor	SET	oxida-
tion	of	the	thiol	catalyst	(initiation	B)	as	the	primary	initia-
tion	mechanism	 but	 suspect	 both	 occur	 in	 parallel	 under	
standard	conditions.	

	
	 Overall,	we	have	introduced	a	new	strategy	to	access	lin-
ear	carboxylic	acids	from	formate	and	activated	alkenes	by	
exploiting	 a	photoinitiated,	 thiol-catalyzed	 chain	 reaction.	
This	redox-neutral	process	is	conducted	under	mild	condi-
tions	without	stoichiometric	redox	agents	and,	as	a	result,	a	
wide	variety	of	functional	groups	are	tolerated	by	the	pro-
cedure.	The	conditions	are	operationally	simple;	no	precau-
tions	to	exclude	air	or	moisture	are	necessary.	This	trans-
formation	is	also	readily	translated	to	preparative	scale	(50	
mmol)	using	a	straightforward	batch	reaction	set	up.	This	
hydrocarboxylation	method	also	provides	a	facile	approach	
to	leverage	commercially	available	isotopically	labeled	for-
mate	 salts	 to	 prepare	 labeled	 bioactive	 carboxylate	
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aReactions were conducted under air and run for 8 h with 0.4 mmol Na13CHO2 
and 0.6 mmol styrene and yields were determined relative to Na13CHO2 via 1H 
NMR and 13C incorporation was determined by mass spectrometry. See the SI 
for further details.
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aReactions were conducted under N2 on a 0.1 mmol scale 
with 1.1 equiv NaCO2H or NaCO2D. See the SI for further 
details. b11 equiv D2O. c11 equiv H2O.
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Scheme 2. Plausible thiol-catalyzed radical chain mechanism.



 

products.	Additionally,	mechanistic	investigations	revealed	
that	formate	acts	as	both	the	C1	and	hydrogen	atom	source.	
This	study	illustrates	the	potential	benefits	of	a	redox-neu-
tral	 approach	 to	 alkene	 hydrocarboxylation	 and,	 more	
broadly,	provides	a	roadmap	to	unlock	formate	as	a	general	
CO2•–	surrogate	for	C–C	bond	forming	reactions.	
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