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ABSTRACT: According to the previous benchmark, Autodock 
Vina (Vina) achieved a very high successful-docking rate, �̂�, but 
give a rather a low correlation coefficient, 𝑅, for binding affinity 
with respect to experiment. This low correlation can be an 
obstacle for ranking of ligand-binding affinity, which is a main 
objective of docking simulations. The accuracy of Vina likely 
depends on the empirical parameters, which include the 
Gaussian steric interaction, repulsion, hydrophobic, hydrogen 
bond, and rotation metrics. In this context, we evaluated the 
dependence of Vina accuracy upon empirical parameters. 
Although changing of six parameters alters the obtained 𝑅 
values, the gauss2 and rotation terms form more effects. The �̂� 
terms are sensitive to the alterations of the gauss1, gauss2, 
repulsion, and hydrogen bond parameters. Therefore, three sets 
of empirical parameters were proposed as well as more to 
modestly focus on R (set1), modestly focus on �̂� (set3), and 
keep a tradeoff between 𝑅 and �̂�. The testing study over 800 
complexes indicated that the Vina with proposed sets of 
parameters can provide more accurate results since forming 
the larger 𝑅 value (𝑅set1 = 0.556 ± 0.025) compared with the 
original one (𝑅Default = 0.493 ± 0.028) and Vina version 1.2 
(𝑅Vina 1.2 = 0.503 ± 0.029). Besides, the testing study over 48 
biological targets indicated that the modified Vina can be 
applied more widely compared with the default package. These 
newly proposed parameters achieved a higher correlation 
coefficient and reasonable correlation coefficients (𝑅 > 0.500) 
for at least 32 targets, whereas the default parameters 
provided by the original Vina gave only 31 targets with at least 
0.500 correlation. In addition, validation calculations for 1315 
complexes obtained from the version 2019 of PDBbind refined 

structures suggested that  set1 of parameters are more 
appropriate than the other parameters (𝑅set1 = 0.621 ±
0.016) compared with the default package (𝑅Default = 0.552 ±
0.018) and Vina version 1.2 (𝑅Vina 1.2 = 0.549 ± 0.017). The 
version of Vina with set1 of parameters can be downloaded at 
https://github.com/sontungngo/mvina. The outcomes 
probably enhance the ranking of ligand-binding affinity using 
Autodock Vina. 

The ligand-binding process is one of the most important 
issues in biology.1 These processes are mostly associated with 
noncovalent chemical reactions between inhibitors and 
protein targets.2 In particular, the process can be mimicked 
using computational approaches,3, 4 which plays a tremendous 
role in computer-aided drug design (CADD).5 Accurate 
determination of ligand-binding affinity and pose of a small 
compound to an enzyme target are of great importance 
because they will reduce the cost and time for therapy 
development.5-7 Therefore, numerous computational 
approaches were advanced to carry out these tasks.8, 9 In terms 
of accuracy and required computing resources, these 
approaches can be roughly arranged into three groups: low 
accuracy and small consumption of central processing unit 
(CPU) time; medium in both accuracy and required CPU time; 
and accurate and precise approaches which require a large 
amount of computing resources. The first group involves 
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molecular docking10-13 and quantitative structure-activity 
relationship (QSAR) approaches.10-15 The second group 
includes fast pulling of ligand (FPL),16, 17 umbrella sampling 
(US),3, 18, 19 implicit ligand theory,20, 21 linear interaction 
energy,22-25 and molecular mechanism/Poisson-Boltzmann 
surface area (MM/PBSA),26-28 approaches. The last group 
contains free energy perturbation (FEP),29, 30 thermodynamics 
integration (TI),31, 32 and non-equilibrium molecular dynamics 
simulations (NEMD).33, 34 Moreover, the enhanced sampling 
techniques are also implemented into perturbation 
simulations in order to increase the obtained results.35-38 
However, these approaches would consume a huge of CPU 
time. 

 In order to calculate the binding free energy of a ligand to 
an enzyme, the molecular dynamics (MD) simulations were 
normally used to generate the equilibrium complex 
conformations, which conformations would be then 
employed as inputs into binding free energy investigations.39, 

40 However, before MD simulations were performed, because 
docking poses are required to use as MD initial conformations, 
molecular docking approaches are initially performed to 
preliminary estimate the ligand-binding pose and affinity.41, 42 
Moreover, molecular docking approaches have also been used 
for screening a large database of compounds,43, 44 which can 
comprise several millions of compounds such as ZINC,45 
ChEMBL,46 PubChem,47 etc. Therefore, although their 
accuracy is not very high, molecular docking approaches play 
an important role in CADD.48 

