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Abstract 

The diversity of RNA structural elements and their documented role in human diseases 

make RNA an attractive therapeutic target. However, progress in drug discovery and 

development has been hindered by a limited understanding of the parameters that drive 

RNA recognition by small molecules, including a lack of experimentally validated 

structure-activity relationships (QSAR). We developed an adaptable ensemble learning-

based method that quantitatively predicts both affinity and kinetic-based binding 

parameters of small molecules against the HIV-1 TAR model RNA system. A training set 

of small molecules was screened against the HIV-1-TAR construct using surface plasmon 

resonance, which provided the binding kinetics and affinities. Introduction of ensemble 

learning on these data combined with structure-based molecular descriptors afforded 
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predictive models as well as explicit interpretation of the contributing parameters. The 

accuracy of the model was tested by external validation where binding properties of 

additional molecules outside training set were correctly predicted. The ensemble model 

presented herein is the first application of predictive and experimentally validated 2D-

QSAR against an RNA target, in this case HIV-1-TAR RNA, and provides a platform to 

guide future synthetic efforts. Furthermore, we expect the workflow described herein to 

be applicable to other RNA structures, ultimately providing essential insight into the small 

molecule descriptors that drive selective binding interactions and, consequently, 

exponentially increasing the efficiency of ligand design and optimization without the need 

for high-resolution structures. 
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Introduction 

Initiated in 2003, the ENCODE project1 revealed an unprecedented number of non-

protein-coding RNAs (ncRNAs), and their roles in the regulation of transcription, 

translation, genetic modification and RNA degradation have been subject of intense study 

in relation to human disease.2 ncRNAs have been found to be abnormally expressed in 

multiple disease phenotypes, including neurodegenerative diseases and metastatic 

cancers.3-12 The implications of these RNAs in disease pathogenesis underscore their 

potential roles as drug targets. To date, various ncRNAs have been targeted by small 

molecules across many species such as mammals, viruses, bacteria, and fungi.13-17 

These RNAs include the bacterial ribosome, HIV leader sequence in the 5’ untranslated 

region (UTR), pre-miRNA in nuclease processing site, Huntington’s disease related 

r(CAG) exonic repeats, and alternative splicing site for spinal muscular atrophy (SMA).  

 

While RNA is an attractive therapeutic target, some RNA properties pose intrinsic 

challenges including: 1) limited chemical diversity of RNA relative to proteins; 2) the highly 

negatively charged backbone of RNA, and 3) the dynamic nature of RNA, which allows it 
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to sample a wide population of conformers. In particular, the diverse and complex 

conformational dynamics of RNA increase the complexity of RNA structure determination, 

including that of RNA:ligand structures, ultimately hindering the development of predictive 

binding models as well as our understanding of the drivers of small molecule:RNA 

recognition. Currently, the most successful discovery method for bioactive RNA-targeted 

small molecules has been focused screens, which require synthetic library curation based 

on prior knowledge of the biased chemical space of RNA-targeted small molecules.18 

Additionally, the current paradigm of RNA-targeted small molecule often disregards 

binding kinetics, precluding a full understanding and optimization of binding behaviors of 

a compound. Indeed, many marketed drugs are characterized with slow dissociation 

processes and prolonged target occupancy, indicating the significance of binding kinetics 

in evaluating in vivo activity.19  The design of compounds with kinetic selectivity will open 

a new avenue for RNA targeting and facilitate the hit-to-lead triage during hit 

optimization,20, 21 though very few studies have so far demonstrated how to intentionally 

optimize RNA binding kinetics.22 Overall, there are clear unmet needs in finding potential 

RNA-targeted chemical probes beyond screening and to rationally design small 

molecules with desired binding behaviors, including appropriate binding kinetics.  

 

To fully access the numerous potentially-druggable RNA targets discovered through the 

‘RNA revolution’, a rational tool for ligand design and comprehensive understanding of 

RNA:small molecule binding details is required. Recently, machine learning-aided 

mechanistic studies and ligand predictions have shown success in multiple complex tasks, 

including the design of enantioselective catalysts in organic synthesis and bioactive 

ligands for kinase inhibition.23-26 Significant work has been done to explore key 

descriptors involved in RNA recognition.27-29 Most of this work has utilized publicly 

available data, which offers a large amount of data but is limited by the diversity and 

inconsistency of screening methods employed. In addition, if the data originates from 

multiple RNA targets, only general guiding principles can be derived, which is not 

sufficient for precise ligand design for a specific RNA target. Among multiple 

computational tools, quantitative structure-activity relationship (QSAR) study can pinpoint 

guiding principles for a specific  target  by correlating the experimentally observed binding 
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properties with the molecular descriptors of the ligands.30-32 A robust and predictive QSAR 

model has been proven to be an efficient tool to predict activities of small molecule 

candidates and to drive hit optimization. Despite its success in protein-based ligand 

design, however, few QSAR studies have been conducted for identifying RNA-targeted 

small molecules.33-35  

 

Herein, we built a systematic workflow utilizing QSAR as an intermediate to connect 

molecular descriptors of a given ligand with its binding profiles against a specific RNA. 

