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Abstract 

Recent advances in generative modeling allow designing novel compounds through deep 

neural networks. One such neural network model, the Junction Tree Variational Auto-

Encoder (JT-VAE), excels at proposing chemically valid structures. Based on JT-VAE, 

we built a generative modeling approach (JAEGER) for finding novel chemical matter with 

desired bioactivity. Using JAEGER, we designed compounds to inhibit malaria. To 

prioritize the compounds for synthesis, we used the in-house Profile-QSAR (pQSAR) 

program, a massively-multitask bioactivity model based on 12,000 Novartis assays. 

Based on the pQSAR activity predictions, we selected, synthesized, and experimentally 

profiled two compounds. Both compounds exhibited low nanomolar activity in a malaria 

proliferation assay as well as a biochemical assay measuring activity against PI(4)K, 

which is an essential kinase that regulates intracellular development in malaria. The 

compounds also showed low activity in a cytotoxicity assay. Our findings show that 

JAEGER is a viable approach for finding novel active compounds for drug discovery. 
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Main 

Machine learning, and specifically deep learning1, is poised to drive breakthroughs in 

multiple disease areas including infectious diseases such as malaria, where the need for 

novel molecules is as urgent as ever. The parasite-induced disease inflicts ca. 400000 

deaths every year, mostly in children under the age of five in sub-Saharan Africa. In the 

absence of a vaccine, treatments and preventive measures of transmission have been 

the cornerstone of reducing the burden of malaria. However, current treatments are 

becoming increasingly less effective against the parasites that have evolved to develop 

chemoresistance. Drug combinations and a consistent pipeline of new antimalarials will 

be required to curb the impact of this disease. In this context, machine learning could 

prove pivotal for the accelerated discovery and development of novel antimalarials2-5. 

 

The use of computational methods to enhance and accelerate the design of novel active 

compounds has long been a goal in drug discovery6,7. Progress in machine learning, 

specifically with deep neural networks, allows using these computational models to 

generate compound structures with desired physicochemical and bioactivity properties. 

Many of these generative chemistry8-12 models represent molecules through SMILES13 

strings that provide a text encoding of molecular graphs. Because molecule generation is 

thus rendered as a text generation task, syntax errors lead to invalid SMILES strings that 

cannot be converted to a molecular structure14. Other models represent molecules 

directly through a weighted graph. Molecule generation in this case is cast as a graph 

generation task. Graph generation schemes where a single-atom is added at a time15 

(atom-by-atom generation) also lead to chemically invalid intermediate graphs requiring 
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further correction. Models such as the junction tree variational autoencoder (JT-VAE)16,17 

obviate this issue by generating graphs in a sub-structure by sub-structure manner thus 

consistently yielding valid molecules. The ability of generative chemistry models to 

consistently propose novel valid molecules is key towards gaining the confidence and 

uptake of medicinal chemistry teams. 

 

In this work, we developed a JT-VAE-based generative chemistry approach (JAEGER) 

that couples efficient numerical search strategies with assay activity models to generate 

novel active molecules. We applied JAEGER to propose novel active inhibitors of malaria. 

Prioritization of the proposals with Profile-QSAR (pQSAR)18 models was followed by 

synthesis and profiling of two compounds. Both compounds exhibited potent anti-malarial 

activity. Our work thus represents the first report to our knowledge where generative 

chemistry is successfully used to design novel malaria inhibitors with proven antimalarial 

activity. 

 

Results 

The JT-VAE model represents a molecule through both a junction tree, which represents 

the arrangement of sub-structures within a molecule, as well as a molecular graph. The 

tree and graph representations are each mapped onto separate 28-dimensional (28-D) 

vectors. Within JAEGER, we thus train a JT-VAE model to encode a single molecule onto 

two 28-D vector representations as well as decode those two vectors back onto a 

molecule (see Figure 1a). The collections of tree and graph vectors corresponding to the 

molecules in the training set span two 28-D continuous latent spaces that JAEGER 
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explores to obtain novel active molecules. Exploration of those latent spaces is guided by 

an activity model predicting the activity of molecules in the assay of interest, given in 

terms of the negative logarithm of the half maximal inhibitory concentration (pIC50). The 

JT-VAE model is optimized jointly for the molecule encoding and decoding tasks as well 

as the activity prediction task to ensure that the latent representations support all of these 

tasks (see Methods).  

