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ABSTRACT: Modern polymer science is plagued by the curse of multidimensionality; the large 

chemical space imposed by including combinations of monomers into a statistical copolymer 

overwhelms polymer synthesis and characterization technology and limits the ability to 

systematically study structure–property relationships. To tackle this challenge in the context of 19F 

MRI agents, we pursued a computer-guided materials discovery approach that combines 

synergistic innovations in automated flow synthesis and machine learning (ML) method 

development. A software controlled, continuous polymer synthesis platform was developed to 

enable iterative experimental–computational cycles that resulted in the synthesis of 397 unique 

copolymer compositions within a six-variable compositional space. The non-intuitive design 

criteria identified by ML, which was accomplished by exploring less than 0.9% of overall 

compositional space, upended conventional wisdom in the design of 19F MRI agents and lead to 

the identification of >10 copolymer compositions that outperformed state-of-the-art materials. 



INTRODUCTION: 

 Next-generation challenges in soft materials will require the discovery of polymers that 

perform multiple functions simultaneously. Copolymerization, where two or more building blocks 

are included in a single material, is an effective strategy to achieve differentiated properties.1 The 

inclusion of multiple unique building blocks into a copolymer, however, often has interdependent 

effects on reactivity, structure, and properties, making a priori prediction of material function for 

complex copolymers challenging.2 Additionally, traditional synthetic technology in polymer 

science is iterative, labor-intensive, capricious, and low throughput, making rapid 

experimentation, purification, and analysis impractical.3 Polymer science remains plagued, 

therefore, by the “curse of multidimensionality”, where even simple combinations of monomeric 

building blocks lead to a high-dimensional chemical space that is too vast to explore without 

implementing limiting assumptions.     

 Computer-guided materials discovery has been shown to be an effective approach to detect 

meaningful patterns in datasets of high dimensionality; thus, allowing the prediction of structure–

function relationships while only requiring a small percentage of the chemical space to be 

experimentally explored.4 One such approach is the use of computer simulations to define 

molecular structure–property relationships and target specific polymer compositions.5 However, 

human intuition defines the inputs of these computational models, which restricts the diversity of 

the dataset due to inherent biases or limitations in knowledge. Furthermore, computational and 

experimental cycles are often physically and temporally separated, which slows the speed of 

chemical structure optimization to achieve desired performance.  

The use of Artificial Intelligence (AI) for computer-guided materials discovery is an 

alternative approach that holds the promise to dramatically accelerate the optimization of polymer 



structure–property relationships, with the opportunity to close the loop between computational and 

experimental components of the materials discovery pipeline.6,7 Recent advances in both 

automated synthetic platforms and machine learning (ML) methods development have enabled 

experimental systems that provide high quality training data to improve ML models and, at times, 

are driven by ML recommendations in the areas of small molecule synthesis8–16 and nanomaterial 

synthesis17–22. In a recent example, the Doyle group demonstrated a Bayesian optimization 

platform that allows chemists to iterate between experimentation and ML within their standard 

synthetic workflows, thus providing open-source tools to increase the efficiency of chemical 

synthesis.23  

Despite impressive advances using ML for small molecule and nanomaterial synthesis, the 

integration of synthesis, characterization and ML in polymer science has lagged behind.24–28 A 

critical challenge is sourcing high quality experimental data to train predictive ML models, which 

often requires a combination of high-throughput synthesis, purification, and characterization 

methods that remain underdeveloped in polymer chemistry.29,30 As an added challenge, the field 

of polymer science lacks a standardized data schema for reporting polymer structure and properties 

that contextualize the underlying measurement and its output.31–33 Applications of ML in polymer 

science, therefore, have mostly been isolated to a small subset of commonly reported properties34–

36 or relied on legacy data collected within a single research group.37–39 In a seminal report, 

Pruksawan et al. demonstrated the utility of synthesis and property evaluation of 42 epoxy 

adhesive samples and employed ML to generate a predictive model that accurately described the 

performance of 256 possible formulations.40 In complementary work, Reineke and coworkers 

made a multiparametric library of 43 copolymers to serve as gene-delivery vectors,30 and 

separately Appel and coworkers synthesized a combinatorial library of 172 acrylamide hydrogels 



as anti-biofouling coatings.29 Both groups used random forest classifiers to identify non-intuitive 

descriptors that led to high performance. In these examples, however, the reliance on labor-

intensive batch synthesis or formulation, the need to probe a large percentage (>15%) of the 

compositional space to optimize an accurate model, and the lack of iterative experimental–

computational cycles limit the translation of this approach to more complex problems in high-

dimensional copolymer compositional space. 

