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Abstract:  

Light emissive organics and inorganic nanoparticles are substance classes competing for 

applications in displays in the form of organic LEDs (OLEDs) and quantum LEDs (QLEDs), respectively. 

Upcoming substance classes (perovskites) and Q-OLED displays also contain novel nanomaterials and 

organics for these applications. However, the sustainability of these emissive substances is difficult to 

assess quickly and broadly because of their complexity, their inherently different structures, and their 

rapid evolution in the literature. We propose the use of an alternatives assessment to compare the 

hazard, cost, and performance of these competing substances, with a focus on replacing cadmium-

containing quantum dots. The cost assessment highlights competitiveness of OLEDs because of their low 

amounts needed per display, but performance assessments do not identify a preferred alternative. The 

hazard results indicate there is no clear alternative either, with each novel nanomaterial or organic 

substance having different negative aspects. These results identify the need for a low-hazard high-

performing alternative substance, and the assessment provides a framework for researchers to evaluate 

their own novel substances.  



 

Introduction:  

Globally, the fate of 83% of electronic waste (E-waste) is unknown, likely dumped or dismantled 

in potentially hazardous circumstances.1 This undocumented E-waste (44 million metric tons generated in 

2019 alone) has embedded chemicals and substances that are commonly released into the environment.1 

One type of electronic good with increasingly diverse chemicals are screens and monitors, which 

currently make up 12.5 wt% of global E-waste. Contrary to global E-waste trends, the total weight of 

disposed screens and monitors is decreasing slightly (by 1% over 4 years).  This shift is attributed to the 

replacement of traditional heavy cathode ray tube (CRT) monitors with lighter flat panel displays in waste 

streams.1 These two screens rely on different technologies and heavy metals, with CRT relying heavily on 

lead while flat screens have a cocktail of heavy metals.2 This technology shift has represented an overall 

decrease in certain end-of-life impacts,2 although unknown risks remain.    

The next generation of flat screen televisions currently has many different emissive substance 

classes vying for dominance.3 These classes use novel substances that convert charge or light into specific 

colors. The main substance of concern is cadmium-containing quantum dots (Cd-QDs), due to the known 

toxicity of Cd.4  This substance of concern has led to numerous studies reviewing the sustainability of the 

Cd-QDs and competing substances.5 For example, life cycle assessments (LCAs) have been performed to 

compare the cumulative energy demand of Cd-QDs and indium-containing QDs (In-QDs).6 After updating 

these assessments with new data on the amount of materials in televisions, In-QDs were found to require 

approximately 13 times more energy (MJ cm-2) than Cd-QDs.7 LCAs have also been used to point out areas 

of concern in the manufacturing of Cd-QDs into quantum light emitting diode displays (QLEDs), such as 

the aquatic acidification and ecotoxicity of a Cd-QD encapsulating polymer.8 Another substance class of 

interest to displays, perovskites, have attracted significant research attention for their use in photovoltaic 

panels, and sustainability assessments have mostly focused on that application. Studies have weighed the 

risks of using lead in perovskites versus lead alternatives using a variety of metrics, with some concluding 

that lead-based perovskites performance outweighs the possible risk,9 while others encourage the 

development of lead-free materials.10  Lastly, QLEDs are functionally matched by organic LEDs (OLEDs), 

which rely on specific organic emitters (OEs). In sustainability assessments, however, OLEDs are 

commonly compared to traditional liquid crystal displays (LCDs). OLEDs require less energy over their 

lifetime,11 but assessments focused on the end of life of these materials caution the higher toxicity 



potential.12 In summary, these Cd-QD, In-QD, perovskite and OLED assessments have pointed out 

sustainability concerns unique to each substance class.  

 The sustainability studies mentioned above employ LCA, which has provided in-depth and useful 

comparisons between two substance classes. However, there are challenges with LCA in assessing all 

emissive substances that are still at the research stage.13 For example, modelling a scale-up scenario is 

time consuming and involves various assumptions to cover missing impact data. 13 In addition, the toxicity 

profiles of these research-stage nanomaterials of complex composition are not often known and cannot 

be easily predicted by models.13 These challenges, and many others, hinder the use of LCAs for 

nanomaterials at the research stage.14,15 A high-level yet simple sustainability evaluation is needed that 

encompasses all substance classes while remaining accessible to researchers developing these 

substances. 

 The alternatives assessment framework was developed to help identify safer and effective 

alternatives to a chemical of concern.16,17 This methodology prioritizes reducing the potential harm of 

new substances, while also recognizing only the alternatives that are feasible (e.g. in terms of cost and 

performance). It is a flexible assessment that allows for comparison of numerous options and materials 

classes if desired. For example, Gilbertson and Ng compared organics to minerals to nanomaterials in a 

search for alternatives to brominated fire retardants.18 We have previously published an alternatives 

assessment on 46 perovskites in solar cells, which has identified the least hazardous alternative as well as 

the steps needed for that alternative to be more competitive with the highest-performing lead-based 

material.19 Alternatives assessment are powerful methods in the context of sustainable chemistry 

because they enable research on the design and synthesis of safer alternative molecules and materials, 

but also a simple assessment of emerging one.20 We hypothesize that this flexible assessment could also 

be used by substance researchers to identify responsible replacements for Cd-QDs for displays. This 

assessment could then identify promising substance classes that need further investigation via LCA.  