The activities, including binding affinity (KD) and kinetic rate constants (kon and koff), were 

measured for various molecules via surface plasmon resonance (SPR). To the best of 

our knowledge, this constitutes the first example of a systematic empirical QSAR study 

conducted for a specific RNA target; consequently, we considered several new strategies 

to build the model. To overcome the potential bias related to diverse scaffolds, we applied 

an ensemble strategy to model training. Ensemble models were trained for explaining 

binding behaviors with low root-mean-square-error (RMSE) and high coefficient of 

determination (R2) and applied to yield a novel quantitative structure-kinetic relationship 

for RNA ligands.  External validation using untested small molecules verified the accuracy 

of prediction of the model built on the training set. Importantly, our model interpretation 

derived significant descriptors for binding kinetics and affinity, plotting the landscape with 

which improvement of binding behaviors could be achieved via intentional structural 

modifications. We anticipate that this framework could be readily extended to different 

RNA contexts to facilitate the design and synthesis of novel RNA-targeted ligands. The 

workflow built in this study will contribute to improving the understanding of RNA:small 

molecule binding mechanisms and provide an efficient tool to rationally design new 

ligands for a given RNA target. 



 

 5 

Results and Discussion 
We chose the HIV-1 transactivation response (TAR) element (Figure 1a) as a suitable 

model system to develop our workflow as this well-validated antiviral target has been 

frequently screened against small molecules, providing us with numerous candidates for 

the training set.36-39 Forty reported TAR ligands or compounds with known RNA-targeted 

scaffolds were selected for model construction. Overall, these ligands could be classified 

into 4 categories, namely aminoglycosides (AGs), dimethyl amilorides40, 41 (DMAs), 

diphenyl furans42, 43 (DPFs) and nucleic acid dyes (Figure 1a). These ligands covered a 

range of binding behaviors with the aim of building a model that can be applied to the 

prediction of ligands with diverse chemical architecture.  

 

 

1. Calculations of molecular descriptors  

We started this workflow by obtaining molecular information of each compound via 

quantitative calculation of their molecular descriptors. Each descriptor provides 

information on a physiochemical property of a compound, ranging from topological to 

electrostatic terms. For example, atomic connectivity that represents topological 

connections within a molecule was calculated upon the use of graph theory matrices, 

which lays the foundation of many other descriptors including related adjacency and 

distance matrices as well as chemical identity and hybridization states. According to 

Figure 1 A. Sequence and structure of 5’ biotinylated HIV-1 TAR and chemical structures of the scaffolds used in this 
work. B. Kinetics map of 40 tested ligands, represented on the 10-based logarithmic coordinates. The diagonal lines 
represent KD values calculated from koff/kon. Units of three parameters are shown. The rest of study used values based 
on these units.  
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previous reports, many QSAR expressions suggest that ligand binding preferences 

originate from non-covalent interactions exerted in the micro-space of the ligand.44 Hence 

conformation-dependent 3D descriptors were included to account for the spatial 

environment of the ligands, such as partial charges and potential energy. As 

demonstrated in Panel A, Scheme 1, to ensure the accurate calculation of these 

molecular descriptor values, we considered whether multiple species of a given molecule 

may exist at experimental conditions. Namely, many of the RNA-targeted ligands in the 

training set are predicted to be positively charged under the buffered condition (pH=7.4 

in SPR), thus protonation and tautomerization states were considered for each ligand and 

described by a distribution coefficient. For each ligand state, potential conformations 

within 3 kcal/mol of the lowest energy conformation, as determined using the Molecular 

Operating Environment (MOE) software, were selected. The descriptor value of a specific 

ligand state was determined as the Boltzmann-weighted average of these conformations. 

Finally, the descriptor value of each ligand is the weighted average of the results from 

multiple states based on distribution coefficients mentioned before. In total, we calculated 

435 descriptors of each ligand. For model training, we selected 304 by deleting 

descriptors that had more than 25% repeated entries since such descriptors would cause 

fitting error during model searching. While the presence of multiple species and/or 

conformations is often overlooked due to computational cost, accuracy of molecular 

descriptors is a prerequisite for reliable and robust QSAR models.  
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Scheme 1 Workflow of ensemble QSAR. Structure: input molecules were searched on their “protomers” and then 
searched on conformations of each protomer. Molecular descriptors were calculated for each conformation and 
averaged based on Boltzmann distribution. Activity: small molecules binding HIV-1 TAR were characterized via SPR 
and parameters including KD, kon and koff were fitted globally. Modeling: with multiple data splitting and independent 
model training, the final prediction is given by the averaged predictions from multiple learners followed by model 
interpretation. 

