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Abstract  12 
 13 

Heterogeneous catalytic reactions are influenced by a subtle interplay of atomic-scale factors, 14 
ranging from the catalysts’ local morphology to the presence of high adsorbate coverages. 15 
Describing such phenomena via computational models requires generation and analysis of a 16 
large space of surface atomic configurations. To address this challenge, we present the 17 
Adsorbate Chemical Environment-based Graph Convolution Neural Network (ACE-GCN), a 18 
screening workflow that can account for atomistic configurations comprising diverse 19 
adsorbates, binding locations, coordination environments, and substrate morphologies. Using 20 
this workflow, we develop catalyst surface models for two illustrative systems: (i) NO adsorbed 21 
on a Pt3Sn(111) alloy surface, of interest for nitrate electroreduction processes, where high 22 
adsorbate coverages combine with the low symmetry of the alloy substrate to produce a large 23 
configurational space, and (ii) OH* adsorbed on a stepped Pt(221) facet, of relevance to the 24 
Oxygen Reduction Reaction, wherein the presence of irregular crystal surfaces, high adsorbate 25 
coverages, and directionally-dependent adsorbate-adsorbate interactions result in the 26 
configurational complexity. In both cases, the ACE-GCN model, having trained on a fraction 27 
(~10%) of the total DFT-relaxed configurations, successfully ranks the relative stabilities of 28 
unrelaxed atomic configurations sampled from a large configurational space. This approach is 29 
expected to accelerate development of rigorous descriptions of catalyst surfaces under in-situ 30 
conditions. 31 
 32 
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Introduction  36 
 37 

Theoretical computational models have become indispensable in elucidating the 38 

intricate molecular-level details of heterogeneous catalysts.      High-throughput material 39 

screening strategies, combined with descriptor-based correlations such as scaling and 40 

Brønsted-Evan-Polanyi relationships,1–4 have played a central role in identifying 41 

promising candidates for important oxygen, nitrogen, and carbon-based chemistries. 42 

These approaches have been augmented by the recent emergence of improved 43 

computational modeling algorithms, some based on machine learning, which have made 44 

screening of diverse materials classes, such as oxides, perovskites, zeolites, and      45 

metal-organic frameworks (MOFs), possible through the facile generation of diverse 46 

materials-specific motifs, 5–10 and accelerated predictions of binding energies of reaction 47 

intermediates have further contributed to the descriptor-based catalyst screening 48 

paradigm. 6,7,11–15 These computational strategies, which iteratively improve through 49 

experience, have enabled the (re)discovery of exciting catalytic materials and chemical 50 

insights.  51 

In spite of these advances, it remains challenging to obtain atomic-scale 52 

understanding of catalyst properties under realistic reaction conditions, as 53 

heterogeneous catalytic reactions are sensitive to the atomic-scale complexities arising 54 

from adsorbate-adsorbate interactions at high adsorbate coverages, the local 55 

morphology of the catalysts, and variations in the catalysts’ surface composition induced 56 

by adsorption, among other factors. 16–22 To successfully overcome these difficulties, 57 

efficient generation and analysis of atomistic models is critical and requires development 58 



of methods that can efficiently sample the large configurational space of surface atomic 59 

configurations for diverse catalyst compositions and surface structures. 23,24 60 

Herein, we present a generalized screening workflow that seeks to address these 61 

challenges. The approach involves systematic enumeration of atomic configurations 62 

using graph-based representations. 23 The relevant chemical and geometric properties 63 

of the generated motifs are learned and mapped to the target property of choice using 64 

a machine learning model based on a graph neural network architecture, 25,26 which is 65 

termed the Adsorbate Chemical Environment-based Graph Convolution Neural Network 66 

(ACE-GCN). ACE-GCN serves as a surrogate model for expensive electronic structure 67 

optimization routines and efficiently provides estimates for the target properties of 68 

catalyst surfaces, thereby facilitating high throughput evaluation of a large space of 69 

complex active site models.  70 

The proposed workflow can systematically describe a variety of atomistic 71 

configurations comprised of diverse adsorbates, binding locations, coordination 72 

environments, and catalyst morphologies.  This flexibility is demonstrated in the context 73 

of two catalytic systems that are relevant to practical electrocatalytic applications and 74 

that represent the typical complexities encountered when developing computational 75 

models of heterogeneous catalysts. The first case treats high coverage configurations of 76 

the adsorbate NO* on a Pt3Sn(111) terrace surface, wherein a vast surface 77 

configurational space resulting from both the reduction in the catalyst surface symmetry 78 

due to alloying  27–30 and the strong binding nature of NO* yields rich catalytic behavior.  79 

This chemistry is of interest in electrocatalytic water treatment strategies, and similar 80 

complexities arise in chemistries such as Fischer-Tropsch synthesis and water-gas shift. 81 



17,31 With our proposed workflow, all high coverage NO* configurations (~3400) are 82 

analyzed by performing only a small fraction of explicit DFT calculations (~350).  In the 83 

second case, the challenge of modeling irregular or defected crystal surfaces, together 84 

with strong, directionally-dependent adsorbate-adsorbate interactions, is addressed. 85 

High coverage configurations of OH*, known to be stabilized through intermolecular 86 

hydrogen bonds (H-bonding), are analyzed on the Pt(221) stepped and Pt(100) square 87 

surfaces. These types of interactions can strongly impact the energetics of 88 

electrocatalytic reactions such as hydrogen evolution, oxygen reduction, and CO 89 

electro-oxidation. 32–35   An approach inspired by transfer learning is employed, wherein 90 

explicit DFT calculations of high coverage OH* configurations on Pt(100) terraces (~200) 91 

are combined with selected calculations of OH* on Pt(221) (~400).  Using the ACE-GCN 92 

approach, and subsequently including a modest number of additional high coverage 93 

geometries (~ 800) for incremental model improvement, a comprehensive set of high 94 

coverage OH* configurations on the Pt(221) surface (~11500) is explored to identify low 95 

energy adsorbate structures. This generalized approach shows how multiple datasets 96 

may be used to incorporate information from diverse catalyst morphologies to efficiently 97 

describe complex, low symmetry surfaces with vast configurational spaces in the ACE-98 