The objective of this study is to analyze Cd-QDs and its possible replacement substance classes 

with an alternatives assessment to foster a broad understanding of the field. We followed the US National 

Research Council guidelines17 and made the assessment fit for the purpose of analyzing emissive 

substances in displays. We produced three evaluations: performance, cost, and hazard. Using substance 

syntheses and reported performance metrics as inputs, we output a score in each evaluation. Then, we 

compared the scores of different substance classes with the goal of finding a viable substitution. We also 

aimed to structure this alternatives assessment so that materials researchers can add in their own 



chemicals (in a reasonable timeframe) and compare them to other emerging substance classes. In short, 

an alternatives assessment for emissive substances can help point researchers to an informed 

substitution of Cd-QDs. 

 

Methods 

 This assessment follows the steps of the US National Academy’s Framework to Guide Selection of 

Chemical Alternatives.17 Steps 1-4 are outlined in the following section “Identify substance class of 

concern & scoping problem formulation”. Step 5-7 and 9 encompass the Cost, Performance and Hazard 

assessments sections of the methods. Step 8 involved integrating life cycle analysis, which we did not 

pursue due to the early research stage (and therefore high uncertainty) of some analyzed substances. 

Step 10 and 11 involves bringing together all evaluations to compare and identify an acceptable 

alternative. These steps are addressed in the “Multiparameter Evaluation” section. All steps and methods 

sections are represented schematically below (Figure 1), and details will be reported in the following 

sections.  



 

Figure 1: Outline of substance class of concern and alternatives packages examined in this alternatives 

assessment. Step 1 identifies the substance class of concern, Cd-QDs, which are integrated into displays. 

Step 2 points out two different boundaries employed in this assessment. Four key terms are bolded in the 

large table of steps 3-4: substances, substance class, packages, and display types. These terms are all 

significant to categorizing alternatives. Steps 5-7 & 9 illustrate the three different evaluations conducted 

for each package: price, performance, and hazard. Steps 10-11 indicate that these three evaluations will 

be aggregated into one score for each package.  

 

Identify substance class of concern & scoping problem formulation 



The first four steps of this framework involve (1) choosing a substance of concern, (2) formulating 

the boundaries of the assessment (3), identifying alternatives, and (4) screening the alternatives.  We 

decided to abide by the following three decision rules as boundaries to the assessment. First, the 

foundational data for this assessment is based on public knowledge. Second, the alternatives presented 

are emerging substance classes, which are highlighted to spur development. Third, the scaling up of the 

production of these alternatives is not considered. 

The four steps mentioned above were informed by a search of both the scientific literature and 

press releases from display and QD companies. Literature was searched before April 2021 and considered 

for use in this assessment if it met the following criteria: (1) use of developed substance in a device; and 

(2) explicitly outlined steps and procedures in chemical and device fabrication. Patents were excluded 

from the search. We also consulted with scientists developing these substances as well as those assessing 

the degradation and subsequent toxicity of these substances through the McGill Sustainability Systems 

Initiative (MSSI).  

 As noted in the introduction, we aim to identify responsible replacements of Cd-QDs in displays 

using alternatives assessment. We defined Cd-QDs as a substance class that is made up of many 

substances (different Cd-containing QDs from different syntheses). We chose two different syntheses of 

cadmium-containing quantum dots, therefore having Cd1-QDs21 and Cd2-QD22 substances. We chose two 

syntheses to demonstrate possible differences inherent to one substance class (in the case of QDs there 

are different shell compositions and precursors). We chose these two syntheses specifically because they 

both produce high performing Cd-QDs.  

 To connect these substances to their end use in displays and rely on uniform nomenclature, we 

organized the assessment according to four key designations (highlighted as A-D in this paragraph, also 

displayed in Scheme 1). (A) Substances are individual single or multiple mineral phases or organic 

compounds that achieve a desired function (emitting red, green, or blue light in this case). Substances 

belong to a (B) substance class. A substance class is composed of substances that are generally similar in 

structure. For example, Cd-QDs are a substance class. Returning to (A) substances, we chose to group red, 

green, and blue emitting substances together because they make up the three colored pixels in displays 

(Table S1). Each such group was designated as a (C) package. These packages will essentially be the units 

analyzed in this alternatives assessment. Lastly, there are (D) display types. We decided to integrate 

display types because these are known by consumers and marketed by the industry. The Cd-QDs 



substance class is used in a display type (QLEDs).  QLEDs have blue substances that emit light from 

charge, and red and green substances that emit light by down-converting blue light.   