 We identified the discovery of high contrast 19F MRI agents as a challenge in need of a 

ML-driven discovery approach. 19F MRI is a high contrast biomedical imaging modality with the 

potential to track cellular transport and quantitate oxygenation with spatiotemporal resolution.41–

45 Synthetic polymers represent attractive 19F MRI agents due to their potential for multivalent 

displays of 19F atoms and their synthetic modularity. Despite decades of effort reporting hundreds 

of copolymer 19F MRI agents, challenges persist to develop 19F MRI agents that are both water 

soluble and contain enough fluorine nuclei to be visualized on clinical 3 Tesla (T) MRI scanners.46  

Herein, we developed automated tools to interface copolymer synthesis and 

characterization with ML, which enabled iterative feedback through numerous experimental–

computational cycles. The nuanced structure–property trends uncovered through this ML-guided 

materials discovery approach upended the dogma that 19F solution concentration is directly related 

to signal intensity in 19F MRI measurement and proposed non-intuitive design elements that are 

critical to consider for next-generation 19F MRI agents. This combination of continuous flow 

chemistry and ML represents a powerful approach to tackle high-dimensional challenges in 

polymer science where the large number of interdependent variables makes structure–property 

relationships difficult to predict or model. 

 



 

Results and Discussion 

Development of ML Approach  

Given the limited initial 19F MRI dataset available to build a predictive ML model, we 

envisioned developing a platform that iterates between computational (i.e. software) and 

experimental (i.e. hardware) components to efficiently screen for high performing 19F MRI agents 

(Figure 1). The choice of a computational approach proved to be challenging due to the conflicting 

performance criteria inherent to copolymers used as 19F MRI agents. The necessity for an imaging 

agent to possess a high density of hydrophobic fluorinated comonomers while also remaining 

water soluble demands the optimization of multiple objectives simultaneously along a tradeoff 

curve, otherwise known as a Pareto front.47  

 

Figure 1. The active-learning-guided discovery of copolymer 19F MRI agents relies on rapid 

feedback between computational and experimental nodes.  

 



The capability to iterate between experiments and ML allowed us to leverage active 

learning (AL) for multi-objective optimization.48 AL is a semi-supervised form of ML where the 

algorithm efficiently explores chemical space by selecting maximally informative materials to 

evaluate through experimentation (i.e. exploration) or more narrowly identifies high performing 

compositions (i.e. exploitation).48 Our attempt to implement AL, however, exposed a weakness in 

the ML pipeline; almost all ML models are designed and tuned by hand, and there is no single ML 

model that works for all applications. Typically, a manuscript will report only the successful 

application of a particular method, but tuning these methods to a particular application inherently 

introduces model and sample selection biases. This leads to researchers selecting suboptimal 

models or investing a significant amount of time into model tuning for a particular application.   

We hypothesized that an automated ML (AutoML) approach would streamline model 

development and allow a non-expert to search for a high-quality ML model independently.49 A 

variety of approaches to AutoML have been developed recently that involve selecting an optimal 

ML algorithm, preprocessing input features, and selecting hyperparameters, including an 

extension of the scikit-learn library with meta-learning and ensemble construction50 and the use of 

genetic algorithms in the TPOT library.51 Our AutoML composite approach screens several 

validated ML learning methods including Gaussian Process, Random Forest, Linear and Logistic 

Regression, as implemented in scikit-learn,52 XGBoost,53 and NGBoost.54 Here we consider only 

the supervised learning setting. The models used are limited to fixed-length vectorial 

representations of the polymer composition and analytical characterization data (See SI for a 

technical description). 