 Autodock Vina (Vina)49 is a free open-source application 
providing the ligand-binding affinity and pose rapidly.50 Vina 
is broadly used in the scientific community with more than 10 
000 citations since released in 2010 (WebofKnowledge). In 
particular, Vina was built with a completed empirical scoring 
function including the Gaussian steric interaction, repulsion, 
hydrogen bond, hydrophobic, and torsion metrics.49 
Moreover, the docking package is coded with the parallel 
computing ability, which makes Vina docking calculation run 
very fast.51 Furthermore, user-friendly is also a strong point 
that attracts users of the package.52 However, although Vina 
rapidly converges and adopts a large successful-docking rate, 
the correlation between docked and experimental data is low 
(𝑅 < 0.5).51 Due to the limitation, it is hard to rank the top-
lead ligands based on the ligand-binding affinity. Therefore, 
in this work, the dependence of Vina performance on 
empirical parameters was assessed to search for optimal set of 
parameters which enhance docking accuracy. The task is of 
great interest, especially due to the widespread of Vina to 
estimate binding affinities and poses of various substrates to 
biomolecular targets.53-57 In particular, 800 available ligands 
were redocked to their corresponding receptors using Vina 
with different empirical parameters. The list of complexes was 
reported in the previous study.51 The dependence of Vina 
performance on individual empirical parameters was then 
clarified. Based on the observation, three sets of empirical 
parameters were proposed. The performance of the Vina with 
modified parameters on 800 complexes51 was tested. Besides, 
1315 available inhibitors were also redocked to the 
corresponding receptors in order to validate the obtained 
results. The optimized empirical parameters would improve 
the accuracy of Vina. 

Complex Structures and Topologies  
 The complex conformations were download from the 
Protein Data Bank (PDB) according to the previous work51 and 
also reported in detail in the Supporting Information. The 
topological PDBQT files for rigid receptors and flexible ligands 
were generated via AutodockTools with more details in the 
Supporting Information.11 In particular, the Gasteiger-Marsili 
method was employed to calculate atomic charges.58, 59 

Molecular Docking Simulations 
 Vina was employed to redock several ligands to their 
corresponding receptors. In particular, the docking 
application was performed by using the globally searching 
exhaustiveness of 8, which corresponds to the default option.  
The maximum energy difference, which is the difference 
between the best and worst docking modes, was chosen as 7 
kcal mol-1.51 The docking grid was selected to be 20 × 20 × 20 
Å, in which the grid center was the ligand center of mass (cf. 
Figure 1). Only one docking conformation corresponding to 
the lowest docked energy was recorded. Moreover, the 
AutoDock Vina 1.2 (Vina 1.2) was also performed with the 
same parameters, but the spacing was 0.375 Angstrom instead 
of 1.000 Angstrom in Vina. 

 

Figure 1. Ligand was redocked to the binding site of the en-
zyme using Vina with various empirical parameters. The cen-
ter of mass of the experimental binding ligand was used as the 
grid center using AutoDockTools. 

Structural Analysis 
 The root-mean-square deviation (RMSD) of non-hydrogen 
atoms between docked and experimental poses was 
determined using GROMACS tools.60 The calculated error of 
correlation coefficient, successful-docking rate, and root-
mean-square error (RMSE) was estimated by using 1,000 
bootstrapping samples.61 The computed error of ligand-
binding free energy and RMSD was the standard error of the 
mean. 

 According to the previous assessment,51 Vina rapidly 
converges since the accuracy insignificantly increased upon 
changing the globally searching exhaustiveness from 8 to 56 
or 400, which corresponds to short, medium, and long 
options.51 Moreover, it should be noted that increasing the 
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exhaustiveness causes at least ca. 7 times increase in the 
computing interval. It thus is hard to use medium or long 
options when screening a large database of compounds that 
consists of several thousand/million elements. Therefore, the 
default or the short docking option is widely used to complete 
the task. In this context, we redock available inhibitors to the 
corresponding targets using the short option as mentioned 
above. Furthermore, as mentioned above, Vina is an empirical 
approach, in which the application uses six parameters 
including gauss1, gauss2, repulsion, hydrophobic, hydrogen 
bond, and rotation terms to calculate the contribution of the 
Gaussian steric interaction, repulsion, hydrogen bond, 
hydrophobic, and torsion terms.49 In order to assess Vina 
performance dependence upon empirical parameters, we 
changed the individual parameter with an among of 10 % of 

each alteration (cf. Table 1). In particular, the four parameters 
gauss1, repulsion, hydrophobic, and hydrogen bond were thus 
changed in the range from -50 to +50 % with respect to the 
default values. The gauss2, and rotation parameters were 
varied in the range from -50 to +150  and -90 to +50 % of the 
parameters, respectively. Besides, although the docking of 800 
ligands to corresponding receptors was previously completed 
using the original Vina, we also redocked these complexes via 
the unchanged docking application. Three new sets of 
empirical parameters were then proposed upon the 
understanding about the change of docking results via the 
alteration of empirical parameters, which named set1, set2, 
and set3. Therefore, 78 versions of Vina having different 
empirical parameters were compiled to redock ligands to 
receptors.