According to the above definitions, Cd-QD substance class cannot make up a package on its own 

because it must have a blue emissive material. To complete the package, we added InGaN substance as a 

blue emitting material.23,24 InGaN also provides the blue backlight necessary for QDs, which down-convert 

the light.25  InGaN is therefore an integral part of the display type, QLED. In summary, the substance class 

of concern was grouped into two packages: Cd1-QLED and Cd2-QLED. These packages are labelled such a 

way that the display type (QLED) and the substance class (Cd-QDs) can be identified. The 1 and 2 refer to 

different synthetic methods for slightly different chemical compositions of the substances (Cd1-QDs and 

Cd2-QDs).  

 

Identify and screen alternatives 

 In a similar manner as the substance class of concern, alternative substance classes were grouped 

in packages of red, green, and blue emissive materials. Alternatives to Cd-QDs were chosen to represent 

three different emerging substance classes: In-based QDs, perovskites, and organic emitters (OEs). 

Chosen alternative substances were high performers in their respective substance classes (see SI excel 

sheet for complete list of alternatives screened). Performance was based on high quantum yield (QY) and 

external quantum efficiency (EQE), both of which indicate that the material is adept at transforming light 

or charge into a given wavelength.  

In-based QDs are currently replacing Cd-based QDs in some displays because of their lack of Cd, 

due to the latter’s toxicity concerns. The synthesis of In-based QDs is less mature than that of Cd-based 

QDs, and was challenged by initially with a lower quantum yield and broader emission.25  Two In-based 

QD substances were explored, and since they need an InGaN backlight (and therefore QLED display type), 

they are identified as In1-QLED26 and In2-QLED.27  

Perovskites are presented in literature as having a similar emissive tunability as QDs, but with 

simpler syntheses. These materials are promising because of their defect tolerance and high rates of 

emission, but the development of a blue material lags behind green and red ones.28 Two green/red 

perovskite alternative substances were chosen, one which contains lead,29 while the other is lead-free.30  

Although the lead-based perovskite alternative has high performance, we anticipate the presence of lead 

could create a similar situation as Cd, as both elements are heavy metals with known adverse health 



effects covered by the same EU regulations.31 These perovskites also retain the InGaN backlight, and are 

identified as Per1-QLED29 and Per2-QLED.30  

OEs are currently being developed as alternative substances and have the advantage of 

generating all colors from charge, rather than needing a blue color excitation which must be down 

converted. This means that OEs have their own display type: OLEDs. OEs are a rapidly evolving field, but 

recent developments can be approximately categorized according to their method of exciton 

recombination: phosphorescence (Ph) and thermally activated delayed fluorescence (TaDF).32 These 

categories are thoroughly explored in several reviews33–35, but we chose to focus on the best-performing 

materials identified by Bräse et al.32  For OEs, a green, red, and blue chemical substance of each 

generation were chosen for packages 2-OLED36–38 (Ph) and 3-OLED39–41 (TaDF). It is unclear which 

alternative substance is used by industry, but we decided to investigate these because of their impressive 

performance in academic papers. 

Lastly, we looked ahead to upcoming market-ready developments (which we could emulate here) 

to showcase the versatility of the alternatives assessment approach. The development of Q-OLEDs aimed 

to address separate issues with QLED and OLED display types by combining different substance classes.42 

This substance class promises “lower cost, higher brightness, improved power efficiency and more 

accurate color reproduction”.42 In this next generation substance class, blue OEs substances are matched 

with emerging green and red substances.42 For our assessment, we consider these emerging substances 

from the In-QDs or perovskites substance classes. This creates the following alternative packages: In1-Q-

OLED,26,41 In2-Q-OLED,27,41  Per1-Q-OLED,29,41 and Per2-Q-OLED.30,41  

 In short, there are 12 packages evaluated in this assessment (see Table S1 for summary). There 

are 2 packages of known concern, Cd1-QLED and Cd2-QLED. There are 4 packages of alternative QLED 

displays based on In-QDs (In1-QLED and In2-QLED) and perovskites (Per1-QLED and Per2-QLED) 

substance classes. There are 2 packages based on the alternative OLED display types which use OEs (2-

OLED and 3-OLED). Then there are 4 packages of Q-OLED display types, which use a combination of OEs 

for blues and either In-QDs or perovskites for green and red (In1-Q-OLED, In2-Q-OLED and Per1-Q-OLED, 

Per2-Q-OLED). In total, these 12 packages span different display types and substance classes.  

 

Price Assessment 

We followed the method set up by Chen et al.27  to estimate the costs of each alternative 

package. The amounts of each alternative substance was calculated based on the needs to cover 1 cm2 of 

screen area, and then added to the cost of the other substances in the package.  This calculation involved 



finding the cost of each chemical used in the synthesis, estimating the yield of the synthesis, and 

determining how much of each chemical is used in 1 cm2 of screen area. These three steps each involved 

certain assumptions described below.  