GCN framework. 36–38 Finally, we briefly illustrate the utility of these approaches for 99 

determining in-situ catalyst structures under realistic reaction conditions by analyzing 100 

the state of Pt(221) surface via an ab-initio Pourbaix analysis.  101 

  102 



Results and Discussion 103 

As mentioned above, prediction of catalyst structures under realistic reaction 104 

conditions requires addressing two primary sources of complexity: (i) the structural 105 

intricacies of the catalyst, stemming from variations in compositional and morphological 106 

properties, and (ii) adsorbate structures, which may involve multiple adsorbed species 107 

and directionally-dependent adsorbate-adsorbate interactions such as hydrogen 108 

bonding. Such chemical complexities yield a large phase space of possible atomic 109 

configurations, motivating development of a systematic computational framework to 110 

screen configurations with less expense than is required by exhaustive first principles 111 

analysis.   112 

Workflow and ACE-GCN Framework 113 
 114 

Figure 1(A) summarizes the proposed screening framework. The cyclic workflow 115 

is divided into four parts: (i) systematic enumeration of unique atomic configurations, (ii) 116 

(re)training the surrogate model with data of incremental complexity, (iii) accelerated 117 

screening using the surrogate model to identify the most relevant configurations 118 

amongst possible geometries, and (iv) electronic structure relaxation of selected 119 

structures, which can be used for in-depth mechanistic analysis, or to improve the 120 

surrogate model. 121 

First, adsorbate configurations are generated by enumerating adsorbate binding 122 

locations on the catalyst surface using the SurfGraph algorithm. 23 This algorithm utilizes 123 

graph-based representations to identify and create unique surface adsorbate 124 

configurations, systematically accelerating the task of generating complex catalytic 125 



model motifs. 23,24 Next, ACE-GCN is utilized as a surrogate model for screening the 126 

generated motifs. The algorithm captures the geometric and chemical properties of a 127 

given surface adsorbate’s local environment and maps them to a target property of 128 

choice. In this work, ACE-GCN is initially trained on a small subset of relaxed adsorbate 129 

configurations, and then utilized as a surrogate model to systematically rank the energies 130 

of a much larger number of unrelaxed adsorbate configurations. The approach thus 131 

provides a framework to efficiently identify a subset of highly promising candidate 132 

structures, as generated by SurfGraph, for subsequent electronic structure relaxation, 133 

therefore bypassing the computationally expensive step of DFT-optimizing all possible 134 

atomistic configurations. After electronic-structure optimization of the most promising 135 

structures, the selected candidate configurations are used to further improve the 136 

prediction capabilities of the ACE-GCN model by including them in an expanded training 137 

pool, as well as to perform an in-depth analysis of the reaction mechanism. Below, 138 

additional descriptions of the ACE-GCN framework, as well as two examples of its 139 

application are provided. 140 



 

Figure 1: (a) Screening workflow for identifying stable surface adsorbate configurations. The workflow 
demonstrates an incremental training approach to predict thermodynamically stable catalytic configurations. The 
cyclic workflow includes the following steps (1) Systematic Enumeration: all possible and unique high coverage 
surface adsorbate representations are generated using the SurfGraph algorithm, (2) Model Training: ACE-GCN 
model is (re)trained on selected structures utilizing the relevant surface representations identified in the previous 
steps.  (3) Accelerated Screening: The unrelaxed surface configurations generated in step 1 are ranked using the 
ACE-GCN model, which is pre-trained on smaller subset of relevant DFT-relaxed cases. (4) Electronic Structure 
Optimization: selected unrelaxed configurations ranked by ACE-GCN are optimized using electronic structure 
optimization code of choice and then utilized either for subsequent analysis or to re-train and improve the ACE-
GCN model.  
 
(b) ACE-GCN algorithm to encode and train high coverage adsorbate configurations. (1) Generate sub-graphs: 
each configuration is split into multiple subgraphs, as identified by the SurfGraph algorithm.  A distinct ego-graph 
is generated for each adsorbate to encode local geometric and chemical properties around the adsorbate in a 
subgraph representation. (2) Subgraph Featurization: each atom and its corresponding bond attribute in the 
subgraph is expressed as a vector representation according to the chemical identity (elemental properties) and 
spatial bond distance, termed as node and edge features, respectively. (3) Subgraph Convolutions: every node 
vector in the subgraph is iteratively updated through multiple rounds of graph convolution operations, which 
account for the atom’s geometric and chemical neighborhood using node and edge vectors of the neighboring 
atoms. (4) Fingerprints: a hierarchical pooling operation condenses all subgraphs for every adsorbate into one 
fingerprint vector.  (5) NN Layer: the fingerprint vector is passed to a feed-forward neural network (NN) which maps 
it to the target property of choice, such as the average adsorption energy.  

 141 

Adsorbate chemical environment-based graph neural networks 142 

The ACE-GCN framework is based on a graph neural networks (GNN) 143 

architecture. 25,39 Graph-based learning, wherein small molecules or crystals are 144 



presented as undirected graphs with atoms described as nodes and edges representing 145 

the connections between the atoms, has been used to accurately account for the 146 

underlying structural and chemical properties for a diverse class of materials including 147 

small molecules, 39 periodic materials, 25,40  metal-organic frameworks, 8 and selected 148 

surfaces. 6 However, a successful implementation of such graph-based representations, 149 

or any surrogate model framework, for complex surface models incorporating a 150 

combination of multiple adsorbates, high-coverage ensembles, and complex surface 151 

geometries (steps, kinks, and other defects), remains highly challenging. The ACE-GCN 152 

model constitutes a simple strategy for treating these sources of complexity.  153 

The schematic in Figure 1B shows the steps involved in predicting a target 154 

property using ACE-GCN. Each adsorbate surface configuration is initially split into 155 

subgraphs (Figure 1b(1)), which are in turn undirected ‘ego-graphs’ centered around a 156 

particular adsorbate generated using the SurfGraph algorithm. These subgraphs 157 

explicitly account for the local chemical and structural environment of the adsorbate and 158 

can accurately represent the complexities arising from the presence of local co-159 

adsorbates, defect sites, and compositional variations, enabling a systematic 160 

description of the surface-adsorbate and adsorbate-adsorbate interactions. Next, every 161 

node and edge attribute of the subgraph is expanded as a vector representation of the 162 

user-defined chemical and geometric features (Figure 1b(2)). To systematically capture 163 

the geometric and chemical environment features surrounding every node, the node 164 

feature vector for each node in a subgraph is iteratively updated based on the 165 

neighboring environment through multiple rounds of graph convolution (message-166 

passing) steps (Figure 1b(3)). Next, hierarchical pooling-like operations are performed to 167 



condense multiple arbitrary-sized subgraphs into a fixed-length vector fingerprint (Figure 168 