Table 1. The Different Empirical Parameter Values Was Tested.a 

N0 Change (%) gauss1 gauss2 repulsion  hydrophobic  hydrogen bond rotation 

1 -90     
 

0.006431 

2 -80     0.012861 

3 -70      0.019292 

4 -60      0.025722 

5 -50 -0.017790 -0.002578 0.420123 -0.017535 -0.293720 0.029230 

6 -40 -0.021347 -0.003094 0.504147 -0.021041 -0.352463 0.035076 

7 -30 -0.024905 -0.003609 0.588172 -0.024548 -0.411207 0.040922 

8 -20 -0.028463 -0.004125 0.672196 -0.028055 -0.469951 0.046768 

9 -10 -0.032021 -0.00464 0.756221 -0.031562 -0.528695 0.052614 

10 Default -0.035579 -0.005156 0.840245 -0.035069 -0.587439 0.05846 

11 +10 -0.039137 -0.005672 0.92427 -0.038576 -0.646183 0.064306 

12 +20 -0.042695 -0.006187 1.008294 -0.042083 -0.704927 0.070152 

13 +30 -0.046253 -0.006703 1.092319 -0.04559 -0.763671 0.075998 

14 +40 -0.049811 -0.007218 1.176343 -0.049097 -0.822415 0.081844 

15 +50 -0.053369 -0.007734 1.260368 -0.052604 -0.881159 0.087690 

16 +60  -0.00825     

17 +70  -0.008765     

18 +80  -0.009281     

19 +90  -0.009796     

20 +100  -0.010312     

21 +110  -0.010828     

22 +120  -0.011343     

23 +130  -0.011859     

24 +140  -0.012374     

25 +150  -0.012890     

aBlank squares in the table mean that the changed parameters were not applied.  
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 As mentioned above, the docking study using default 
empirical parameters was reproduced to compare with 
modified versions, in which the obtained results were 
mentioned in the Supporting Information 2. The Pearson 
correlation coefficient between docked and experimental 
values is of 𝑅Default = 0.493 ± 0.028, which is in good 

agreement with the previous work, 𝑅Vina
short = 0.489 ± 0.027.51 

The successful-docking rate which is defined as having RMSD 
less than 0.2 nm is of �̂� = 86 ± 1 %, which is larger than that 
reported in the previous reports using the long option, �̂� = 81 
%. It should be noted that the long option used the 
exhaustiveness of 400, which is required ca. 50 times longer 
computing time than the short option. The polar hydrogens 
were not automatically added to complexes in the previous 
work could be the cause of the smaller �̂�. However, the 
correlation coefficients were insignificantly changed. Besides, 
the average of binding energies over 800 complexes is of 
∆𝐺Default = −8.60 ± 0.06 kcal mol-1, which is smaller than that 

from the previous study, ∆𝐺Vina
𝑠ℎ𝑜𝑟𝑡 = −7.75 ± 0.06.51 The 

difference between theoretical and experimental results is of 
𝛿 = 0.62 kcal mol-1. The obtained outcome implies that the 
hydrogen bond parameter probably adopted a strong effect on 
docking pose and docking energy but less effect on docking 
accuracy.  

 The docking simulations using various empirical 
parameters, which were mentioned in Table 1, were 
performed. The docking results were described in the 
Supporting Information 2. Moreover, the accuracy of docking 
simulations was determined via the correlation coefficient 
analyses, in which the obtained values of 𝑅 were shown in 
Table S1 of the Supporting Information. Furthermore, in the 
first steps, we have changed all of empirical parameters in the 
range from -50 to +50 % of their default values. The 
dependence of 𝑅 upon the empirical parameters were shown 
in Figure 2. Interestingly, the 𝑅 value is not sensitive to the 
change of the gauss1 and hydrophobic parameters since it gives 
a relative deviation to the original one (𝑅Default = 0.493) by 
amounts of 6 and 3 %, respectively. The 𝑅𝑔𝑎𝑢𝑠𝑠1 reached the 

maximum value of 0.513 ±  0.028 correspondings to the 
𝑔𝑎𝑢𝑠𝑠1 = −0.049811 (+40%), the difference from the original 
Vina only is 4%. Besides, the alteration of the hydrophobic 
metric turns the 𝑅ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 ranging from 0.492 to 5.08. The 

largest value of 𝑅ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 thus differs the 𝑅Default by an 

amount of 3%. Moreover, the obtained results suggested that 
the coefficient, 𝑅, is more sensitive with the change of the 
repulsion and hydrogen bond terms. In particular, the 
𝑅𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 ranges from 0.472 ±  0.027 to 0.510 ±  0.027 and 

𝑅ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑏𝑜𝑛𝑑 ranges from 0.447 ±  0.030 to 0.508 ±  0.026 

corresponding to relative variation of 8 and 12 %, respectively. 
However, the maximum value of 𝑅𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 and 𝑅ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑏𝑜𝑛𝑑 

only differ from the 𝑅Default by 3%, respectively.  