 

Once the JT-VAE model is optimized, JAEGER generates novel active molecules by 

taking a seed molecule as a starting point. JAEGER samples deterministically neighbors 

around the starting point by defining a number of principal axes around the starting point 

in both the tree and graph latent 28-D sub-spaces (Figure 1b). The direction and 

magnitude of these principal axes are defined proportionately to the eigenvectors and 

eigenvalues of the covariance matrices of the tree and graph latent vectors of the 

molecule training collection, respectively. In both tree and graph sub-spaces, JAEGER 

samples positions along each axis at intervals defined proportionately to the magnitude 

of the axis (see Methods). Samples in the tree and graph sub-spaces are combined 

resulting in 56-D vectors that are passed onto the activity model to predict the pIC50 values 

of the joint samples. Only joint samples predicted to have a pIC50 above a certain 

threshold are selected for decoding. 

 

To build the JT-VAE model to design Malaria inhibitors, we used molecules that had been 

tested in a Novartis-internal Plasmodium falciparum proliferation assay (see Methods). 

In total, the dataset had 21065 molecules with measured pIC50 values. Once trained, we 
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passed each molecule in the training set through the model and recorded their latent 

vectors in tree and graph space. To ascertain that the model had learned chemically 

relevant information, we performed PCA on these vector collections and correlated the 

resulting principal components projections with known chemical properties, such as 

molecular weight and the calculated logarithm of the octanol / water partition coefficient 

(cLogP). Significant correlations were observed especially in the tree space 

(Supplementary Figures 1 and 2), indicating linear exploration of that latent space would 

yield molecules with varying properties. Correlations between assay activity and 

individual principal components are weaker, as activity is modeled as function of the entire 

joint latent space through a residual neural network. Accordingly, activity gradients 

emerge only over multiple principal components (Supplementary Figure 3). Through a 

random split cross-validation regime (see Methods), we also ensured that the learned 

features supported both tree and graph reconstruction as well as activity prediction. The 

average tree and graph reconstruction errors for the model were 6% and 8%, 

respectively, while the correlation of prediction with the experimental pIC50 for the latent 

space activity model was r2 = 0.46. We also ascertained that the model was able to 

generate valid molecules. We sampled 1000 latent random vectors and decoded them. 

All latent vectors were successfully mapped onto a corresponding molecule, thus yielding 

a compound validity of 100% (see Methods). 

 

Having ascertained the model’s validity, we started the sampling procedure with three 

proprietary malaria inhibitors as seed molecules. We sampled in total 282 new virtual 

molecules and calculated their molecular properties (e.g., molecular weight, cLogP, as 
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well as synthetic accessibility scores, SAS19). The distributions of those properties are 

very similar to the distributions computed over the training molecules (see Figure 2), thus 

demonstrating that JAEGER can generate realistic molecules with properties comparable 

to those tested in the assay. Consensus modeling of activity was achieved by predicting 

the activity of the sampled molecules with a pQSAR model built for the same P. falciparum 

proliferation assay. The correlation of prediction with experimental values of the pQSAR 

model was r2 = 0.63 on a random split test set. From the original list of 282 virtual 

molecules, only the compounds with the top four pQSAR pIC50 predictions were selected 

for synthesis. Among these four, only two compounds (compounds 1 and 2) were 

synthesized. The properties of these two compounds (Table 2) conform well with 

Lipinski’s rule of five20. For those two compounds, we computed their Tanimoto 

similarities to the training set (Figure 3). We observed that the bulk of compounds in the 

training set were substantially dissimilar from the synthesized compounds (mean 

Tanimoto similarities of 0.18 and 0.17 respectively). We also report the Tanimoto 

similarities to the seed molecule, as well as to the molecules’ nearest neighbors in the 

training set and the entire Novartis compound archive (Table 3). The similarity values are 

all below 0.67, indicating that these two compounds are different from existing chemical 

matter. 