 

 

2. Measurement of binding parameters 
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To evaluate the binding parameters of the small molecules against HIV-1 TAR, we utilized 

SPR to measure the kinetic rate constants and binding affinities. Kinetic analyses for the 

observed SPR curves were performed globally for the entire concentration series (Panel 

B, Scheme 1). To ensure the robustness of the experimental data, we conducted multiple 

tests for each ligand to reach consistency between measurements. The kinetics map 

summarizes the distribution of kon, koff and KD along logarithmic coordinates (Figure 1b). 

All three parameters have a wide range of values spanning at least 2 log units, supporting 

the appropriateness for reliable QSAR modeling from a response variable perspective.45  

 

To validate our kinetics data, we compared our results to a previous survey that showed 

RNA ligand association was generally slower than that for protein.46 The measured on 

and off rates values in our SPR data are similar in order of magnitude to the RNA:ligand 

values previously reported (Table 1).46 The overall association rate constant of an RNA-

ligand pair for all three RNA-ligand sets (median: ~104 M-1s-1) was not only far below the 

diffusion limit (centered at 109 M-1s-1) but also suggested a generally slower binding than 

protein-ligand pairs (median: 6.6×106 M-1s-1). This slow RNA recognition was expected 

due to the existence of multi-conformation distribution in unbound RNA states, though 

some variation was observed between ligand classes. Specifically, in our HIV-1 TAR-

ligand set, most of the fast association rates were observed for aminoglycosides, nucleic 

acid dyes and DPFs (kon: 104~105 M-1s-1), probably due to their strong electrostatic 

(aminoglycosides) or topologically matched pi-pi stacking interactions (dyes, DPFs). As 

moderate and weak binders in this set, DMAs were characterized by fewer potential 

protonation sites or less planar structure than other molecules, leading to overall slower 

binding rates. Rates of dissociation were comparable among the three RNA-ligand sets, 

with median values around 10-2 s-1. Comparing binding strengths in Table 1, it was 

expected that RNA-ligand pairs with in vitro selected RNAs (e.g. aptamers) and naturally 

occurring RNAs that have evolved to bind small molecules (e.g. riboswitches and 

ribozyme) would have tighter binding than the ones in our dataset (Table 1). In our QSAR 

study, we covered a range of binding affinities to achieve a generalizable scope and aid 

the discovery of decisive descriptors for binding of diverse small molecules. 
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Table 1 Median values of binding parameters from three sets of RNA-ligand interaction, values for in vitro-selected 
and naturally occurring RNA-ligands from ref 46. 

 

3. QSAR modeling: ensemble learning 

 

Ensemble model construction 

A key consideration in ensemble construction for QSAR is the continuity of the energy 

landscapes created by the ligands, i.e. whether gradual changes in ligand topology and 

electrostatic properties are smoothly plotted along the target activity function.32, 47 While 

QSAR has been classically applied to molecules from the same scaffold (congeneric sets) 

to alleviate these concerns, several studies have reported successful continuous fields 

even with the use of diverse scaffolds.48-50 Appropriate splitting of the training and test 

sets is critical to achieving a smooth landscape that avoids local minima where the model 

would explain only a subset of the compound pool.51 A conventional single data split 

approach bears high risk of overfitting, especially with diverse scaffolds in the substrate 

pool. There are multiple sampling methods that can maximize the consistency between 

the selected subsets and the whole dataset, however, such as stratified sampling for a 

sample with multiple subpopulations.52  

 

To reduce the potential bias and variance on QSAR prediction relating to single data 

splitting, we applied stratified sampling and independently repeated this procedure 

multiple times. As a result, the prediction is given by the ensemble of independent QSAR 

models derived from each sampling, reducing dependence on the representativeness of 

a single data splitting (Panel C, Scheme 1). Through multiple samplings and ensemble 

learning, we aimed to reduce the variance of the prediction.53   

 

 
kon (M-1 s-1) koff (s-1) Kd (M) 

RNA (in vitro-selected) - ligand (N=13)46  8.1 x 104 6.3 x 10-2 4.3 x 10-7 

RNA (naturally occurring) - ligand (N=24)46 5.5 x 104 1.9 x 10-2 3.0 x 10-7 

HIV-1 TAR - ligand (N=40) 1.3 x 104 9.0 x 10-2 9.8 x 10-6 
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To test whether this ensemble learning strategy can achieve a high precision of prediction 

on the diverse substrates, we started modeling using ensemble learning workflow and 

compared the result with the model trained from a single data splitting. For the 40-

compound dataset, we first classified the molecules into different categories or “strata” by 

K-means clustering. Using the 304 descriptors calculated for each ligand, we initially set 

K=4 based on the four scaffolds as previously mentioned, and the converged results 

matched well with the expected, with the exception of mitoxantrone joining the DMA set 

rather than the set of nucleic acid dyes (Table S1). Considering the large size of the DMA 

group and structural diversity within the DMA set, we decided to set K=5 where the 

converged clustering result further split the DMA set (Table 2). The resulting five 

categories explored the chemical diversity of this scaffold more comprehensively, while 

also generating more equally distributed subgroups and favoring representative data 

splitting when compared to K=4 clustering. To maximize the applicable domain of the final 

model, the ligands DPF p1 and DMA-186, representing the upper and lower limits of KD, 

respectively, were forced to be in the training set. A similar strategy was also applied 

when conducting kon and koff modeling. 