1b(4)). This strategy allows ACE-GCN to successfully operate on cases containing 169 

arbitrary numbers of adsorbates and associated neighbors. Finally, the fingerprint vector 170 

is used as an input to a fully-connected neural network to predict the property of interest, 171 

such as the average adsorption energy (Figure 1b(5)).  Additional information regarding 172 

the attributes considered for chemical and geometric encoding, the graph convolution 173 

equation, supplemental indexing, and hierarchical pooling operations is provided in the 174 

Methods section.  175 

 176 

Modeling complex heterogeneous catalytic systems using the ACE-GCN 177 
scheme 178 
 179 
We consider two representative heterogenous catalytic reactions to illustrate the 180 

application of ACE-CGN. First, we analyze the stability of high coverage configurations 181 

of NO* (‘*’ represents an adsorbed moiety) adsorbed on a Pt3Sn(111) surface, and 182 

second, we determine the most energetically favorable high coverage configurations of 183 

OH* adsorbed on Pt(221) and Pt(100) surfaces.  Below, we briefly describe the features 184 

of the ACE-CGN algorithm that are highlighted in each example, and in subsequent 185 

sections, we provide details of the results. 186 

The first example demonstrates how the concepts of crystal graph generation and 187 

neural network analysis can accelerate analysis of the large configurational spaces 188 

arising from the presence of high coverages of adsorbates (in this case, NO*) on multi-189 

elemental alloy surfaces. Both surface and bulk alloying introduce a plethora of surface 190 

adsorption sites, thereby decreasing the symmetry of the surface and increasing the 191 



number of distinct adsorption configurations. As shown in Figure 2a, even for a single 192 

NO* adsorbate, twice as many distinct adsorption configurations exist on Pt3Sn(111) as 193 

on a pure Pt(111) surface. This configurational space increases exponentially as the 194 

coverage of surface adsorbates increases (Figure 2(b)(i)). Considering between 1 and 6 195 

NO* molecules, corresponding to surface coverages between 1/12 and 1/2 ML 196 

(monolayers), and neglecting active sites that incorporate ‘Sn’ atoms, there are 197 

approximately 3400 unique adsorbate configurations with 2500 configurations for the 5 198 

and 6 NO* cases alone. A recent publication explored this NO/Pt3Sn(111) phase space 199 

using an evolutionary algorithm-based scheme, and the present work leverages this prior 200 

experience to test and validate the ACE-GCN workflow. 17,41   201 

 202 

  

Figure 2: Catalyst configurations analyzed with ACE-CGN. (a) Structural motifs considered in the catalyst 
models: (i) alloying (Pt3Sn(111)), (ii) diversity of binding sites on Pt(100) and (iii) Pt(221) (terrace in gray, step in blue) 
surfaces, and (iv) directionally-dependent intermolecular interactions between adsorbates, such as OH*. Green 
arrows show the direction of H-bonding for each hydroxyl group. (b) The total number of unique surface 



configurations, as a function of adsorbate coverage, for Pt3Sn(111) and Pt(221).  All configurations are generated 
using the SurfGraph algorithm. 

 203 

The second example demonstrates how high coverage configurations of adsorbates 204 

may be enumerated on surfaces with defects such as steps and non-hexagonal 205 

geometries. This case, which focuses on OH*, explicitly considers the effect of adsorbate 206 

directionality, stemming from intermolecular hydrogen bonding, on the configurational 207 

space. Figure 2a(iii) shows a top view of the Pt(221) step surface, which has a three-208 

atom wide terrace resembling the Pt(111) surface.  The number of possible OH* 209 

configurations on Pt(221) is significantly larger than that on terrace models such as 210 

Pt(100) (Figure 2a(ii)) or Pt(111), since each row of Pt atoms in Pt(221) has a unique 211 

coordination environment, necessitating separate consideration of adsorption sites on 212 

each row of Pt atoms parallel to the step edge.  Additionally, for given OH* positions on 213 

the surface, several hydrogen bonding networks are possible, and since each may have 214 

a very different energy, 42  it is important to explicitly enumerate all such networks (Figure 215 

2a(iv)).  Directed graphs, in turn, are an efficient means of incorporating adsorbate 216 

directionality into graph-based representations. Initially, all possible O-O pairs that can 217 

form hydrogen bonds are determined, following which all unique hydrogen bonded 218 

networks amongst the different pairs are estimated (see Methods section for more 219 

information). Every hydrogen bond is explicitly encoded as an additional edge attribute 220 

in the subgraph generation in ACE-GCN. An illustrative example is presented in Figure 221 

2a(iv), wherein two possible H-bonding configurations for 4-OH* on Pt(221) are shown. 222 

Figure 2b(ii), in turn, shows the histogram of the number of configurations as a function 223 

of OH* coverage, which were generated by considering both top and bridge sites till 3 224 



OH* (coverage of 1/4 ML), and subsequently for the cases of 4,5,6 OH* (1/3, 5/12 and 225 

1/2 ML respectively), only top sites were added. The total configurations are ~ 12000, 226 

while 1834, 3768, and 5855 configurations are found for the 4, 5, and 6 OH* cases (1/3, 227 

5/12 and 1/2 ML coverages), respectively.   As described further below, we use ACE-228 

GCN to efficiently probe these complex configurational spaces, and we additionally 229 

illustrate how the approach can be used to combine insights from diverse datasets, in a 230 

strategy reminiscent of transfer learning, 36–38 by including OH* adsorption on the 231 

geometrically distinct Pt(100) surface, to yield improved predictions. 232 

Estimating most relevant high coverage configurations of NO* on a Pt3Sn(111) alloy 233 
catalyst 234 

As shown in Figure 2b(i), the total number of unique initial configurations for 1-6 235 

NO* adsorbed on a √12	×	√12	 Pt3Sn(111) unit cell (coverage range of 1/12 – 1/2 ML) 236 

are on the order of ~ 3400, with roughly 2500 configurations for the 5 and 6 NO* cases 237 