After the precursors of each substance were identified, their cost was found by searching for the 

chemical on Sigma Aldrich 2021 catalogue and choosing the price ($ CAD) of the largest container size (up 

to 1 kg for solids or 4L for liquids). The purity examined matched that described in the syntheses. The 

costs of manufacturing different alternatives were not considered due to the large differences between 

small-scale syntheses and industrial operations.  

After the price of each precursor was established, the final price of the alternative material was 

estimated based on certain yields. The yields of OLED materials are stated in the literature,36–41 however 

the yield of QDs and perovskites are not stated in the cited papers.21,26,29,30,43,44 To account for this, we 

averaged the yield in all steps of the OLEDs synthesis and applied this yield to the limiting reagent in the 

QDs and perovskites syntheses (see SI spreadsheet for each calculation). For InGaN, the reagents were 

chosen based on fundamental knowledge of the syntheses24,45 and the same OLED-based yield was 

applied (no one limiting reagent).  

With the cost of 1 kg of each alternative material calculated, costs were combined with estimated 

costs of other materials into a given package (of red, green, and blue materials, see Table 1). We assumed 

QDs concentrations from concentrations of Cd and In from commercial televisions.7 We assumed that 

perovskites would be present in displays at the same concentrations as Cd-QDs. For OLEDs, we assumed 

that the amount of In present aligned with estimates by Zink et al.46 We also assumed that In-free OLED 

alternatives would be present in the same molar concentration as In-containing OLEDs. For InGaN, we 

chose the amount necessary in a display based of a detailed life cycle assessment. 24 

 

 

Performance Assessment 

Successful materials for color generation in television must meet a variety of performance 

requirements. Two favorable characteristics are widely reported; 22,44,47 photoluminescence quantum 

yield (QY) and narrow emission spectra as quantified by full width at half maximum (FWHM). We chose 

these as two out of three performance metrics.  

In addition, it is key to determine if the material produces the exact wavelength necessary for 

displays. ITU-R Recommendation 2020 (Rec. 2020) color standard is the benchmark of colors possible in a 



display based on a combination of the ideal red, green and blue pixels.48 To calculate whether a material 

meets this standard, the peak wavelength of emitted light was converted to X,Y space in the CIE color 

graph (Commision Internationale de L’Eclairage). These (X,Y) values were then plotted on a graph and the 

overlap with Rec. 2020 color standard was calculated (see online tool49 and SI for details). Although there 

are numerous examples of >90% coverage of Rec. 2020 with certain combinations of QDs,50 and 

perovskites,48  100% coverage has not yet been achieved (to the best of the our knowledge).  

 These three metrics (quantum yield, FWHM, and percent coverage Rec 2020) were collected for 

each material from their respective sources. InGaN performance information was gathered from the 

Ullman Encyclopedia of Industrial Chemistry (QY and peak wavelength)23 as well as the review by T. Wang 

(FWHM).51  

For each package, the red, green, and blue values for each metric were averaged. For example, 

an alternatives’ FWHM values for red (30 nm), green (50 nm) and blue (60 nm) were combined such that 

the FWHM value for the alternative package would be 46.7 nm. Then, each averaged metric for each 

package was compared, with the best value ranked as 1 and the worst 0.1. For quantum yield and 

percent coverage Rec 2020, the highest percentages were considered best, while for FWHM, the lowest 

value was considered best. Then, each metric score was added together to obtain the final performance 

score. For example, if a package had the most Rec 2020 coverage (rank =1), the highest quantum yield 

(rank = 1) and the lowest FWHM (rank = 1), then its combined performance score would be 3.  

Hazard Assessment 

 Hazard assessments are difficult to construct due to lack of data for most chemicals in commerce.  

Following a study  by Llanos et al.,19 precursor substances were selected as the inputs to the hazard 

assessment. This aligns with certain chemical regulations, which determine the inherent hazard of a 

product from its chemical inputs at the manufacturing stage, rather than possible end of life issues.52 

Hazard data was obtained using the Toxics Use Reduction Institute’s Pollution Prevention Options Analysis 

System Tool.53 This tool process data from Safety Data Sheets and the GHS into subcategory and category 

scores for different hazards for each chemical (See SI excel sheet for full list of subcategories and 

categories). The most hazardous score for each subcategory was 10, the least hazardous was 2, and if 

data was missing, we entered in 0 (see SI excel sheet for full assessment). The worst variable in each 

subcategory score of the P2OAsys analysis was used as the final subcategory score. The score of each 

category was the average of the subcategory scores. The most common assessors of hazard present in 

the Safety Data Sheets studied were combined into three metrics; Human Health, Environment, and 



Physical Properties (see SI Table S2 for category combinations for each). In short, human health 

encompasses acute and chronic effects on humans. The environment metric covers the acute and chronic 

effects on aquatic organisms, as well as persistence and bioaccumulation potentials. Physical properties 

covers flammability, reactivity, corrosivity, and volatility.  