Table 2 Classification of parent dataset into five categories: Aminoglycosides, DMA set1, DMA set 2, DPFs and nucleic 
acid dyes, referring K-means clustering result (K=5). Note: DMA-1~DMA-164 are from ref 40, DMA-180~DMA-194 from 
ref 41, DCC compounds from ref 54, DPF x1~DPF x10 from ref 42 (x = m or p), DPF p15 from ref 43. The rest of 
compounds are commercially available. 

Aminoglycosides 

(N=9) 

DMA set1  

(N=5) 

DMA set2 

(N=12) 

DPFs 

(N=7) 

Nucleic Acid Dyes 

(N=7) 

Neomycin B DMA-1 DMA-180 DPF m1 Acridine Orange 

Paromomycin DMA-148 DMA-187 DPF p1 TO-PRO-1 

Sisomycin DMA-156 DMA-190 DPF m3 Furamidine 

Streptomycin DMA-164 DMA-191 DPF m9 Ethidium Bromide 

Tobramycin DMA-186 DMA-193 DPF m10 Mitoxantrone 

Gentamicin 
 

DMA-194 DPF p6 Thiazole Orange 

Neamine 
 

DCC-3k DPF p15 H-33258 

Kanamycin 
 

DCC-3l 
  

Amikacin 
 

DCC-3u 
  

  
DCC-3v 

  

  
DCC-3r 

  

  
DCC-3q 
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Exhaustive searching for 3-variable linear models (y ~ 1+x1+x2+x3) based on ordinary 

least squares (OLS) was performed independently for each sampling. Namely, the total 

descriptor space (with 304 variables) was searched for all 3-variable combinations and 

tested on their adjusted R2 values in the regression model, resulting in 4,636,304 models 

for each data splitting. The number of variables in the model was determined as three to 

ensure a reasonably high R2 and also to be far below the limit set by the Topliss rule55 to 

avoid overfitting. Resulting models were evaluated by multiple fitting metrics, including 

adjusted R2 (on training dataset), R2
LOOCV (leave-one-out cross-validation on training set), 

Q2
F2 (R2 on test set), etc. (see detailed equations for the fitting metrics in Methods and 

scripts, SI). We set different cut-off values of these metrics based on literature 

precedence to select eligible models for ensemble learning.56, 57 Specifically, good models 

were first selected based on the adjusted R2 (R2 >0.75) (Scheme S1). The robustness of 

these models was then determined through a leave-one-out cross-validation 

(R2
LOOCV>0.7) on the training set, and the predictiveness was validated by the R2 of the 

test set (Q2
F2>0.65 for KD and Q2

F2>0.75 for kon). Models that met these criteria were 

determined top models. 

 

The ensemble model was then constructed using the top models selected from each data 

splitting. To ensure that each data splitting was considered equally, the values for the top 

models from each corresponding splitting were equally weighted and normalized to the 

total number of data splittings (120) to create the ensemble model. We tested the model 

behavior by including more data splittings (Table S2), however the overall RMSE and R2 

of fitting changed only slightly, indicating that 120 runs are sufficient to obtain a converged 

result. 

 

For the ensemble model of KD, there were 785 top models involved in total (Figure 2a). 

The model resulting from the aforementioned ensemble method yielded overall lower 

RMSE (1.0226) and higher R2 (0.83228) than any individual model. This result could be 

explained by the fact that in the ensemble method, all of the small molecules contributed 

to the training of the model thereby lowering the risk of extreme predictions that could 

result from a single model built on a static training set.  Residuals  remained unexplained 
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by the ensemble model, which is consistent with avoiding overfitting but may indicate that 

certain compounds have deviated behaviors relative to those predicted by the model. 

Similarly, for the modeling of kon the ensemble model was an integrated result of 1429 

top models (Figure 2b). The overall explanatory ability of the ensemble model on the 

parent dataset exceeds any individual model, characterized with an RMSE of 1.4215 and 

R2 of 0.82019. 

 

Figure 2 Ensemble model prediction. (a) lnKD model constructed from 785 top models. (b) lnkon model constructed 

from 1429 top models. 

The model search for koff resulted in poorly fitted models, indicating the complexity of the 

dissociation process and suggesting that more sophisticated regressions (i.e. nonlinear 

regression) may be needed for the explanation of this parameter, which also bears less 

variation than KD and kon. As a result, the analyses performed in the rest of the study 

focused on KD and kon. 