The overall design of AutoML was expressed as a black-box optimization problem to 

optimize two objectives simultaneously. In such an AutoML workflow, the user provides data, 



then the AutoML library autonomously samples aforementioned methods, selects the optimal ML 

model parameters for the dataset, and makes decisions about subsequent exploratory or 

exploitative experiments in real time. Overall, the automated ML cycle consists of four steps that 

can operate in a closed-loop fashion with the appropriate synthetic hardware: i) train a proxy 

AutoML model to optimize for a given set of objectives on an initial dataset; ii) use the model 

selected by AutoML to virtually screen the copolymer compositional space; iii) select a subset of 

copolymer compositions that would increase accuracy of the model; and iv) perform synthesis and 

experimental measurement of selected polymers and use this data to update the ML model(s).  

 

Design and Implementation of Automated Continuous Flow Copolymer Synthesis  

We identified continuous-flow chemistry as an ideal experimental platform for the iterative 

synthesis of novel copolymer materials due to its ease of automation, reproducible control of 

reaction conditions, potential for closed looped optimization between synthesis and analysis, and 

simple translation to manufacturing scales.55–62 A majority of previously reported high throughput 

copolymer synthesis systems polymerize one sample at a time and, thus, require extremely short 

reaction times to achieve a high sample throughput. For example, Hedrick and coworkers 

developed a flow reactor capable of synthesizing 100 unique block copolymers in 8 minutes, but 

the technology relied on ring-opening polymerizations with reaction times of <1 second.63 

Unfortunately, the controlled radical polymerization techniques traditionally employed to make 

copolymer 19F MRI agents suffer from reaction kinetics that are orders of magnitude slower than 

this example,45,64 which required the design of a novel high-throughput flow reactor.  

To combat the challenge of slow copolymerization kinetics, we designed a more general 

flow platform capable of polymerizing multiple samples simultaneously. We identified droplet 



flow as an enabling approach to achieving high sample throughput regardless of polymerization 

kinetics. Droplet-based flow systems manipulate discrete volumes of reaction mixtures that are 

separated by an immiscible inert fluid.56,65–67 As our lab demonstrated previously, polymerization 

in droplets reduces the residence time distribution and improves control of polymer composition, 

molar mass (Mn), and dispersity.61 For this application, nitrogen gas was used as the immiscible 

fluid between large reaction droplets, or slugs. A custom liquid handler was fabricated that allowed 

precise formulations to be loaded into a sample loop before being injected into the heated reactor. 

Through experimentation we discovered that a wash slug of DMF was required between sequential 

reaction slugs to prevent cross-contamination.  A simplified schematic of the flow reactor is shown 

in Figure 2 and a more detailed version is described in the supplementary information (Figure S5). 

 

Figure 2. Automated continuous-flow reactor development. (A) Simplified reactor schematic. (B) 

Droplet-flow reactor. (C) Rapid prototyping enabled by 3-D printed hardware and a modular 

electronics platform. (D) Demonstration of droplet technology using colored dyes, videos found 

in supplementary information. 

 



To create a modular platform that could access a broad compositional space in a user-

friendly fashion, the reagent selection, comonomer formulation, slug injection sequence, and 

sample collection were fully automated using custom hardware and software (See supplementary 

videos for visualization). An Arduino microcontroller was chosen as the electronics platform to 

control the flow system, and integration of all individual components with LabVIEW software 

allowed full automation of complex reaction sequences. The use of readily accessible electronics 

and 3-D printed parts allowed for the rapid design and prototyping of hardware components 

optimized for high throughput copolymer synthesis. The custom liquid handler enabled the 

efficient and precise formulation of reaction slugs containing radical initiators, up to six different 

comonomers, and a compatible RAFT chain transfer agent. To achieve droplet-flow, each 300 µL 

reaction slug is confined on both sides by two nitrogen slugs and loaded into the sample loop of a 

two-position six-port switching valve. At a pre-determined point during the automated reaction 

sequence these slugs are injected into the flow stream. The heated reactor consisted of tubing 

embedded in a machined aluminum block, with a heating element and thermocouple to provide 

accurate temperature regulation. Upon exiting the reactor, samples are collected in a 30-slot sample 

collection carousal. Rotation of the carousal is triggered by a refractive index (RI) detector 

immediately upstream, which tracks the number of eluted slugs by monitoring the change in RI 

between reaction slugs and nitrogen slugs.  