 

Multiparameter Evaluation 

 The cost, performance and hazard assessments were combined to highlight the overall feasibility 

of the packages. This was done by first ranking the scores of the packages per evaluation on a scale of 1 

(best) to 0.1 (worst). The best scores were awarded to the most cost attractive, the highest performing 

and the safest. A theoretical package, that scored best in all evaluations, would score a 3 (1+1+1) in the 

multiparameter evaluation.   

 

 Results and Discussion: 

Cost assessment  

 Figure 2 presents the cost in Canadian dollars of each package per cm2 of display area. These 

costs vary dramatically, from $1.30 to $0.001 CAD/cm2 (Cd2-QLED and 3-OLED, respectively). The cost of 

each individual material was not correlated to the number of steps in the synthesis or the number of 

chemicals involved in the synthesis (Fig. S1). We acknowledge that since the cost estimates were based 

on the Sigma Aldrich catalog, these costs do not reflect the savings that manufacturers can achieve by 

buying chemicals in bulk or at slightly lower purity. However, we hypothesize that the trends in different 

costs of packages will persist due to the large cost differences (Figure 2).  

 

 

 



 

Figure 2: (A) Price assessment results, grouped by package of red, green, and blue pixels with a 

logarithmic y-axis. (B) Total prices of the packages, again on a logarithmic y-axis (see spreadsheet for table 

of values).  

 

Most of the cost incurred by Cd2-QLED (and other QLEDs) arises from the blue emissive material, 

InGaN. This material is costly to produce because its precursors are costly deposition-grade metal 

organics (e.g. trimethylindium). In addition, the amount of InGaN per television is ~20x more than the 

next highest amount of chemical (Red-Cd2-QLED) and ~70,000x more than the least amount of chemical 

 

 



needed (Blue-3-OLED). Therefore, improvements in both the type or precursors and the amount of B-

QLED would decrease the cost of the material. It is unclear whether efforts to introduce micro-LEDs (µ-

LEDs) with smaller area backlights of InGaN will reduce the total amount and cost of InGaN used in the 

product.  

OLED materials (including the B-Q-OLED) have the advantage of needing ~100x less mass of 

material compared to pervoskites (Per) and InP QDs. These lower material requirements absorb the high 

cost per gram of OLEDs precursors. Such estimates of material requirements have been amended in the 

past due to examination of actual products.7 

 Figure 2 also demonstrates differences between specific procedures making the similar materials. 

For example, Cd1-QDs costs >0.01 $CAD/cm2 of display, while Cd2-QDs costs 0.60 CAD/cm2 of display. 

These differences do not lie in the amounts of materials in the television, but rather in the amount and 

price of the precursors compared to the yields of the syntheses. Most (80%) of the cost of Cd2-QDs is 

driven using trioctlyamine, a solvent which is ~10x more expensive than the solvent used in Cd1-QDs 

(octadecene). In addition, Cd2-QDs uses ~3x as much solvent as Cd1-QDs. Another example of a cost 

difference in the same material is between Per1-Green and Per2-Green.  Specifically, Per2-Green uses 

much less solvent than Per1-Green (13 mL octadecene and 990 mL octane per gram of substance, 

respectively), which is reflected in the price (18 and 1,514 $CAD/g substance, respectively).  

 We acknowledge that a key factor in the cost assessment is missing: the cost of encapsulation. In 

other words, the cost of other layers in a display is not included, even though certain layers may change 

depending on the package employed. For example, blue OLED materials need to be more encapsulated 

than blue QLED,54 which increases costs.  

In addition, the cost of manufacturing the materials at scale is not considered because these 

substances were analyzed at the lab scale. The cost of manufacturing could increase if there are many 

steps involved in a substance synthesis. For example, QDs need purification between core synthesis and 

shelling steps.21,22 The cost of manufacturing may also increase due to the inherent instability of certain 

substances. For example, perovskites are air and water sensitive,55 which could call for more specialized 

equipment at the manufacturing stage.  

Lastly, a low cost does not necessarily equate to an available material on the market. For 

example, the EU designated certain raw materials that were economically important, but had a high 

supply risk in their list of Critical Raw Materials. A few elements present in this list are also key to 



substances mentioned here: Gallium, Indium, Phosphorous, Iridium.56 The substance classes that have a 

high supply risk are therefore In-QDs and certain OEs. In addition, In and Ga are the backbone to the blue 

substance in QLEDs, InGaN.  

Performance assessment  

 The best performers had low FWHM, high quantum yield, and high Rec. 2020 overlap (e.g. Cd2-

QLED, Figure 3). The three highest ranking packages were Cd2-QLED, In2-QLED and Per1-QLED. These 

three packages had favorable (i.e. low) FWHM and high Rec 2020 overlap. 