 

Comparison with elastic net regularization and random forest 

To further evaluate the suitability of the ensemble model, we compared behaviors of the 

ensemble model with models trained from two commonly used algorithms, i.e. elastic net 

regularization and random forest (RF). Elastic net regularization was chosen because the 

loss function (Table S3), which is a measure of goodness during model prediction, is very 

similar to OLS and it includes penalty terms for overfitting, an important consideration with 

our large number of variables. RF was chosen because it includes bagging as 
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construction method, which is similar to our ensemble approach, though the loss function 

is very different.  

 

As mentioned above, for a high-dimension descriptor set, it is important to prevent over-

fitting and to pick the most relevant descriptors. Elastic net regularization avoids over-

fitting by adding two penalty terms (adjusted by α) on the basis of OLS in its loss function 

(see Table S3).58  The result of lnKD modeling showed that lasso regression gave a 

conserved prediction, namely that low lnKD and high lnKD values were predicted to be 

moderate lnKD values (Figure 3a). Adjusting weights of two penalty terms in loss function 

gave similar conserved predictions, close to the average of the whole data set (Figure 

3b).  Similar results were found during lnkon modeling (Figure S1). Therefore, elastic net 

regularization could not afford a comparable precision on the given dataset when 

compared to the ensemble least squares model we trained via OLS.  
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Figure 3. Comparison with elastic net regularization and random forest. (a). Averaged prediction from 3000 
independent runs from lasso regression (α = 1), predicted lnKD was compared to the measured values using a reference 
line. (b). Averaged prediction from 3000 independent runs from elastic net regularization (α = 0.5), predicted lnKD was 
compared to the measured values using a reference line. See more results on elastic net regularizations (including 
ridge regression) in Figure S1. (c). The out-of-bag error decreased with the number of grown trees in RF model. (d). 
Overall prediction of RF model on the dataset, the predicted lnKD was plotted over measured lnKD, compared through 
a reference line.   

Having diverse substrates as training set, it is quite important to reduce the variance of 

the prediction. To evaluate how the QSAR ensemble model behaved on lowering 

variance and realizing precise prediction, we compared it with RF model. The random 

forest algorithm reduces variance via the application of bagging on sampling and random 

choice on sub-feature space, providing stable and accurate predictions.59 When 

compared to our linear regression models, RF is constructed by multiple non-linear 

decision trees based on the information gain at each node, making it powerful at multiple 

machine learning tasks but also hard to interpret. Utilizing the TreeBagger function in 
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MATLAB, we built a regression forest consisting of 200 decision trees. The out-of-bag 

regression error was plotted along with the number of trees grown (Figure 3c). Results 

indicated that 200 trees are sufficient to reach convergency. The R2 for out-of-bag 

prediction reached around 0.5, even though the overall prediction on the dataset reached 

0.88 R2, indicating the heterogeneity of the dataset and a certain extent of overfitting. We 

changed the size of subspace used in each node construction to see the effect on model 

quality, and the summarized results (Table S4 and Figure S2) suggested that the size of 

the subspace makes little difference on the model’s behavior.  

 

Overall, our ensemble model reached a comparable level of precision on the prediction 

to the RF model (Figure 3d), indicating its utility as a way to use linear regression with 

diverse substrates and keep explicit model interpretation, which will be discussed later.  

 

4. External validation: prediction of the unknowns 

We next tested whether the ensemble model could be used to predict the binding 

parameters of untested compounds and further guide ligand synthesis. We performed 

external validation using nine untested compounds after model construction. Five of the 

untested molecules were diphenylfuran analogs related to others that had been included 

in the parent dataset (8 out of 40). The remaining four molecules were in-house 

synthesized molecules that contain a diminazene (DMZ) scaffold, which has been shown 

as a potential RNA-targeted scaffold60 but has been less explored so far. Importantly, no 

DMZ-based molecules were in our training set, and thus this scaffold represents a 

rigorous test of model performance. The SPR results indicated that eight of nine 

molecules bound HIV-1 TAR RNA, with only DMZ-O6 showing a weak SPR signal, either 

due to weak binding or poor SPR response properties. The lnKD and lnkon parameters of 

the eight molecules were predicted using our ensemble models and compared with the 

predictions from the random forest model. As shown in Figure 4, both ensemble (Figure 

4a) and RF models (Figure 4c) achieved high precision on the lnKD prediction of the 

external set, represented by the low RMSE values, where the prediction of RF model 

reached slightly lower RMSE. The prediction interval (PI) defined by standard error of 

observations describes the range a new observation would fall into, which was used here 

to map the precision of new predictions from the two models. In lnKD predictions, only one 
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compound (DMZ-M3, Figure 5) predicted from the ensemble model fell outside the 95% 

prediction interval (PI) range, while predictions from the RF model all fell within the 95% 

PI range. Similarly, for lnkon predictions, the RF model (Figure 4d) outperformed the OLS 

model (Figure 4b), indicated by the lower RMSE value. Only one point (DPF p13, Figure 

5) predicted by RF model fell outside the 95% PI range, which was also the only 

compound that was not well predicted by the OLS model.  

Overall, the OLS ensemble model reached high precision for external prediction. 