 

We investigated whether the proposed molecules that were synthesized had antimalarial 

activity. Compounds 1 and 2 were tested in vitro against the 3D7 strain of Plasmodium 

falciparum. Upon compound addition and incubation over 72 hours, compounds 1 and 2 

were highly active with EC50 values of 0.023 µM and 0.025 µM, respectively (Figure 4a). 
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In comparison, approved antimalarial mefloquine used as positive control in the same 

experiment displayed an EC50 of 0.048 µM. Secondly, because the seed molecule from 

which the two molecules were derived is active against Plasmodium vivax PI(4)K 

(PvPI(4)K), we investigated whether the proposed molecules recapitulated this 

mechanism of action or inherited a divergent mechanism of action from other molecules 

in the training set. In a biochemical PvPI(4)K assay, compounds 1 and 2 were active with 

EC50 values of 0.0028 µM and 0.0016 µM, respectively (Figure 4b). PvPI(4)K positive 

control KDU731 displayed an EC50 of 172 pM within the same experiment. Lastly, we 

investigated whether there were potential off-targets associated with cytotoxicity. 

Compounds 1 and 2 were tested in vitro against HepG2, a hepatocellular carcinoma cell 

line for liver toxicity. Upon compound addition and incubation over 72 hours, compounds 

1 and 2 displayed very low levels of activity with EC50 values of 55.83 µM and 60.29 µM 

respectively, whereas pan-kinase inhibitor staurosporine was highly active with an  EC50 

of 0.09 µM (Figure 4c). 

 

Discussion 

We developed JAEGER, a generative chemistry approach based on the JT-VAE model.  

JAEGER includes an efficient sampling technique that deterministically explores the 

model’s latent space to generate novel ideas for compounds. Conceptually, our sampling 

scheme compares favorably with approaches relying on random sampling21 from a 

computation time as well as reproducibility standpoint.  
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We used JAEGER to design novel antimalarials by first building a JT-VAE model with 

data from a Novartis-internal malaria proliferation assay. JAEGER yielded quickly realistic 

novel compound ideas that were well aligned, in terms of their molecular properties as 

well as synthetic accessibility, with the chemistry explored in the assay. The compounds 

proposed by JAEGER were also dissimilar to those found in the training set as well as 

those in the Novartis compound archive. In this sense, JAEGER’s sampling technique 

strikes a balance between existing chemical matter and novel compound ideas. The new 

compounds 1 and 2 were synthetically accessible in 6 synthetic steps from readily 

available starting material and displayed reasonable physiochemical properties sufficient 

to warrant further investigation. 

 

Prioritization of compounds through pQSAR modeling led to the selection of two 

compounds for synthesis and experimental profiling. The two synthesized compounds 

exhibited potent antimalarial activity that was on par with approved antimalarials. The 

compounds also showed potent activity against the P. vivax PI(4)K kinase and exhibited 

low cytotoxic activity. While JAEGER overestimated the antimalarial activity, pQSAR’s 

predictions were well within less than half a logarithm of the experimental values, thus 

emphasizing the need for further in-silico validation of ideas coming out from generative 

chemistry models with established computational chemistry methodologies.  

 

In conclusion, our study shows the potential of generative chemistry towards the 

development of novel antimalarials. Application of the JAEGER approach to other disease 

areas is relatively straightforward and is currently being explored. Further work also 
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involves the modeling of multiple assays as well as ADME parameters to ensure off-target 

activities and pharmacokinetic parameters are explicitly accounted for. Algorithmic 

developments to improve computation time are also planned.  
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Figures 

 

Figure 1. JAEGER overview 
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Figure 2. Distribution of calculated properties of training molecules  

and the 282 molecules generated by the model. 
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Figure 3. Structures of two synthesized compounds and corresponding distributions of 

Tanimoto similarities to training molecules. 