 

 

 Figure 3: Performance Assessment results, grouped by FWHM (purple), Quantum Yield (brown) and Rec 

2020 overlap (yellow). The highest rank possible for each performance indicator is 1 and the lowest is 0.1.  

 These linear rankings have the possibility of obscuring non-linear trends in each of these 

performance metrics. However, we observed that the trends of ranking vs. performance metric were 

relatively linear (R2 = 0.93-0.98, see Fig. S3). In other words, these rankings do not hide a large disparity 

between packages, substance classes or display types.  

However, the high performance of one package was not linked to high performance of the other 

package of the same substance class. For example, In2-QLED performed well overall (score of 2.2), but 



In1-QLED did not perform as well (score of 1.4).  Different syntheses led to very different performance 

scores.  

For QDs or perovskites, we propose that the simplest improvement to overall performance could 

be made by improving the Rec. 2020 overlap. The needed wavelengths to meet this standard57 could be 

reached by these substance classes by changing particle size (QDs)58 or elemental ratios (perovskites).29 

For OEs, the tuning of emission is reliant on tuning ligands.59  

The performance assessment also highlights that there are differences between OLEDs and 

QLEDs. Blue-OLEDs have higher quantum yields and worse (i.e., higher) FWHM values than the Blue-

QLEDs (which are InGaN based). In addition, the Blue-3-OLED (which is also the blue color in Q-OLEDs) has 

an emission at 480 nm, which lowers the Rec.2020 overlap (Fig. S2). These FWHM and emission peak 

(both attributed to the blue colors) decreased the overall scores of the Q-OLEDs. This need for 

improvement in the blue emitters is highlighted by others as well. 28,60  

The lowest performing packages were Per2-QLED and Per2-Q-OLED. These lead-free perovskites 

had low quantum yields and low overlaps with Rec. 2020. These design considerations are necessary to 

produce viable lead-free perovskite alternatives. Although only one lead-free perovskite alternative was 

explored here, other lead-free perovskite alternatives have been compared elsewhere for solar 

applications.19 These perovskite variations may be applicable to displays as well.  

 This performance assessment did not encompass all possible measures of performance. Low 

performance in metrics not measured here could lead to serious issues as substance classes are 

evaluated for implementation at scale. One such performance metric not analyzed here is stability. For 

each substance class, we found that researchers experienced issues with the stability of the substances. 

55,61,62 However, the discussions regarding stability of different substance classes is often qualitative. We 

don’t have a quantitative was to compare these statements for the specific substances assessed here– 

broadly applicable quantitative tests are needed for stability evaluation.  

 In addition, encapsulation’s impacts on stability need to be well established for each substance 

class. Encapsulation can also have impacts on the performance metrics reviewed here. The quantum yield 

for substances in this assessment were measured in solution, not in the powder form or embedded in 

plastic. This change in environment typically does not affect QDs performance, but has been known to 

impact perovskites.55 Perovskites suffer from quenching in powder and color segregation in mixtures (in 

other words, ion exchange which could muddle colors). Encapsulation also affects InP QDs. In-QDs that do 



not have excellent electron confinement (which originates from imperfect shell structure or incompatible 

ligands) can also have unwanted emission and loss of color purity (i.e. FWHM suffers). 63 InP QDs 

mechanisms of degradation are not as studied in the literature as those affecting Cd-QDs. Their structural 

similarities between In-QDs and Cd-QDs have meant that often Cd-relevant designs for QLEDs are used. A 

deeper understanding of InP-specific instability can help overcome this barrier.63 

In summary, these performance metrics are not perfect, but they do highlight certain essential 

properties of successful emissive materials. No one substance class had overall better performance than 

the rest, indicating that an individual synthesis can be the key to high scores. 

Hazard Assessment 

The hazard scores for each package were averaged (Fig. 3A) which broadly demonstrates that 

there is no fully innocuous package. In addition, no package stands out as less hazardous than the others. 

To investigate differences that could be averaged out, we chose to expand the data into a heat map (see 

Table S3 for specific scores). A heat map that separates hazards by type (health, environment, and 

physical properties) as well as by substance (red, green, and blue) demonstrates the nuances in the data 

(Fig. 3B).  

A 
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Figure 4: (A) averaged hazard assessment results and (B) hazard heat map, where dark indicates the most 

hazard, while light indicates the least hazard per substance (y-axis, red/green/blue) in a package (x-axis) 

   

 Touted as more sustainable than Cd-QDs in industry,64 In-QDs do not score as less hazardous in 

this assessment. Although In-QDs do score better than Cd-QDs in their environmental safety by 1 point, 

In-QDs score an average of 0.3 and 0.1 worse in health and physical properties, respectively, than Cd-

QDs. These results contradict the Cd-QDs and In-QDs toxicity to human cells, which has been compared in 

a side-by-side manner by Pompa et al.65 These QDs demonstrated similar instability and ion release.65 

However, because In ions were less toxic, so too were the In-QDs compared to Cd-QDs.65 These side-by-

side toxicity assessments are crucial, but the chemicals involved in the synthesis of QDs must also be less 

harmful, which is not the case.  