Specifically, it correctly predicted binding parameters of the DMZs whose structures were 

not present in the training set, showing strong potential for generalizability. The ensemble 

model could achieve comparable performance to the well-established RF algorithm-

trained model, supporting, once again, the applicability of this ensemble method for 

QSAR studies with diverse substrates.  
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Figure 4. External validation on ensemble models of (a) lnKD and (b) lnkon, compared with RF models of (c) lnKD and 
(d) lnkon . The 95% PI was defined by the t-multiplier and standard error (see equations in Table S5), as represented 
by the dashed red line.  
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Figure 5. Chemical structures of molecules tested in external validation as well as their predicted, observed and 95% 
predictive interval of lnKD and lnkon. Asterisk (*) indicates the outliner by 95% PI. 

 

5. Model interpretation  

After QSAR model construction, we investigated the relationship between small molecule 

binding parameters and the predictors that yielded the best models. One way to obtain 

such information is to extract the descriptor importance from the model and assess the 

most significant descriptors. As a parallel comparison, we appraised interpretation of both 

the ensemble model and the RF model. We expected the ensemble model to be more 

explicit as the random forest model is often considered a “black box” method due to the 

inclusion of large number of deep decision trees.  

 

To interpret descriptor importance from the ensemble model, all the descriptors that 

contributed to the model were recorded as well as their coefficients. The coefficients for 

each individual descriptor, weighted as described above in the ensemble model 

construction, were added, and the summed result of each descriptor was deemed 

descriptor importance. As shown in Figure 6a and 6b, the ensemble models for lnKD and 
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lnkon were comprised of 49 and 67 descriptors (more details in Table S6 and Table S7), 

respectively. In the model of lnKD, the top five descriptors occupied 67.2% of the 

descriptor weight, among which PEOE_RPC- (#144) and PEOE_PC+ (#141) are 

descriptors related to partial charge, b_1rotR (#45) and b_rotR (#50) both describe 

molecular flexibility, and GCUT_PEOE_2 (#92) is a hybrid descriptor recording charge 

information derived from a graphic representation of the molecule (Table 3).  

 

Table 3 Top 5 descriptors from lnKD model and their physical meanings 

 

Through discerning these five descriptors’ coefficients (Table 3) from lnKD model, the 

following directions were proposed to discover more high-affinity ligands: 

1. Increase PEOE_RPC- values since its coefficient is negative. We could increase the 

ratio of the smallest negative charge to the total negative charge in a molecule. This 

interpretation indicated that to favor binding, the partial negative charge in a molecule 

should be concentrated at discrete positions rather than distributed dispersedly. One 

interpretation is that a dispersed partial negative charge inhibits binding via 

electrostatic repulsion with the RNA backbone while discrete negative charges can be 

accommodated or even be beneficial through metal coordination or hydrogen bonding.  

GCUT_PEOE_2, an adjacency and distance matrix descriptor related to partial 

charges, also supports an important role for partial charge distribution on apparent 

binding, though not as directionally as PEOE_RPC-. 

 

1. b_1rotR (#45) and b_rotR (#50) both relate to molecular flexibility. Although they have 

opposite signs, if we dissect the detailed equation (Figure S3), structural differences 

Descriptor ID Coefficients Physical meaning 

#144: PEOE_RPC- -1.76 
Relative negative partial charge:  the smallest negative charge 

divided by the sum of the negative charge 

#45: b_1rotR -0.65 Fraction of rotatable single bonds: b_1rotN divided by b_heavy. 

#50: b_rotR 0.61 Fraction of rotatable bonds: b_rotN divided by b_heavy 

#92: GCUT_PEOE_2 -0.52 
Calculated from the eigenvalues of a modified graph distance 

adjacency matrix 

#141: PEOE_PC+ -0.39 Total positive charge 
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can be interpreted. Specifically, the ratio of the conjugated single bonds, i.e. single 

bonds connected to atoms in double bonds, relative to total bonds between heavy 

(non-hydrogen) atoms should be decreased. Groups such as esters or amides tend 

to increase the ratio of conjugated single bonds, as do aromatic rings with attached 

sp3-hybridized atoms. In our case, the percentage of guanine or amidine groups 

relative to the rest of the molecule should be kept low. This is consistent with our 

observations that most of the strong ligands, such as aminoglycosides, DPFs and dye 

molecules, are characterized by a lower ratio of these functionalities than weak 

binders, namely DMAs (see the detailed ratio of conjugated single bonds for each 

compound in Figure S4). DMAs have fewer total heavy bonds but multiple single 

bonds adjacent to double bonds, including in the acylguanidine substituent and the 

exhaustive substitution of the pyrazine ring. 

 

3. Increase the molecules total positive charge as is indicated by the negative 

coefficient of PEOE_PC+ descriptor. Unsurprisingly given the negatively charged RNA 

backbone, the total positive charge can significantly impact affinity. For instance, 

aminoglycosides are characterized by a high PEOE_PC+ values, gaining moderate to 

high affinity even though they have low PEOE_RPC- values. 