The entire droplet flow system occupies a small footprint (43 cm by 46 cm by 96 cm) and 

is fully touch screen enabled to allow use by non-experts. LabVIEW software controlling the flow 

reactor is capable of extracting relevant reaction parameters from comma separated value (CSV) 

files generated by the user or the AL algorithm. The combination of these efforts afforded an easy-

to-use system capable of synthesizing a new copolymer composition every two minutes, allowing 



the synthesis of 30 unique copolymers in two hours using only 12 mL of reaction solution. The 

typical workflow for synthesis, purification, and analysis was optimized to evaluate batches of 30 

unique 19F MRI contrast agents. This workflow consisted of i) preparation of monomer stock 

solutions, ii) automated synthesis of copolymers in flow, iii) transfer of samples to gravity fed SEC 

columns, iv) drying of polymer containing fractions, and v) 19F NMR analysis and data work-up. 

Not including drying times, this method allowed the evaluation of 30 samples in a single 8-hour 

workday. To evaluate the reproducibility of this workflow, twenty representative compositions 

were run in triplicate and the tabulated results can be found in table S4. The accumulative errors 

across all steps of the workflow resulted in a modest average standard deviation of four SNR units 

across the studied copolymer samples. Additionally, the automated and modular flow platform 

described herein will enable simple expansion to accommodate new chemistries and reaction 

sequences.  

 

Synthesis and Characterization of Copolymer 19F MRI agents 

The inherent tension between having a high density of hydrophobic fluorine atoms while 

maintaining water solubility for 19F MRI agents has been solved in previous literature through the 

statistical copolymerization of partially fluorinated monomers such as trifluoroethyl acrylate 

(TFEA) with hydrophilic monomers such as poly(ethylene-glycol) acrylate (PEGA) to afford 19F 

MRI agents with moderate sensitivity.64,68–77 These copolymers provided adequate materials for 

pre-clinical studies on high-resolution spectrometers, but did not demonstrate the required 

sensitivity to be used on 3 T clinical-strength MRI instruments at realistic concentrations. Previous 

work has identified that a number of different hydrophilic and partially fluorinated comonomers 

can improve 19F MRI sensitivity in isolated examples, but an understanding of how polymer 



composition relates to material performance is lacking.64,69,73–77 When attempting to data-mine 

literature examples of 19F MRI agents to apply ML methods, we encountered challenges 

standardizing the signal-to-noise ratio for 19F MRI agents across studies due to differences in 

magnetic field strength, pulse sequence, reagent concentration, and reporting procedure. 

In order to significantly advance the state-of-the-art, we hypothesized that a systematic 

evaluation of the most promising fluorinated and solubilizing comonomers would provide a more 

comprehensive understanding of the structure–property relationships that dictate the performance 

of 19F MRI agents (Figure 3A). The partially fluorinated acrylic comonomers chosen include 

TFEA as well as the more densely fluorinated hexafluorooxy-ethylacrylate and nonafluorooxy-

ethylacrylate (HexaFOEA and NonaFOEA, respectively). The water solubilizing acrylic 

comonomers include PEGA as well as 2-(methylsulfiyl)ethyl acrylate and hydroxyethyl acrylate 

(MSEA and HEA, respectively).  

Copolymerization using thermally initiated reversible addition-fragmentation chain-transfer 

(RAFT) was selected due to its tolerance of diverse functionality as well as its ability to provide 

control over the copolymer molar mass (Mn) and dispersity (Đ). A similar degree of polymerization 

(DP) was targeted for each copolymer 19F MRI agent to decrease the potential for chain-length 

effects to influence material performance. A common challenge for high-throughput radical 

polymerization is the need to rigorously remove oxygen from each sample and, thus, limit batch 

to batch variability.78–98,99–105 We took inspiration from the “polymerizing through” approach106–

110 to oxygen-tolerant RAFT polymerization where a large flux of radicals is introduced at the start 

of the reaction to consume dissolved oxygen, and a smaller and consistent radical flux 

subsequently provides controlled polymerization. A high radical flux was achieved through the 

addition of a low concentration of V-70, an azo radical initiator with a short half-life at the reaction 



temperatures, in addition to the more typical radical initiator AIBN (See SI for detailed 

copolymerization methodology).  