(5/12 and ½ ML) alone. The goal of the proposed screening strategy (Figure 1), utilizing 238 

ACE-GCN, is to systematically develop a surrogate model, which describes the 239 

important interactions governing the stability of low coverage NO* models (1/2/3/4 NO* 240 

or 1/12 – 4/12 ML coverage), and to use the resulting insights to efficiently screen the 241 

vast number of high coverage configurations (5/6 NO*, 5/12 and ½ ML coverage) with 242 

minimal additional computational effort. First, an ACE-GCN model is trained on the 243 

average NO* binding energies of all of the low coverage (1, 2, and 3 NO*, 1/12 to 1/4 ML) 244 

DFT-relaxed structures (see the detail for the 1-3 NO* model fit in the Supplemental 245 

Information S4), and next, the model is used to predict binding energetics for the 4-NO* 246 

(1/3 ML) case. Based on these ACE-GCN predictions, 100 energetically stable and 100 247 



unstable candidates (200 total) of the 644 possible 4-NO* configurations, are then 248 

selected. These configurations are relaxed using DFT and added to the incremental 249 

model training. Figure 3 (a-b) shows the parity plots for the training and validation sets 250 

for the new 1/2/3/4-NO* dataset (1/12 to 1/3 ML coverages). The model fits the target 251 

property, average NO* binding energy, with a mean absolute error of 0.02 eV for training 252 

and validation sets, demonstrating that the ACE-GCN architecture can distinguish 253 

amongst different coverages through representations consisting of subgraph-based 254 

graph convolutions and hierarchical pooling. Next, the modified ACE-GCN model, 255 

trained on the exhaustive 1/2/3-NO* ensemble and some 4-NO* data points, is used to 256 

rank the unrelaxed 5-NO* and 6-NO* configurations (5/12 and ½ ML coverages), 257 

generated through SurfGraph, as shown in Figure 3 (c). This dataset is comprised of 258 

1314 and 1261 configurations for 5 and 6 NO*, respectively.  In the figure, the x-axis 259 

represents the ACE-GCN predicted average binding energy of the initial unrelaxed 5/6-260 

NO* configurations, and the y-axis gives the corresponding DFT relaxed energy (for 261 

clarity, only those NO* configurations whose binding locations did not change post-DFT 262 

relaxation are plotted; additional discussion is provided in the Supplemental Information 263 

S4). Importantly, the top 10% lowest energy unrelaxed configurations identified by ACE-264 

GCN include the most stable DFT relaxed atomistic configurations for both the 5 and 6 265 

NO* cases, and, no additional stable configurations were found after DFT relaxation that 266 

were not already identified by SurfGraph (see Supplemental Information for additional 267 

details). These results, taken together, strongly suggest that the combination of 268 

SurfGraph and ACE-GCN is capable of efficiently identifying all stable high coverage 269 

configurations for NO* adsorption.  270 



Additionally, the ACE-GCN model captures important information regarding the 271 

governing interactions dictating the adsorption geometries of NO* on Pt3Sn(111).  From 272 

our recent analysis, 23 it is known that higher coverages of NO* are stable in mixed top 273 

and bridge configurations on this surface, while combinations of bridge and threefold 274 

sites are unstable. The ACE-GCN model captures this insight, without any explicit user 275 

input, using only the low coverage (1/2/3/4 NO*, 1/12 to 1/3 ML) data, and, as described 276 

above, efficiently identifies the energetically most stable 5-NO* and 6-NO* (5/12 and ½ 277 

ML) configurations. The low energy configurations, in turn (shown in their final 278 

configurations post-DFT relaxation in region (i) and (ii) in Figure 3(c)), consist of NO 279 

occupying the top and bridge sites on Pt3Sn. In contrast, higher energy configurations, 280 

also shown in region (ii) in Figure 3(c), consist of NO* occupying a mixture of bridge and 281 

hollow sites, and are also accurately identified by the ACE-GCN surrogate model. Finally, 282 

it is interesting to note that the degree of restructuring of the adsorbate site after DFT 283 

relaxation is directly correlated with the stability of a given configuration as predicted 284 

using ACE-GCN.  The sites predicted to be the most unstable by ACE-GCN underwent 285 

the largest change in the adsorbate position after relaxation. Additional details on the 286 

model’s prediction capabilities as a function of different training data sets, and further 287 

discussion on reconstructed NO* configurations, are included in Supplemental 288 

Information S4.  289 



 

Figure 3: Configurational analysis of NO* adsorption on Pt3Sn(111), where ACE-GCN is used to predict energetics 
of the unrelaxed configurations generated using SurfGraph. (a) and (b) correspond to training and validation parity 
plots for an ACE-GCN model with NO* configurations consisting of 1-4 NO molecules. (c) gives predictions of the 
ACE-GCN model, trained on configurations of 1-4 NO* molecules, for stability of unrelaxed 5 and 6 NO 
configurations generated with SurfGraph. The predicted average BE of the unrelaxed configurations is plotted on 
the x-axis, while the final energy of the same configurations after DFT relaxation is plotted on the y-axis. Only 
configurations where the binding location of the NO* did not change after DFT relaxation are included. The ACE-
GCN algorithm successfully predicts the trends in adsorption energies based solely on the unrelaxed configurations 
generated by SurfGraph.  Selected relaxed low and high energy configurations are shown in insets (i) and (ii), 
respectively.   