 

In the model of lnkon, we found that two descriptors predominated: b_1rotR (#45) and 

b_rotR (#50), which totaled 91.2% of the whole weight. Similarly, as to lnKD, the signs of 

the two descriptors are opposite, even though there is overlap in the associated physical 

properties. The detailed dissection of these two terms could afford a similar but more 

decisive conclusion when compared to the lnKD model: to increase the association rate 

constant, the ratio of the conjugated single bonds to bonds between heavy atoms should 

be decreased. This finding might suggest a novel strategy for improving RNA-ligand 

association kinetics via rational structural design, which is different from a previous report 

that utilized the electrostatic anchor.22 Combined results from the descriptor analysis of 

lnKD and lnkon reveals that molecular flexibility has an impact on the RNA recognition 

mostly via the effect on the association process, also suggesting a quantitative direction 

for ligand optimization using this model.  
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In contrast, the descriptor importance of the RF model could be extracted by permuting 

out-of-bag observations among the trees.61 This approach assumes that if the prediction 

is highly dependent on a specific descriptor, then by shuffling the values of that descriptor, 

the prediction error will increase significantly. Via descriptor permutation, we generated 

the descriptor importance for lnKD and lnkon from RF models (Figure 6c and 6d). This 

analysis revealed that almost all of descriptors had contributions to the model, with 

multiple descriptors having similar impact on the model prediction. Therefore, less 

information could be derived to enable rational design of new small molecule structures 

when compared to the ensemble model. 

 

Model interpretation is as important as model performance since it provides directions of 

how to improve for small molecules. Even though the RF model showed excellent 

precision on the data fitting and prediction, the non-trivial model interpretation limits its 

practical use, especially on structure design. In contrast, the ensemble model equipped 

us with lens to investigate molecular factors having quantitative impact on binding. 

Informed by the physiochemical meaning of the decisive descriptors, ligand and library 

synthesis decisions can be rationally guided. 
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Figure 6. Descriptor weight for (a) lnKD model and (b) lnkon model calculated from equation coefficients. Data label 
were created for top 5 descriptors in lnKD and top 2 descriptors in lnkon, respectively. Descriptor importance was 

calculated for (c) lnKD and (d) lnkon from RF models by permutation tests. 

 

6. Surfing the structure-activity landscape  

The structure-activity landscape integrates structural similarity and activity function 

relationships between compounds, revealing QSAR continuity regions where activity 

function changes gradually with structures as well as discontinuity regions where small 

changes in chemical structure lead to significant changes in activity.51 Since the 

compounds involved in the QSAR study were diverse,  the surface of the structure-activity 

landscape would be expected to be rugged and deviate from the continuous region of 

QSAR. To investigate how a superficially rugged structure-activity landscape was able to 

afford models with high R2, we first calculated the structure-activity landscape index 

(SALI) as:  
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where A represents the potency or activity function of the compound (i.e. lnKD or lnkon), 

and sim(i,j) is the similarity coefficient between two compounds.62 The SALI matrix could 

easily reveal “activity cliffs” in the landscape where highly similar compounds show 

compelling difference in activities. In the SALI calculation, it is worth noting that the choice 

of the molecular descriptors in the similarity calculation has been identified to impact the 

results more than the choice of the similarity metric.62 Therefore, in our calculations, we 

consistently used Tanimoto coefficients63 as the similarity metric but changed the 

descriptor set during calculation to compare the output.   

 

We first mapped out the similarity matrix using the full 304-descriptor set, i.e. without input 

from the modeling, and ranked the index based on lnKD and lnkon, respectively (Figure 

7a and Figure S5a). The similarity heat map was consistent with the most prominent 

similarity existing within scaffolds, including aminoglycosides, DPFs and DMAs. In 

contrast, low similarity was identified from scaffold to scaffold. Nucleic acid dyes also 

share low similarity scores between each other, probably due to their diverse structural 

features.  Using these similarity matrices, the corresponding SALI matrices were 

generated to visualize the potential “activity cliffs”. The resulting heat maps (Figure 7a 

and Figure S5b) indicated that most of the potency differences observed in lnKD and lnkon 

could be smoothly explained by the variation in descriptors, even though different 

scaffolds co-existed in one dataset. More explicitly, the structurally dissimilar compounds 

in the dataset were also characterized with dissimilar binding behaviors, thus providing a 

path to construct the QSAR model along which the descriptor spaces are proportional. 

Despite most of the continuous landscape, a few sporadic “activity cliffs” were found 

within a scaffold, for example Neomycin B and Paromomycin in lnKD along with DCC-3u 

and DCC-3k in lnkon. These “activity cliffs” might be the cause of the unexplained residuals 

in our model, which are important for avoiding overfitting and maintaining the needed 

precision balance for external generalization.  