 

Compound 1 Compound 2 
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Figure 4. Profiling results for compounds 1 and 2. 3D7 data were pooled from two 

independent experiments performed each with two technical replicates. PvPI(4)K data 

were pooled from two independent experiments performed each with two technical 

replicates. HepG2 data were pooled from one experiment performed with three 

technical replicates. 
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Tables 

Table 1. JAEGER model performance metrics 

 

Etree Egraph MSE r2 Valid 

molecules 

6% 8% 0.32 0.46 

 

100% 

 

Etree – Tree reconstruction error 

Egraph – Graph assembly error 

MSE – Mean squared error between experimental and predicted pIC50 value 

r2 – squared Pearson correlation coefficient between experimental and 

predicted pIC50 value  
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Table 2. JAEGER-proposed molecules and calculated properties and activities 

 

MW – Molecular weight 

TPSA – Topological polar surface area 

HBD – Number of hydrogen bond donors 

HBA – Number of hydrogen bond acceptors 

SAS – Synthetic accessibility score 

cLogP –  calculated log P 

JAEGER IC50 – predicted IC50 (µM) predicted by JAEGER 

pQSAR IC50 – predicted IC50 (µM) predicted by pQSAR 

 

  

Compound MW cLogP SAS TPSA HBD HBA 

JAEGER 

IC50 (µM) 

pQSAR 

IC50 (µM) 

1 485.9 4.14 2.69 93.6 1 5 0.001 0.012 

2 485.9 4.10 2.67 93.6 1 5 0.0003 0.017 
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Table 3. Tanimoto similarities between JAEGER-proposed molecules and other 

molecules 

 

 

 

 

 

 

 

 

 

 

  

Compound 

Seed 

molecule 

Nearest 

neighbor in 

training set 

Nearest neighbor in 

Novartis archive 

1 0.4 0.67 0.67 

2 0.4 0.65 0.67 
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Methods 

JT-VAE model  

JAEGER is based on the Junction Tree Variational Auto-Encoder (JT-VAE) model16 that 

represents molecules through both a junction tree subsuming the topology of 

substructures within a molecule, as well as through a molecular graph capturing the atom 

and bond structure of a molecule. The JT-VAE model consists of two graph message 

passing neural networks (MPNNs) that take as input the tree and graph representations, 

respectively. Each network yields a vectorial representation of the tree and graph htree and 

hgraph, respectively, that support through a reparameterization trick22 the calculation of 

parameters μtree, σtree, as well as μgraph and σgraph that define the variational posterior 

approximations for latent variables ztree and zgraph. Specifically, the model samples ztree and 

zgraph from 𝒩(μtree, σtree) and 𝒩(μgraph, σgraph), respectively. The concatenation of ztree and zgraph 

serve as input to a residual neural network that predicts the activity, in terms of pIC50, of 

the input molecule in an assay of interest. To map the latent representations ztree and zgraph 

back to a molecule, the JT-VAE model adopts a hierarchical approach where first a 

junction tree is predicted from ztree, followed by assembly of the molecular graph based 

on both the predicted junction tree as well as zgraph.  

 

To train the JT-VAE model, we use a set of existing molecules with experimental pIC50s. 

The goal during training is to improve the performance of the model in terms of its ability 

to 1) reconstruct accurately both trees and graphs, 2) obtain a good approximation of the 

variational tree and graph posteriors, and 3) properly predict pIC50s given a latent 

representation. Performance in those aspects is measured through loss functions 1) Ltree, 
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Lgraph for tree reconstruction and graph assembly cross-entropy errors as defined in16, 2) 

LKL for the Kullback-Leibler (KL) divergences between approximated and true posteriors, 

and 3) Lmse for the mean-squared error (MSE) between predicted and experimental pIC50 

values. An additional loss Lstereo tracking the selection of the correct stereoisomer during 

reconstruction is also included. The loss function L used for parameter optimization is 

thus given as: 

 

L = Ltree + Lgraph +  b LKL + Lmse + 2 Lstereo 

 

where b is a parameter regulating the influence of the LKL term on the optimization 

process.  