 Lead-based perovskites (Per1 packages) have low relatively health and physical properties 

hazards (average is 4.9 compared to the average of other packages which is 7.0). In contrast, they have a 

higher environmental hazard (average is 9 compared to the average of other packages which is 7.5), 

which roughly translates to LC50 for a 96h exposure to fish that is ≤ 1 mg/L. Surprisingly, the lead-free 

perovskite package (Per2 packages) was assessed here to be just as hazardous to the environment as the 

lead-containing Per1 packages. This is interesting because the drop-in replacement for lead bromide, 

antimony (III) bromide, is less hazardous. Therefore, one could expect Per2 to be less hazardous. 

However, there is increased hazard associated with the use of cesium bromide in Per2, compared to 

cesium carbonate in Per1. Also, various solvents in Per2 are harmful to the environment, such as 



oleylamine and octane, similar to the solvents found in Per1. In conclusion, Per2 packages employ more 

hazardous solvents and other precursors, increasing its average hazard. This conclusion illustrates that 

“lead-free” perovskites need to be studied with as much scrutiny as lead-based materials. In addition, 

these hazard conclusions about Per1 and Per2 focus on the inputs of the substances, the possible end-of-

life impacts are not considered.  

 OLEDs were assessed here to be just as hazardous as the QLED alternatives. Although the OEs are 

associated with organic precursors, some of their inorganic precursors were the most hazardous 

precursors used in their synthesis. For example, palladium acetate and copper cyanide precursors in OEs 

(from both packages 2-OLED and 3-OLED) scored the highest hazard possible, 10. More broadly, 53% of 

the precursors for OLEDs that scored 10 (most hazardous) in at least one category had metals present, 

while metals only made up 30% of the precursors. The 3rd generation OLEDs (package 3-OLED), which are 

free of iridium, scored better or similarly as 2nd generation OLEDs (package 2-OLED) in health and 

environmental hazard, but worse (by 1.7) in terms of physical properties.  

 The combined hazards in Figure 4 demonstrate the hazard data that was gathered from safety 

data sheets (SDS) for this alternatives assessment. Missing data was not represented in Fig. 4, but a lack 

of data has led to regrettable substitutions in the past. Data missing from this assessment is plotted in 

Figure 5. 

  

Figure 5: Initial missing hazard data results presented as a heatmap, where darker points indicate more 

missing data. At the maximum of the scale, 80% indicates that 80% of the precursors of a certain 

substance (color in the x axis) in a package (y-axis) had no data found in the SDS corresponding to the 



specific hazard (e.g. Environment in the x-axis). 0% indicates that all precursors of a substance had 

information regarding the specific hazard.  

 The least amount of missing data in Figure 5 is in the health hazard categories (see Table S4 for 

values). On average, only 1% of the precursors in all substances had data missing in both acute and 

chronic human health tests. This compares to 23-28% of the missing data for the environment and 

physical properties hazards. This points to the general lack of environmental hazard and stability data for 

many commercial chemicals.66 

 The largest amount of missing data is from the InGaN material, which forms the blue material of 

QLED displays. We hypothesize that lack of environment data is due to the high instability of the 

precursors (e.g. triethylgallium). These precursors decompose violently after contact with air and water 

and have been the cause of numerous workplace incidents.67,68 Investigation into their possible 

byproducts after the reaction is complete (metal oxides) also yielded missing environmental data.69 

However, data gaps such as these should be addressed before choosing such an alternative over another 

with a more complete dataset.  

 Also, it is important to note the data that is missing from the health, environment, and physical 

properties categories. The P2OASys tool has three categories that were not integrated into Figures 4 and 

5; Atmospheric Hazard, Process Factors and Life Cycle Factors. These three categories had 75-76% 

missing data, which we deemed not robust enough for inclusion in the results. However, if an alternative 

is identified, these categories must be explored more thoroughly to avoid regrettable substitutions.  

 Lastly, we acknowledge a lack of missing data about the end of life of these substances. 

Nanomaterials (e.g. Cd-QDs, In-QDs, perovskites) are known to undergo transformations which could 

impact their toxicity to humans, animals, or plants.70 In addition, the encapsulation of these emissive 

substances for use in displays could have large impacts on their eventual behavior in the environment, 

and pose occupational risks to workers who tend to dismantle electronic items.71 For ease of use of this 

assessment by other scientists, we decided to omit these end-of-life considerations. We hypothesize that 

decreasing the inherent hazard of the precursors of emissive substances could translate into less concern 

at their end of life.  