 These results strongly suggest that, through selective incorporation of a small 290 

subset of data points of increasingly higher coverages, the ACE-GCN model, trained 291 

only on low coverage configurations (1-4 NO*, 1/12-1/3 ML), successfully identifies 292 

stable high coverage configurations (5/12-1/2 ML) based solely on the unrelaxed 293 

geometries generated from SurfGraph. In comparison to the evolutionary algorithm (EA) 294 

scheme used in our previous work, the ACE-GCN model (i) required fewer DFT 295 

calculations, 350 versus over 500 data points, compared to the EA, 23 and (ii) 296 

independently captured the underlying chemical and geometric intuition affecting the 297 

adsorption energetics. This is an important advantage that becomes even more 298 



significant for larger chemical spaces, where careful analysis of individual configurations 299 

and development of chemical intuition could become infeasible. 300 

 301 

Identifying stable high coverage configuration of interacting hydroxyl adsorbates 302 
on defected Pt surfaces 303 

This case study illustrates the application of our proposed workflow to adsorbates 304 

with directionally-dependent hydrogen bonding on non-hexagonally close-packed 305 

single crystal surfaces, Pt(100) and Pt(221). The former is chosen as the simplest 306 

possible non-hexagonal surface, while the latter represents model step defects that have 307 

been shown to exert a significant influence on electrochemical oxygen reduction rates 308 

on polycrystalline Pt electrocatalysts. 33,43 Along with the comprehensive 309 

training/testing/extrapolation strategy for the Pt(100) and Pt(221) surfaces, similar to that 310 

described for the NO/Pt3Sn(111) case study, we additionally explore the ability of the 311 

ACE-GCN framework to synergistically combine insights from training datasets from 312 

these two surface morphologies (the benefit of considering such a mixed training dataset 313 

on model prediction is further discussed in the Supplemental Information S5). Such 314 

strategies will ultimately be key to understanding adsorption configurations on highly 315 

complex catalysts, such as polycrystalline nanoparticles, which encompass a variety of 316 

different catalyst morphologies. 44,45 317 

The overall workflow is summarized here and described in more detail in 318 

subsequent paragraphs.  First, a comprehensive training dataset, consisting of 319 

configurations with between 1 and 5 OH* molecules per 8 Pt atoms on the Pt(100) 320 

surface (coverages of between 1/8 and 5/8 ML), is generated, while a second training 321 

set of between 1 and 3 OH* adsorbed per 12 Pt atoms on Pt(221) (coverages of 1/12 to 322 



1/4 ML) is also created.  Although the coverages considered on the stepped surface are 323 

much lower than those analyzed on Pt(100), the total number of training data points are 324 

very similar in each case.  These datasets, through ACE-GCN, are then combined to 325 

efficiently identify low energy adsorption configurations of OH* on Pt(221) at much higher 326 

coverages (4-6 OH*/12 Pt, coverages of 1/3-1/2 ML), where the total number of 327 

configurations is exponentially larger (Figure 2c) than the number of configurations 328 

associated with similar coverages on Pt(100). 329 

 330 

 

Figure 4: Screening high coverage OH* configurations on Pt(221). Scatter plots showing average OH* binding 
energies of unrelaxed configurations, as predicted by ACE-GCN (x-axis), with DFT-relaxed energies of the 
corresponding structures (y-axis). A few relaxed configurations showing OH* species dissociation after DFT 
relaxation were not included in the plots or model retraining (analysis of dissociated configurations is discussed in 
the Supplemental Information S5). Numbers in the inset show the total DFT relaxed configurations compared to 
the total possible structures enumerated by SurfGraph. The ACE-GCN model for each succeeding coverage (4/5/6 
OH*, 1/3 to ½ ML) is trained on configurations with lower coverages (see text for details).   

 331 



 The OH* configurations are generated using a modified SurfGraph code that 332 

accounts for directional hydrogen bonds among different OH* species (see Figure 2(a) 333 

for an example). As mentioned above, the ACE-GCN model is initially trained on the 334 

dataset comprising of configurations between 1-3 OH* adsorbates on Pt(221) and 1-5 335 

OH* on Pt(100). Next, the ACE-GCN model is used to rank the unrelaxed 4OH*/ Pt(221) 336 

configurations (1834 in total) (1/3 ML coverage), from which 400 configurations, 337 

representing a range of energy values and adsorbate binding configurations, are chosen 338 

for full DFT relaxation. Figure 4 (top) shows a comparison of the ACE-GCN predicted 339 

average binding energies of the unrelaxed 4-OH* configurations and the corresponding 340 

DFT relaxed energies. There is a robust correlation between these two quantities, 341 

demonstrating that configurations predicted to be low (or high) in energy based on the 342 

ACE-GCN predictions of initial unrelaxed geometries track well with post-DFT relaxation 343 

results. Shown on the left of the scatter plot are some of the key 4-OH* configurations 344 

post DFT-relaxation belonging to the low/high energy 4-OH* arrangements. The most 345 

stable structures, represented by region (i) in the plot, have the Pt-step edge (marked in 346 

dark blue) completely occupied, and any additional OH* moieties have clustered around 347 

the Pt-edge to increase the level of hydrogen bonding. In contrast, the high energy 348 

structures, as shown in region (ii), are comprised of separated OH* species, most of 349 

which are not directly adsorbed on the Pt step edge, and with relatively few hydrogen 350 

bonds. These results indicate that the ACE-GCN model, trained on the diverse data from 351 

Pt(100) and Pt(221), accurately learns the underlying features that stabilize the 4-OH* on 352 

Pt steps. 353 



Following the scheme laid out in Figure 1(A), higher coverage (5-OH*, 5/12 ML 354 

coverage) configurations are generated by using Surfgraph to systematically add an 355 

additional OH* moiety to the exhaustive set of unrelaxed 4-OH* configurations. These 356 

configurations are then ranked using a retrained ACE-GCN model incorporating the 357 

previously DFT-relaxed 4-OH* configurations in the training set. A few of the identified 358 

configurations resulted in dissociated OH* species after relaxation, and these cases have 359 

not been included in the analysis or model retraining (see Supplemental Information S5).  360 

Analogous to the 4-OH* case, a total of 400 unrelaxed configurations, 200 each chosen 361 

from high and low energy zones as identified by the ACE-GCN predictions, are selected 362 

for DFT relaxation. Finally, a similar strategy is applied when searching for 6-OH* 363 

configurations (1/2 ML of coverage), where the emphasis is again placed on high and 364 

low energy structures. 3769 and 5855 possible OH* configurations exist for the 5 and 6 365 

OH* cases, respectively, of which only about 400 configurations each for 5 and 6 OH* 366 

cases are evaluated using DFT and about 273  and 213 cases remain undissociated post 367 

DFT relaxation. The correlation between the stability of structures predicted via ACE-368 