 

For optimization, we use the ADAM algorithm23 with a base learning rate of 0.003. The 

learning rate is modulated using an exponential decay function with a multiplicative factor 

of 0.9. The number of molecules in each training mini-batch is set to 8. Optimization 

proceeds in two stages: in the first stage, the beta parameter is set to zero. In the second 

stage, the beta parameter is set to 0.005 and the ADAM optimizer is reset with a base 

learning rate of 0.0003. Each stage consists of 36 epochs, for a total of 72 optimization 

epochs. We used the PyTorch implementation provided in the original article16 as a 

starting point for our algorithmic developments. We optimized the model parameters 

using an NVIDIA Tesla K80 GPU with 11.5 GB of memory. For the malaria model, 

parameter optimization took approximately 135 hours. In this model, we set all hidden 

layers in the model to include 420 neurons. We set the dimension of both ztree and zgraph to 
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28. The number of message passing rounds in both tree and graph MPNNs is set to 

seven. The number of residual blocks in the activity prediction model is set to seven.  

 

Model validation 

To validate the model, we evaluate its ability to reconstruct junction trees and molecular 

graphs as well as to predict the activity of molecules in latent space. We randomly split 

the molecules tested in the assay into a training set and a hold-out set. The fraction of 

molecules in the training and hold-out set is 90% and 10%, respectively. We optimize the 

model’s parameters using the molecules in the training set and evaluate the model’s 

performance using the molecules in the hold-out set. For each molecule in the hold-out 

set, we record whether the model failed to reconstruct correctly the molecules’ underlying 

junction tree as well as molecular graph. We report the fractions Etree and Egraph of 

molecules in the hold out set where failures in junction tree reconstruction and molecular 

graph assembly occurred, respectively. For each molecule in the hold-out set we also 

record the predicted activity value. We then compare the predicted and true activity values 

over all molecules in the hold out set to compute the mean squared error (MSE) as well 

as the squared Pearson correlation coefficient r2. Table 1 show the average values of 

these errors over the hold-out sets over three random splits.  

 

To check compound validity, we drew 1000 random samples from 𝒩(μ, Σ) where μ is the 

mean vector over all 56-D concatenated latent vectors of all molecules in the dataset and 

Σ is the covariance matrix over all 56-D concatenated latent vectors of all molecules in 

the dataset. The JT-VAE model decoded each sampled vector onto a molecule. The 
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resulting SMILES representation was then converted to a molecule object in the RDKit 

framework. Compound validity is computed as the fraction of samples for which RDKit 

successfully converted the decoded SMILES representation onto a molecule object. 

 

Latent space sampling strategy 

Once the JT-VAE model is trained, JAEGER generates new active molecules by taking 

an existing molecule as a starting point. This seed molecule is encoded onto its latent 

representation ztree and zgraph. JAEGER samples positions around ztree and zgraph by 

exploring the neighborhoods around those vectors. Specifically, search axes etree,i, with i 

= 1, 2, …, Naxes,tree, are set equal to the eigenvectors of the covariance matrix Stree computed 

over the collection of latent tree representations corresponding to the training molecules. 