Aggregation of Evaluations 

With the three separate evaluations complete, the results were combined to determine if one 

alternative presented an optimal combination of high performance, competitive cost, and low hazard 



(Figure 6). To do this, the packages were assigned a rank per evaluation (e.g., the best performing 

material received a 1, least hazardous received a 1 and the lowest cost received a 1). Then the three 

ranks were combined equally (Figure 6A). If a package scored a ‘3’, this would indicate that it had the 

‘best’/ideal combination of performance, cost, and hazard. However, this was not the case for any 

package, and the best total score was 2.3 (In2-Q-OLED, Figure 6B), closely followed by 2.2 (In2-QLED) and 

2.0 (2-OLED). The lowest total ranks were 1.0 (Per2-Q-OLED and Per2-QLED) and 1.1 (In1-QLED). 

To demonstrate the versatility of the alternatives assessment, different weights were given to 

each evaluation (Figure 6C), and the scores changed (Figure 6D). With the weights being 1 for cost, 0.5 for 

performance, and 2 for environment, the highest possible score was 3.5. This did not change the top and 

bottom ranked packages mentioned above, but it did slightly increase the rank of Per1-QLED and 

decrease the rank of Per2-Q-OLED. 

 

 

Figure 6: (A,B) Combined assessments with weight of 1 for each assessment (best in a category has a 

score of 1) (C,D) Combined assessments with (starting from the bottom) a weight of 1 for cost, 0.5 for 

performance, and 2 for hazard (best in the category has a score of 1, 0.5 and 2 respectively).  

 



 These aggregate rankings both smooth out large differences in the packages (e.g. cost where 

variation is 5000 fold, Figure 2) while increasing the differences between packages (e.g., hazard, where all 

average scores are within 6% of the average). However, keeping these factors in mind, it is still possible to 

draw a couple of conclusions. 

 First, there is no substance class that is better than the others based on the findings of our 

assessment. The average score of all packages was 1.63, and each substance class had one package that 

scored above this, and another that scored below.  In other words, there is no substance class with both 

packages having a better aggregate score than the other substance classes. This, however, can be seen as 

an opportunity to develop safer, cheaper, higher-performing synthesis in any substance class. The more 

mature substance class, Cd-QDs in QLEDs, gave very similar aggregate scores, while newer substance 

classes like perovskites in QLEDs gave different scores.  

Second, there is variation within substance classes, except for Cd-QDs. Cd-QDs containing 

packages scored within 0.5 of each other. The packages representing other substance classes (In-QDs, 

perovskites, and OEs) scored father apart from each other. This indicates the importance of individual 

syntheses. Since only 12 packages were chosen for analysis, there is the possibility that a superior 

synthesis was overlooked. For this reason, the assessment is structured such that it can be reproduced 

and updated with the latest innovation in these varied substance classes.  

 The example given in Figure 6C,D illustrates how changing priorities can change the overall score 

of different packages. This set of weights could be the priorities of a company that wants to make a 

cheap, safe display that does not compete at the top of the line in terms of performance. This set of 

priorities would probably lead to more development of In1-QDs, which scored relatively well in both 

QLED and Q-OLEDs.  

 

Conclusions 

 This alternatives assessment introduced different metrics for the emissive substance scientist to 

consider when developing their materials. Along with performance, cost and hazard are important 

considerations for the eventual manufacturers and end-users of these materials. This study highlighted 

the cost, performance, and hazard of emerging emissive substance classes by combining substances into 

packages. We found that the synthesis of the substance has a large impact on its performance and cost, 

while hazards (when averaged) were largely the same. Combining these results highlighted that no one 



substance class is better than the others. This was surprising to us given the excitement in the literature 

regarding the sustainability of perovskites55 and In-QDs.64  

However, this alternatives assessment was not meant to conclusively rank all different substance 

classes or substances in this field, but rather to illustrate a method that could be used to assess new 

materials. This method has gaps in each assessment that can be filled by other researchers. In the cost 

assessment, we do not consider the possible impacts of encapsulation of each material, or the amount 

that could be wasted during manufacturing. In the performance assessment, there is no consideration of 

a materials stability because of a lack of standardized reporting by the primary sources. In the hazard 

assessment, we acknowledge that the hazard of a material is not simply the sum of its precursors and 

solvents. Work correlating the hazard of the precursors of a substance to the actual hazard of that 

substance at its end of life is necessary. Despite these gaps, this alternatives assessment did serve its 

original purpose of identifying possible issues with alternatives for Cd-QDs.  

If this alternatives assessment had identified a preferable alternative, more research and 

different sustainability assessments would be needed. We designate stability metrics as well as life cycle 

and expanded hazard metrics, as keys to the next steps to determine the suitability for use in displays. 

The limitations of this study are opportunities for further study by researchers developing emissive 

substances as well as toxicologists and environmental scientists.  
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