Following copolymer synthesis, we recognized that copolymer purification presented a 

potential bottleneck to the exploration of large compositional space. Precipitation was not broadly 

applicable because copolymers of different compositions possessed different solubilities, and 

dialysis was impractical in a high-throughput fashion. A purification procedure using aqueous SEC 

gravity desalting columns proved to be ideal.111 The workflow included taking polymer samples 

directly from the reaction and eluting them with a known amount of deionized water through the 

SEC column. This approach allowed for multiple polymers to be purified in parallel and excluded 

water insoluble copolymers that precipitated within the resin. 

The figure-of-merit chosen to evaluate the performance of multicomponent polymers as 19F 

MRI agents was the signal-to-noise (SNR) ratio taken from 1D 19F experiments on a 400 MHz 

NMR. These SNR values for 19F NMR correlate with 19F MRI sensitivity, with small variations 

that result from differences in pulse sequences and probe design.112 Copolymer samples were 

diluted with phosphate buffered saline (PBS) solution/D2O (90:10, v/v) at a concentration of 20 

mg/mL. Each copolymer composition exhibited unique 19F resonances resulting from a 

combination of factors that include copolymer composition and copolymer solution conformation 

(Figure 3B). The unique chemical environment resulting from the copolymer solution structure 

influences 19F chemical shift values (δ) and spin-lattice relaxation times (T1), with shorter 19F T1 

increasing the signal-intensity observed during T1-weighted MRI sequences. Furthermore, 

polymers with high fluorinated comonomer content demonstrate significant peak broadening as a 

result of short spin-spin relaxation (T2). The interdependent properties that contribute to the SNR 



value of multicomponent copolymers, therefore, are difficult to predict a priori and require 

experimental validation.  

 

 

Figure 3. Synthesis of multicomponent copolymers as 19F MRI agents. (A) Six comonomers were 

chosen to synthesize statistical copolymers while balancing 19F content and water solubility; (B) 

The 19F NMR spectra of 30 representative copolymers demonstrating the diversity of resonances 

arising from different copolymer compositions.  

 

Implementation of ML-guided Discovery of Champion 19F MRI Agents 

While the six comonomers in Figure 2A established the compositional space for 

exploration, we sought to establish a number of boundary conditions to define the specific 

copolymer structures for synthesis and evaluation. First, the individual comonomer compositions 

would change by increments of 5%. Smaller shifts in composition were at the limit of our liquid 



handling technology. Second, the comonomers and CTA chosen produced only linear polymers, 

thus removing the potential for polymer topology to influence performance. Third, all 

polymerizations were assumed to be statistical, with the initial comonomer stoichiometry being 

the assumed stoichiometry incorporated into the polymer. Given these boundary conditions, the 

experimental exploration of six unique monomers revealed 47,854 possible copolymer 

compositions to explore. At every batch the AutoML algorithm selected optimal features from a 

range of representations, which includes a vector of monomer fractions of length 6 for each 

composition (one-hot encoding; the sum of all 6 fractions of polymer composition equals 1 for 

each composition), fraction of fluorine, and various constitutional descriptors from RDKit (See SI 

for a technical description). 

Typical ML approaches require a large portion of the overall chemical space to be explored 

(>5%) before converging onto an accurate model, which in our case would have required the 

synthesis of an impractical number (>2200) of individual copolymers. We hypothesized, since 

polymer composition is a continuous variable whose boundary conditions can be adjusted, that a 

hierarchical sampling of compositional space would be a more efficient approach. Therefore, 

initial screening focused on a coarse compositional space where individual comonomer 

compositions could only change in 10% intervals, shrinking the explorable compositional space 

from 47,854 to 2,486 possible copolymer combinations. We hypothesized that this would allow 

model development with a smaller library of initial data points, and, as model performance 

improved, a switch to the larger compositional space of 47,854 potential copolymers with a 5% 

change in comonomer composition (fine compositional space) would be feasible. Furthermore, we 

required an approach that not only predicted SNR for 19F MRI, but also overlaid that model with 



one that predicted the water solubility. Therefore, both properties are used for multi-objective 

optimization. 