 

𝑆𝐴𝐿𝐼𝑖,𝑗 =
|𝐴𝑖 − 𝐴𝑗|

1 − 𝑠𝑖𝑚(𝑖, 𝑗)
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The similarity matrices calculated on full descriptors are a good indicator for “dataset 

modelability” before model construction.64 At the post-modeling stage, to investigate how 

completed models encoded for the compound activities, we shrunk the descriptor space 

to only descriptors that described the final models, namely a set of 49 descriptors for lnKD 

and 67 descriptors for lnkon. The overall similarity scores were increased as expected, 

leading to an overall increase of the SALI index as indicated by the scale bar (Figure 7b 

and Figure S5c). Nevertheless, the pattern of the SALI matrices remained (Figure 7b 

and Figure S5d), where most of the compound potency changed smoothly as the 

structural features changed. The use of more specified descriptor space enhanced the 

index for identifying “activity cliffs”, revealing unexplored pairs that might be an initiation 

of activity optimization. However, the “activity cliffs” might also arise from extremely 

similar compounds (e.g. DPF m1 and DPF p1) that, due to the high similarity value, might 

be the false “activity cliffs”. Indeed, most of the “activity cliffs” found above are between 

similar congeners. In the future, omitting highly similar pairs will further improve the 

suitability for SALI analysis on QSAR. 

 

In summary, the employment of SALI revealed good modelability of our dataset, as well 

as few observed “activity cliffs” that would translate into unpredictable residuals in final 

models. The existence of the “activity cliffs” could be double-edged, however, as it 

deviates the model from the continuous region but also could be the starting point for 

design of a new scaffold complemented by the “mechanism hopping”.65 
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Figure 7. (a) Similarity and SALI heatmap calculated from full 304 descriptors, ranked by lnKD, prominent “activity cliffs” 
were highlighted by red boxes (b) Similarity and SALI heatmap calculated from 49 descriptors used in ensemble lnKD 
model, ranked by lnKD., prominent “activity cliffs” were highlighted by red boxes. 

 

  

 

Conclusion 

Discovery of novel RNA-targeted chemical probes is pivotal for connecting basic 

understanding of RNA regulation in biology and its potential therapeutic application. 

Numerous ncRNAs as potential drug targets are emerging following the RNA revolution. 

However, difficulties in obtaining accurate 3D structures and conformational landscape 

for a given RNA hinders efficiency of rational design of the RNA-targeted ligand from a 

structure-based approach. Additionally, lack of appreciation of binding kinetics in hit 

discovery compromised an alternative path towards ligand optimization via kinetic 

selectivity. Consequently, a novel method that can bypass the structural information and 

comprehensively evaluate binding parameters, from affinities to kinetics, is greatly 

needed. Benefiting from the era of Big Data and well-developed algorithms for multiple 

machine learning tasks, we developed a strategy for computation-aided compound 

design. Specifically, a systematic QSAR workflow for RNA ligand discovery was built 

using HIV-1 TAR as a model system to demonstrate the potential application of this 

method on a broad scope of ligands. To the best of our knowledge, this is the first time 

that 2D-QSAR has been used to predict binding parameters of RNA-targeted ligands 

beyond explaining the observed data and also the first time that ensemble learning has 
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been applied to linear regression to ensure a precise and interpretable model with a large 

number of variables. 

 

By applying an ensemble learning strategy, we trained models from 40 diverse small 

molecules as the basis of our understanding of RNA ligand chemical space. The trained 

models afforded satisfactory explanations for both binding affinities and kinetics data from 

SPR. The subsequent external validation of eight previously untested compounds 

revealed similar precision as compared to the well-established random forest algorithm, 

supporting the power of our ensemble models to inform compound design. Notably, our 

model was able to accurately predict the affinity and kon of three untested small molecules 

synthesized from a distinct scaffold not present in the training set, underscoring the 

breadth of application of the method to a diverse small molecule library.  The detailed 

analysis of the descriptor space highlighted by the best models revealed important roles 

of molecular flexibility and potential charge, both localized and general, in RNA 

recognition of small molecules. Moreover, the ensemble model provided information on 

the modification of these descriptors to better aid molecular design and lead optimization 

based on the coefficients in the model equations. Further investigation on the structure-

activity landscape suggested a wide range of smoothly transited regions where 

compound potency could be modeled via gradual changes in structural features.  

 

We anticipate that the method applied here will be an efficient tool in hit identification and 

lead optimization for a wide range of specific RNA targets.  The knowledge gained from 

known ligands during training can now be efficiently transformed into quantitative models 

for generalization, i.e. prediction of binding affinity and kinetics. Additionally, this proof-of-

concept study could be feasibly extended to other biomacromolecules targets with little 

structural characterization, including other ncRNAs and proteins. Various parameters 

could be investigated as well, such as binding entropy and enthalpy. We anticipate the 

workflow set forth here to significantly facilitate rational decision-making in medicinal 

chemistry, overcoming one of the current bottlenecks in RNA-targeted small molecule 

development. 
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