GCN and those after DFT optimization is again quite reasonable (Figure 4); the quasi-369 

bimodal nature of the 5 and 6-OH* plots is simply the result of our choice to sample high 370 

and low energy structures, as predicted by ACE-GCN, for DFT optimization. Further, in 371 

line with the chemical intuition developed with lower coverages, for both 5 and 6 OH* 372 

cases (5/12 and ½ ML coverages), the most stable configurations are comprised of 373 

clustered OH* species on the Pt-step edge, whereas unstable cases involve spatially 374 

separated OH* with few OH* moieties adsorbed on the step edge.   We note, however, 375 

that despite the reasonable energetic and chemically intuitive predictions from the ACE-376 



GCN analysis, there can be non-trivial relaxations of the unrelaxed structures, especially 377 

for the high coverage cases of 5 and 6 OH* on the surface (5/12 and ½ ML).  We attribute 378 

these relaxations to the observation that multiple highly clustered OH* representations 379 

may have similar average OH* interaction energies but, may undergo substantially 380 

different relaxation during DFT optimization.  381 

The Pt(221) and Pt(100) analyses demonstrate the capability of ACE-GCN to (i) 382 

learn important underlying interactions governing the stability of adsorbates with 383 

directionally-dependent interactions, such as OH*, on irregular catalyst models by 384 

simulating only about 5-6% of the total number of possible configurations, and (ii) 385 

combine data having different catalytic morphologies, in a transfer learning-inspired 386 

approach, to train surrogate models with high efficiency. Such an analysis can aid in 387 

developing chemical intuition regarding the underlying interactions that are crucial for 388 

stabilizing the adsorbates and understanding the state of the system in realistic reaction 389 

environments. 390 

 391 

Mechanistic implications of high OH* coverages for electrochemical 392 
reactions on Pt 393 

Based on the identified OH* configurations on the irregular Pt surfaces, a detailed 394 

thermodynamic and mechanistic analysis to investigate the state of the catalyst surface 395 

under electrochemical reaction conditions, such as those relevant to oxygen reduction 396 

reaction (ORR), can now be undertaken. Previous reports have demonstrated that (111) 397 

terraces on Pt catalysts are among the most active facets for ORR, and recent 398 

investigations on irregular crystal facets of Pt, having variable step sizes ((221), (331) and 399 



(211)), suggest high ORR activity on these surfaces, as well. 33,43,46 A mechanistic analysis 400 

incorporating the effects of catalyst morphology and OH* coverages is, in turn, needed 401 

to understand these experimentally observed trends. However, the large phase space of 402 

possible atomic configurations, especially for the case of stepped catalyst surfaces, 403 

makes the analysis challenging. 404 

  

Figure 5: Ab-initio Pourbaix diagram based on binding energies of various OH* configurations on Pt(111) 
and Pt(211) surfaces. In the potential region of interest for ORR, 0.8-0.9 V, competition between ensembles having 
4, 5, and 6 OH* adsorbates on Pt(221) (1/4 to ½ ML OH* coverage) is predicted, and is shown by the overlapping 
free energy bands. On the rightmost side of the figure, a side view of the most stable 4-OH* configuration in our 
analysis is shown (the corresponding top view is in the 4-OH inset on the left side). It is observed that the OH* 
present on the terrace site immediately below the Pt step edge (termed “back-terrace” in our discussion) has a 
favorable H-bond with the OH* absorbed on the edge. Such an arrangement of OH* moieties is possible due to the 
particular geometry of the step and edge sites. This arrangement results in appreciable stabilization compared to 
the scenario where no such H-bond exists (shown in the 4-OH inset, right side). Representative surface 
configurations for 5 and 6-OH* are also indicated on the insets to the right of the figure, with the most stable 
configurations on the left of the insets.  

 405 

Utilizing the results generated in the previous section, an ab-initio surface 406 

Pourbaix diagram is generated (Figure 5) to explain the state of the Pt(221) surface under 407 

ORR-relevant conditions. For simulations reported in Figure 5, larger unit cells along with 408 

higher energy cutoffs and k-points are utilized, with additional details reported in the 409 

methods section. The formation free energies of the identified high coverage structures 410 



(4-6 OH* on Pt(221)) are plotted as a function of the applied external potential vs. the 411 

Standard Hydrogen Electrode (SHE). The formation free energy for each OH* coverage 412 

is presented as an energy band, which is 0.25 eV wide, starting from the energy of the 413 

most stable configuration identified using the workflow shown in Figure 1. The 414 

schematics on the right side of the Pourbaix diagram show the most stable and selected 415 

metastable (~ 0.25 eV higher in energy) configurations.  In addition, the free energy of 416 

the most stable 3 OH* configuration on the Pt(221) facet, together with that of a single 417 

OH* moiety on Pt(111), is plotted for reference. The 3 OH* ensemble on Pt(221), where 418 

the OH* species occupy the Pt-step edge, is identified as the most stable OH* 419 

configuration. This result suggests that the Pt edge might be completely poisoned at 420 

ORR-relevant conditions (red inset and line in Figure 5). Additional population of OH* on 421 

the surface of the catalyst (4, 5, and 6 OH*) shows competition amongst different 422 

configurations, especially above applied potentials of 0.8 V vs. SHE. An interesting 423 

feature of the identified high coverage configurations on Pt(221) is the presence of the 424 

OH* adsorbed on the terrace sites that lie adjacent to and below the Pt step edge. Such 425 

a binding configuration is a result of the unique spatial arrangement of Pt(221) step sites 426 

(a representative configuration is shown in Figure 5, right side, top inset). Discovering 427 

such a unique OH* binding arrangement, which, to the best of our knowledge, has not 428 

yet been reported elsewhere, speaks to the value that data-driven screening workflows 429 

such as ACE-GCN can add in helping to identify interesting regions in the chemical 430 

phase space, which can then be further explored rigorously to better understand the 431 

complex reaction systems.  432 



Furthermore, we observe that multiple possible H-bonding arrangements can 433 

possess comparable energies. The most stable OH* arrangements often exhibit 434 

hydrogen bonding between the OH* moiety on the lower terrace with the OH* adsorbed 435 

on the Pt edge (Figure 5, inset for 4OH* case), or they possess a combination of OH* 436 

adsorbed on both bridge and top sites in chain-like structures near the step on the upper 437 

terrace (Figure 5, inset for 5 and 6 OH*).  438 

It is important to note that, while the identified structural motifs for high coverage 439 

adsorbed OH* may be relevant to practical ORR catalysis, these configurations only 440 

consider stabilization due to adsorbate-adsorbate and adsorbate-substrate interactions 441 

and do not explicitly account for interactions between adsorbed hydroxyl groups and 442 

ambient water solvent molecules, which can have energies on the order of 0.5-0.6 eV 443 

per OH*. 42,47,48 To illustrate the effect of such corrections, a black dashed line, 444 

representing the OH* adsorption energy on Pt(111), is plotted in Figure 5.  At an applied 445 

potential of 0.8 V vs SHE, the formation free energy for 1 OH* adsorbed on a top site of 446 