Our AL experiments were initialized from data containing 157 copolymers compositions, 

which represents 6.3% of the course compositional space. This initial dataset was gathered from 

materials made previously in our lab45, which targeted high performing imaging agents, as well as 

samples made during instrument optimization (Figure 4A). To simultaneously optimize for water-

solubility and SNR, we used two separate ML models; the first was a classification model that 

predicted whether or not a sample would be water soluble, and the second was a regression model 

that predicted 19F NMR SNR values. To balance exploration and exploitation we used spherical 

exclusion clustering113 to reduce the number of candidate compositions to an experimental batch 

size of 30 while ensuring reasonable composition diversity. After running the system for two AL 

cycles, the mean absolute error (MAE) decreased to below eight SNR units and stabilized. Given 

the increasingly accurate model performance in the coarse compositional space, we sought to 

exploit the model to select high performing materials in the larger compositional space of 47,854 

potential copolymers (Figure 4, batch 3). This initial effort, which included data from only 0.45% 

of the fine compositional space, led to an experimental batch of 30 copolymers that were all 

insoluble in water. 



 

Figure 4. (A) Data acquisition and ML model performance throughout the AL steps. The top panel 

shows the MAE error for 19F SNR ML models; confidence intervals are obtained through 10 

shuffle splits. The bottom panel show actual data points and corresponding box plots for the data 

distribution. The insoluble materials are depicted as gray points at the bottom, and the total number 

of molecules per batch is equal to 30 in batches 1-8. The experiments using the coarse 

compositional space (10% step) are highlighted in purple and fine compositional space (5% step) 

are white. The batches run targeting exploitation are colored in pink. (B) Uniform manifold 



approximation and projection (UMAP) of representative batches. Colored circles represent water 

soluble structures experimentally validated and grey circles represent insoluble samples. 

 

As evidenced by the poor performance of batch 3, moving from a course (10% interval) to 

a fine (5% interval) compositional space required more experimental data points. For batch 4 we 

synthesized 30 copolymers to target exploration of the fine compositional space. The SNR 

predictions remained quite accurate, but the multi-objective optimization that included solubility 

required a significant number of experimental results to converge. As shown in Figure 4A, batch 

3 and batch 4 resulted in the synthesis of many insoluble samples as the algorithm worked to define 

solubility parameters. Three additional rounds of exploration (batches 5–7) improved predictive 

power and resulted in an AL model that could accurately predict the SNR values of soluble 

copolymers with a mean absolute error of < 7 SNR units. Given the experimental error of the 

automated synthesis system is 4 SNR units, the model reached a high value of accuracy. A 

selection of the samples identified by the algorithm in each batch and experimentally produced by 

the flow system is shown in Figure 4B (full representation in Figure S2). 

  To study the influence of molecular weight on copolymer 19F MRI performance, a large 

subset of the data was analyzed by size exclusion chromatography (SEC) and polymer Mn and Đ 

were calculated. The Mn values were used as an input for the ML model (Figure S6), but no 

statistically significant effect on predicting material performance was identified. Given that all 

polymerizations targeted the same DP, the modest differences in Mn did not influence polymer 19F 

MRI agent sensitivity. 

Providing the increasingly accurate model predictions, we initiated an exploitation AL 

cycle by having the model greedily select 19F MRI agents with potentially high performance (batch 



8). The batch of 30 samples included 15 copolymers with an SNR over 80 and two that exceeded 

the values of the highest performing copolymers reported in our previous study. The batch also 

included 11 samples that were insoluble, which represented a significant improvement over the 

attempt at exploitation prior to model development in the larger compositional space. Overall, this 

hierarchical AL model development workflow produced a robust model to predict the structure–

performance relationships of 47,854 potential copolymer 19F MRI agents while experimentally 

exploring < 0.9% of compositional space (397 copolymers).  