This ensures that JAEGER explores directions providing the largest variations across the 

training collection. By centering a search axis etree,i at ztree, we can sample 2Nc + 1 positions 

at intervals along the axis: 

 

ztree,i,c = ztree + c Öltree,i g etree,i   

 

Where c = -Nc, -Nc + 1, …, 0, …, Nc - 1, Nc; where ltree,i is the eigenvalue associated with 

the eigenvector etree,i; and where g is a scaling factor. For a given number of search axes 

Naxes,tree, the total number of unique neighbors together with the original seed tree latent 

representation is Nsamples,tree = Naxes,tree (2Nc + 1) – Naxes,tree + 1. We use the same sampling 

scheme in the graph latent space to obtain Nsamples,graph. By combining all Nsamples,tree tree 

samples with all Nsamples,graph graph samples, we obtain a total of Nsamples = Nsamples,tree 
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Nsamples,graph - 1 unique samples in latent space. Each of those 56-D latent samples is 

passed through the activity model to predict their pIC50 values. Only samples with pIC50 

values above a certain threshold are decoded onto a corresponding molecule. On our 

hardware, it takes about 2.5 s to decode a latent vector onto a molecule. This deterministic 

sampling scheme thus ensures that JAEGER is able to generate relatively diverse active 

molecules while compensating for the relatively slow decoding time of the JT-VAE model. 

Similar sampling schemes have been successfully used in imaging-related 

applications24,25. For the malaria model, given the explained variances in each sub-space 

(Supplementary Figure 4), we used Naxes,tree = 28 tree axes as well as  Naxes,graph = 1 graph 

axis. We set Nc to 25 and g to 0.1 to sample densely around the seed molecule.  

 

Dataset 

We used molecules from a Novartis-internal Plasmodium falciparum proliferation assay. 

Compounds with more than 50 atoms were left out from the dataset in order to minimize 

reconstruction errors with larger molecules. Molecules with activity measurements 

outside the dose range were left out from the training set as well. After filtering, the dataset 

had 21065 molecules with measured pIC50 values. Properties of the molecules were 

calculated with RDKit.  

 

Plasmodium falciparum proliferation assay 

 

Following an established P. falciparum protocol26, parasite cultures were grown with 

complete media (RPMI 1640 medium (10.4 g/l) with 0.5% AlbuMAX II, 200 µM 

hypoxanthine, 50 mg/L gentamicin sulphate, 35 mM HEPES, 2.0 g/L sodium bicarbonate 
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and 11 mM glucose) and human erythrocytes. Cultures were maintained at 37° C in an 

incubator with 5% CO2. In vitro antimalarial activity was measured according to a modified 

SYBR Green cell proliferation assay27. Dose response curves data were normalized 

based on fluorescence signal values from DMSO treated wells (0% inhibition) and 

mefloquine treated wells (100% inhibition) at a final concentration of 10 µM. The standard 

logistic regression model was applied for curve fitting in order to determine EC50 

(GraphPad Prism Software), based on two independent experiments each performed in 

duplicate. 

 

PI(4)K enzymatic assay 

 

Enzymatic activity was measured according to a previously reported method28. Briefly, L-

α-phosphatidylinositol (Avanti Polar Lipid), dissolved in 3% n-octylglucoside (Roche 

Diagnostics), was used as the lipid substrate for the PI(4)K activity assay. PvPI(4)K was 

assayed using Transcreener ADP2 FP detection kit (BellBrook) in a black, solid 384-well 

plate (Corning). EC50 values were calculated from two independent experiments 

performed in duplicate using GraphPad Prism software. 

 

HepG2 cytotoxicity assay 

 

HepG2 are adherent cells that were maintained in Dulbecco's Modified Eagle's Medium 

(DMEM)-F12 supplemented with 1% penicillin/streptomycin and 10% heat-inactivated 

FBS. Fifty microliters of a 5x104 cells/mL suspension were dispensed in white, solid 384-

well plates (Greiner). Cells were exposed to compounds for 72 hours, after which cell 
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viability was quantified by using CellTiter-Glo®. This reagent measures ATP release 

based on the mono-oxygenation of luciferin catalyzed by Mg2+, ATP and molecular 

oxygen. EC50 values were calculated from two independent experiments performed in 

triplicate using GraphPad Prism software. 