Pt(111) is 0.55 eV, excluding any solvent corrections, which is consistent with previous 447 

reports. It is only the solvent stabilization that reduces the energy of OH* to near zero on 448 

Pt(111) (at 0.8 V vs. SHE) and hence promotes its reactivity.  Since the energy of 1-OH* 449 

on Pt(111), devoid of any solvent correction, is comparable to the uncorrected energy of 450 

the 4/5/6-OH* ensembles on Pt(221), one might expect that some of these ensembles 451 

on Pt(221) would be stabilized under ORR condition and contribute to the ORR activity.  452 

Further, it is possible that the solvation correction for the high coverage 4/5/6-OH* cases 453 

(1/4 to ½ ML of OH*) on Pt(221) could be different compared to the correction for the 454 

low coverage OH* ensembles on Pt(111). To fully capture the impact of solvent-455 



adsorbate interactions on ORR chemistry, further analysis, rigorously incorporating 456 

explicit solvent molecules (H2O), along with ab-initio molecular dynamics analysis to 457 

understand the electrode-electrolyte double-layer structure, would be necessary. The 458 

identified 4/5/6 OH* high coverage configurations provide a strong foundation for 459 

undertaking such an analysis, and it is likely that many of the key qualitative conclusions 460 

from the analysis, such as the favorable adsorption of OH* on the step edges and the 461 

preference for OH* on the lower terrace to interact with the step-adsorbed OH* groups, 462 

will not be altered by the presence of additional water molecules.  463 

464 



Conclusions and Outlook 465 

We present a machine learning-based hierarchical screening workflow to 466 

systematically estimate active site morphology for complex heterogeneous surface 467 

catalytic reactions. The proposed workflow utilizes the graph theory-based SurfGraph 468 

algorithm for systematic enumeration and generation of surface adsorbate 469 

representations with variable coverages. The generated models are screened using 470 

Adsorbate Chemical Environment-based Graph Convolution Neural Network (ACE-471 

GCN), a graph neural network-based framework, which utilizes the chemical and 472 

structural environment of a given adsorbate as the input and maps these features to the 473 

target property of choice. Using this workflow, we demonstrate the identification of 474 

relevant active site models for heterogeneous catalytic systems relevant to strong 475 

binding adsorbates on low symmetry alloyed surfaces and to directionally-dependent 476 

adsorption on defect surface structures. In both the cases, our model successfully ranks 477 

the relative stability of different atomic configurations at a fraction of the computational 478 

cost (~10%) of exhaustive DFT calculations, thereby providing a framework to identify 479 

relevant atomic configurations for surface environments with large and complex 480 

configurational spaces. In addition to reducing the overall computational cost, this 481 

automated approach reduces the possibility of systematic bias resulting from use of 482 

chemical intuition alone to identify structures with target properties. This approach can 483 

therefore serve as a starting point for developing detailed atomic description of complex 484 

catalyst surfaces under in-situ conditions, help identify interesting regions of the 485 

chemical solution space to be investigated with rigorous state-of-the-art methods, 486 



ultimately leading to fundamental insights into factors that govern heterogeneous 487 

catalysis in structurally and chemically complex environments. 488 

  489 



Methods 490 

Dataset   491 

The dataset used for model training and prediction is a collection of a diverse set of 492 

calculations corresponding to 1) NO*, varying from 1-6 adsorbates (coverages of 1/12 to 493 

½ ML), on a Pt3Sn(111) surface, and 2) OH* surface configurations on Pt(100) and 494 

Pt(221), also encompassing 1-6 adsorbates (coverages of 1/12 to ½ ML) - see below for 495 

unit cell details). The graph enumeration code, SurfGraph, is used to identify the binding 496 

sites and to generate the high coverage configurations which are converted to a graph 497 

object through ACE-GCN for property prediction. The target property of choice is the 498 

binding energy of the adsorbates, normalized to the number of adsorbates considered 499 

in the facet:  500 

 501 
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 504 

DFT methods 505 

The simulations for NO* on Pt3Sn(111) were adopted from previous publications.23 For 506 

the case of OH* adsorption on Pt(221), the simulations are performed within the 507 

framework of periodic density functional theory with the Vienna Ab Initio Simulation 508 

Package (VASP) . 49  The energies and geometries of the most stable configurations of 509 

OH* on the Pt(221) surface are obtained through minimization of the total energy with 510 

respect to geometry by spin polarized generalized gradient approximation calculations 511 

(GGA-PBE). 50 The projected augmented wave (PAW) method is used to account for the 512 

effect of core electrons on the valence electron density. 51  A PBE-calculated lattice 513 



constant of 3.97 Å for pure Pt is employed.  The Pt(221) surface is represented by a 3x3 514 

unit cell with 4 layers (total of 33 atoms per unit cell).  A vacuum equivalent to 13 Å is 515 

applied between any two successive slabs, and surface relaxation is allowed in the top 516 

three layers.  A planewave energy cutoff of 300 eV is used for the high-throughput 517 

calculations.  A minimum k-point grid sampling of 3x3x1 is employed. For selected cases 518 

reported in the phase diagram in Figure 5, a larger unit cell containing 60 Pt atoms is 519 

utilized, and a planewave energy cutoff of 400 eV, along with k-point grid sampling 520 

4x4x1, is employed. It is observed that between the two different kinds of models and 521 

simulation parameters utilized, the trends in the adsorption energies of OH* remains the 522 

same, with minimal (~ 0.1 eV) change in relative adsorption energies. The electronic 523 

occupancies are determined according to a Methfessel− Paxton scheme with an energy 524 

smearing of 0.2 eV.  Dipole corrections are used in all cases to decouple the electrostatic 525 

interactions between the periodically repeated slabs.  Structures are fully relaxed until 526 

the Hellmann− Feynman forces acting on the atoms are smaller than 0.05 eV/Å. Atomic 527 

configrations were visualized using Atomic Simulation Environment (ASE) and Ovito.       528 
52,53 529 