 

Analysis of Compositional Space and Structure–Property–Performance relationships

 The central dogma in this field is that copolymers with higher 19F content have higher SNR in 

19F MRI experiments.45,64,74,76,77 Considering the three partially fluorinated monomers chosen for 

this study (Figure 2A), and our previous observations45, we hypothesized that copolymers made 

with NonaFOEA would have the highest sensitivity given NonaFOEA has the highest weight 

percent (wt%) 19F. The parallel coordinate diagram in Figure 5A collects data for copolymer 

composition, wt% 19F, and SNR for each copolymer produced in this study. Initial evaluation of 

this data demonstrated an unexpected but clear discontinuity between wt% 19F and SNR. To 

describe these effects in more detail, comparing a few representative copolymers is instructive. 

Copolymer 1, which was identified by the ML model during the AL exploitation step (batch 8), 

represents the highest performing copolymer (SNR of 111). The sample, along with >80% of the 

samples that achieved an SNR > 100, had HexaFOEA as the fluorine-containing comonomer. 

Copolymer 1 contained only 21.6 wt% fluorine yet outperformed the dozens of copolymer samples 

that contained higher fluorine density. Copolymer 1 also contained more than one solubilizing 



comonomer, which is a trend we observed for most high performing copolymers and has not been 

demonstrated in previous studies.  

 

 

Figure 5. Visualization of experimental 19F compositional space; (A) Parallel coordinate diagram 

of the 397 samples that describes copolymer composition and performance, with six representative 

compositions colored and shown in table format. (B) UMAP projection of the copolymer 

compositional space with 19F SNR ML prediction color coded. Circled samples represent water 

soluble structures experimentally validated. (C) UMAP projection of the copolymer compositional 

space with the major comonomer component color coded. Circled samples represent water soluble 



structures experimentally validated. (D) Plot demonstrating the relationship between the wt% 19F 

in soluble copolymers and the 19F NMR SNR. 

 

 Comparing 1 to other copolymers provides comparative structure–property information. 

Copolymer 2 was synthesized in batch 0 and contains approximately the same wt% fluorine at 1, 

but the use of NonaFOEA instead of HexaFOEA and lack of solubilizing monomers beyond PEGA 

results in a lower SNR of 100. Copolymers 3 and 4 both have higher wt% fluorine than 1, but the 

higher fluorine density is the result of a combination of partially fluorinated monomers in the 

copolymers, which limits the SNR of any one 19F resonance. Lastly, copolymer 5 demonstrates 

the limitations of TFEA to achieve high SNR despite its high mol% incorporation.  

 Figure 5B shows a two-dimensional UMAP of the complete compositional space of all possible 

copolymers.114 UMAP estimates a topology of the high-dimensional data and uses this information 

to construct a low-dimensional representation that preserves relationships present in the data. The 

computationally derived SNR values are represented by the color gradient in the image, while the 

soluble copolymers samples that were produced experimentally are represented as circular icons 

(UMAP including soluble and insoluble samples in Figure S3). Most striking in this image are the 

many disconnected “islands” within the chemical space where high SNR copolymers are located. 

Considering this plot in tandem with the representation of chemical composition (Figure 5C and 

Figure S4) demonstrates that high-performing copolymers predominately contain HexaFOEA and 

NonaFOEA but identifying a pattern for the non-fluorinated comonomers that lead to high SNR is 

non-intuitive.   

 A visualization of the unexpected structure–property trends can be seen in Figure 5D. The 

occurrence of a large population of copolymers containing HexaFOEA above the expected linear 



trend between wt% 19F and SNR demonstrates its privileged selection as a fluorinated comonomer. 

Additionally, the complexity of structure–solubility relationships is evident by the many insoluble 

copolymer compositions that have the same wt% 19F as high performing materials. Regression 

analysis (Figure S11) of the soluble copolymers provides quantitative evidence of the privileged 

nature of HexaFOEA-containing copolymers. The R2 values are 0.67 and 0.39 for TFEA-

containing copolymers and HexaFOEA-containing copolymers, respectively, revealing how the 

linear relationships between wt% 19F and SNR is less evident for HexaFOEA. These results 

underscore the importance of high-throughput synthesis coupled to ML-guided materials design, 

especially for identifying materials that display non-intuitive structure–property relationships.    

 



 

Figure 6. (A) UMAP representation of copolymer compositional space with ML algorithm 

predictions for water solubility color coded. Experimentally validated samples are color coded. (B 

and C) Zoomed-in portion of the copolymer compositional space where the highest performing 

copolymers resided. Comparison of the water solubility (B) and SNR (C) models within this area 

of interest. (C) 19F MRI analysis of eight representative copolymer samples, including SNR values 

and phantom MR images. 

 

Contextualizing the ML model outputs by comparing both the SNR and solubility 

predictions reveals the complexity of identifying high-performing 19F MRI agents (Figure 6A). 

The “islands” where high SNR is predicted overlay quite closely with areas in which few 

copolymers are predicted to be soluble, which is expected due to the intrinsic relationships between 



fluorine density and hydrophobicity. A more detailed visualization in Figure 6B–C shows a zoom-

in on the western region of the chemical space, with both the SNR and water solubility prediction 

shown. The solubility prediction clearly shows the complex geography of the chemical space 

where high SNR and water solubility coincide. Without the aid of ML, discovering the ideal 

combination of comonomers to yield a soluble copolymer is this region is unlikely. We 

hypothesize that the non-intuitive relationship between polymer composition and solubility is due 

to the subtle influence that sequence and comonomer identity can have on the solution 

conformation of a flexible polymer chain, and thus the functionality present on the exterior of the 

globule that must interact with water to maintain solubility.   

Eight representative copolymers with a range of SNR values and compositions were 

selected for analysis using application-specific techniques. These included evaluation of 19F NMR 

T1 and T2 relaxation times as well as MRI imaging using a T1-weighted fast low angle shot 

(FLASH) pulse sequence115,116 (Figure 6D, Tables S2 and S3). These MRI studies confirmed a 

number of observations that the ML algorithm identified. First, copolymers that contained three or 

more comonomers generally outperformed two-component copolymers, which we hypothesize is 

a result of the difficulty for fluorinated moieties to segregate into dense phases within a 

compositionally complex polymer globule. Second, although previous work117 set a detection limit 

of 126 mM 19F for visualization on a 3 T clinical MRI scanner, we demonstrate that concentration 

of 19F alone is not an accurate predictor of 19F MRI sensitivity. For example, the highest performing 

HexaFOEA and NonaFOEA multicomponent copolymers, containing a concentration of ~240 mM 

19F and 230 mM 19F, respectively, both displayed nearly 1.4 times higher 19F MRI SNR than the 

highest sensitivity previously reported, which used NonaFOEA at a concentration of 220 mM 19F. 

Therefore, the increase in 19F MRI SNR cannot be solely attributed to an increase in the 



concentration of fluorine nuclei, and further illustrates the interdependent nature of the variables 

responsible for 19F MRI sensitivity. Lastly, both HexaFOEA and NonaFOEA copolymers reached 

a limit in achievable 19F MRI SNR at 240 mM 19F, which could represent the threshold of fluorine 

concentration before water-insolubility and detrimental 19F T2 broadening impact MRI sensitivity. 

Conclusion 

 We demonstrated an ML-guided materials discovery approach that combines synergistic 

innovations in automated flow synthesis and ML method development. Iterative feedback between 

polymer synthesis, characterization, and ML, combined with a hierarchical exploration of 

compositional space, enabled the development of an ML algorithm that accurately predicts 

structure–property relationships while only requiring <0.9 % of the compositional space (397 

copolymers) to be experimentally explored. Our approach facilitated the discovery of a number of 

copolymeric 19F MRI agents with imaging sensitivities higher than previously reported materials. 

Additionally, the trends uncovered herein have upended the dogma that 19F concentration is 

directly related to signal intensity in 19F MRI measurement. The non-intuitive material design 

elements for 19F MRI agents identified in our study, including the privileged function of 

HexaFOEA as a fluorinated comonomer, the benefits of using multiple solubilizing comonomers 

in a single imaging agent, and the observation that wt% fluorine is not directly related to SNR, are 

critical to consider in the search for next-generation 19F MRI agents.  

Materials discovery typically relies on either luck or human intuition, which both suffer 

from inherent biases and limitations in knowledge. As this study demonstrates, the continued 

integration of software-enabled high throughput polymer synthesis and ML represents a powerful 

approach to accelerate materials discovery, especially in areas of polymer science where the large 



number of interdependent variables makes structure–property relationships difficult to predict or 

model. 
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