 530 

Adsorbate subgraph generation 531 

Adsorbate subgraphs were generated using the SurfGraph algorithm. 41 Initially, for a 532 

given unit cell, a full graph incorporating all the atoms in the cell is generated. Adsorbate 533 

nodes are then identified, and a subgraph is generated with each identified adsorbate 534 

node as the center. The subgraphs are generated such that they incorporate the 535 

information of the surface atoms immediately adjacent to the adsorbate along with other 536 

adsorbate atoms interacting with these surface atoms.  537 

 538 

Hydrogen bond generation with directed graphs 539 

All hydrogen atoms with a bond distance greater than 1.3 Å and less than 2.1 Å to a 540 

given oxygen atom are constituted as hydrogen bonds. To construct combinations of 541 

possible pairs of H-bonds between a set of oxygen atoms, all possible hydrogen bonds 542 

are initially identified using the rule explained in the previous sentence. Then, all possible 543 



directed graphs are generated between the identified pairs, using the rule that each OH 544 

adsorbate can only donate one hydrogen bond and accept multiple hydrogen bonds. 545 

The directed graph combinations with the maximum number of hydrogen bond pairs are 546 

then selected for property prediction or to perform DFT simulations.   547 

 548 

Model architecture and implementation 549 

Graph neural networks (GNN), also known as message-passing neural networks, 39,54 550 

have been previously proposed for computer vision, natural language processing, 551 

generating molecular fingerprints, predicting crystal bulk properties, and predicting 552 

binding energy on surface slab models. The network developed in this work is the 553 

extension of the graph convolution neural network (GCN) approach introduced by Xie et. 554 

al. 25 The GCN framework is coupled with a sub-graph generation routine to 555 

systematically encode complex high coverage surface configurations. The subgraphs 556 

capture important features of the high coverage geometries, and at the same time, the 557 

versatility of the neural networks provides nonlinear mapping between the chemical 558 

fingerprints and the target property. Hence, it is possible to strike a balance between 559 

end-to-end feature learning, provided by deep neural networks, and chemical intuition 560 

found in ‘hand-engineered’ features. 561 

Each crystal lattice entry is split into smaller network motifs (subgraphs) as per 562 

the number of unique adsorbates identified by SurfGraph. Each subgraph is an 563 

adsorbate-centered undirected graph (ego-graph) with nodes representing the atoms 564 

and edges representing the connection between the neighboring atoms in the lattice. 565 

The chemical identity of each node in this subgraph is represented by a feature vector 566 

generated based on its elemental identity using a combination of chemical and 567 

geometric features. These attributes are encoded as one-hot encoding. The edge 568 

connecting two nodes is described by edge attributes based on the spatial pairwise 569 

atom distance. This feature can be expressed either as a Gaussian feature expansion, 570 

as done in previous implementations, 25 or as one-hot encoding, as implemented in the 571 

current version. The reason for using the one-hot encoding expression of the spatial 572 

bond distance is to modulate model’s sensitivity to bond fluctuations arising out of 573 



structure optimization. A full list of chemical and geometric properties used is provided 574 

in the Supplemental Information S2. Next, the bond distance and the one hot encodings 575 

are used to create an adjacency matrix for each subgraph. An indexing scheme is 576 

generated to account for various neighbors of a given node; each node index is 577 

superseded by the adsorbate index based on the number of unique adsorbates in each 578 

crystal entry. Likewise, for every node atom and its corresponding neighbors, the atom 579 

indices are superseded by a supplemental indexing linking the neighboring atoms to its 580 

parent node. This indexing strategy facilitates the subsequent hierarchical pooling 581 

operations, enabling the network to account for arbitrary sized subgraphs. A schematic 582 

of this pooling operation strategy is provided in the Supplemental Information S2. Model 583 

training starts by embedding node attributes in subgraph embeddings. The graph 584 

convolution layers iteratively update the node feature vectors by performing convolutions 585 

with surrounding nodes in the subgraphs using.  586 
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 591 

Equation (1) is the new fingerprint vector formed by concatenation of corresponding 592 

neighbor and edge features for each node. Equation (2) shows the graph convolution 593 

equation used for iterating the node features in each message-passing round. This 594 

equation is inspired from work for predicting small molecule and bulk crystal properties. 595 

Here, 𝑊: and 𝑏 are the shared weights and biases for the graph convolution module, 596 

while 𝑔(52 is the softplus activation function, a smooth approximation of the ReLU 597 

(rectified linear unit).   598 

 The hierarchical pooling is implemented using PyTorch scatter module’s scatter 599 

method. Through this method, elements in the input matrix of known dimensions can be 600 

reduced (summed or normalized) by explicitly specifying the indices which have been 601 

used for the said reduction. As a result, arbitrarily sized subgraphs are collapsed into a 602 



single user-defined n-sized vector fingerprint equivalent to the atom embeddings defined 603 

for each atom node at the start. Following the convolution and mean pooling operations, 604 

the fingerprint vector is supplied to fully connected layers to capture the mapping of 605 

configuration to the target property). The creation of graph objects for the high coverage 606 

configurations is parallelized across multiple CPU cores using DASK. 55 607 

 608 

Model training 609 

The network performance is evaluated using three common metrics based on the 610 

model’s residuals, the mean absolute error (MAE), the root mean-squared error (RMSE), 611 

and the mean absolute percentage error (MAPE). A train-validation-test scheme is 612 

adopted for choosing the best model for prediction. During the training phase, the data 613 

is randomly split into a train-validation-test split where the test set is kept aside for final 614 

evaluation. The model weights are iteratively updated by minimizing the loss function 615 

(MSE in this case) associated with predicting the target in the training data, and the 616 

validation set is scored after each epoch (as per the MAE). The Adam optimizer as 617 

implemented in PyTorch is used for the training. After model training for predefined 618 

epochs, the model with best validation score is selected for evaluation on the test set.  619 

A complete list of hyperparameters is provided in the Supplemental Information S3. 620 

Model training and validation was carried on local CPU cores and Tesla P100 GPU cores 621 

provided by the Purdue’s Research Computing Facility.  622 

      623 

 624 
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