 

 

 

Figure 2. The correlation coefficient between docked and ex-
perimental binding free energy upon the changing of empiri-
cal parameters. 

 The story is significantly different when the alteration of the 
gauss2 and rotation parameters were induced. These two 
terms are most influential to the Vina accuracy. When the 
changing from -50 to +50 % of the default value, the 
corresponding correlation coefficient 𝑅𝑔𝑎𝑢𝑠𝑠2 and 𝑅𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

range from 0.439 ±  0.030 to 0.524 ±  0.024 and 0.451 ±
0.027 to 0.525 ± 0.028, which correspond to relative 
deviations of 17 and 15 %, respectively. The maximum values 
of 𝑅𝑔𝑎𝑢𝑠𝑠2 and 𝑅𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 differ from the 𝑅Default with amounts 

of 6 and 6 %, respectively. Interestingly, although changing  
gauss2 and rotation terms significantly increase the 
correlation coefficient, their influence are in the opposite 
direction. In particular, the 𝑅 value tends to grow when the 
rotation parameter is decreased. On the other hand, the 
metric raises upon the increase of the gauss2 term.  Because 
the 𝑅 values still increase upon the decreasing and increasing 
of the gauss2 and rotation terms, respectively, the gauss2 
metric was increased to -0.012890 (+150%) of the parameter 
and the rotation value was decreased to 0.006431 (-90%) as 
mentioned in Table 1. The obtained 𝑅𝑔𝑎𝑢𝑠𝑠2 and 𝑅𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

depending the changes was also described in Figure 2 and 
Table S1 of the Supporting Information. When the rotation 
parameter was gradually reduced, the 𝑅𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 reached the 
maximum value, 0.529 ±  0.028, when the rotation value is of 
0.025722 (-60%). Besides, the 𝑅𝑔𝑎𝑢𝑠𝑠2 reached a maximum 

value of 0.539 ±  0.026, when the gauss2 term was of -
0.012374 (+140%). Overall, The obtained results are impressive 
since the maximum value of 𝑅𝑔𝑎𝑢𝑠𝑠2 and 𝑅𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 differ from 

the 𝑅Default by amounts of 9 and 7 %, respectively.  

 The average of the docking energies among protein-ligand 
complexes was mentioned in Table S2 of the Supporting 
Information. In particular, the average value of ∆𝐺Dock was 
linearly dependent on the change of empirical parameters. 
Especially, the average binding free energies are most sensitive 
to the change of the gauss2 parameter, which is in good 
agreement with the observation that the 𝑅 is mostly sensitive 
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with the change of the gauss2 parameter. The lowest ∆𝐺Dock =
−16.43 ± 0.12 kcal mol-1 was observed when the gauss2 
parameter was assigned as -0.012890 (+150%). Besides, the 
highest ∆𝐺Dock = −6.01 ± 0.04 kcal mol-1 was obtained when 
the gauss2 parameter was reduced by an amount of 50% (-
0.002578) of the default parameter. Moreover, the difference 
between docked and experimental data is associated with the 
RMSE, which was mentioned in Figure 3 and Table S3 of the 
Supporting Information. In particular, the RMSE was sensitive 
with the change of the gauss1, gauss2 and rotation parameters, 
whereas the RMSE varies from 0.65 to 5.48 kcal mol-1. RMSE 
curves reached the minimum values, when the gauss1, gauss2 
and rotation metrics are of -0.042695 (+20%), -0.005672 
(+10%) and 0.046768 (-20%), respectively.  

 

 

Figure 3. RMSE of docking energies compared with the re-
spective experiments. The results were obtained when the em-
pirical parameters were altered. The computed error was esti-
mated using 1000 rounds of the bootstrapping analysis. 

 As mentioned above, the binding poses of ligands to 
receptors via molecular docking simulations also play an  
important factor since they would be used as initial 
conformations of MD-refined simulations.62-64 Because the 
obtained results of the calculated binding free energy via MD 
simulations are sensitive to the difference of binding 
conformations of complexes.65 Indeed, the computational 
binding structure is more fitting to the native binding shape 
meaning that the estimating binding free energy is more 
accurate. Consequently, the better docking pose is the shape 
that is more fitting to the experimental binding 
conformation.66 The MD-refined simulations would be faster 
to reach the stabilized conformations. The consumption of 
computing resources would be thus reduced. Therefore, the 
successful-docking rate, �̂�, was carefully investigated, in which 
the RMSD of non-hydrogen atoms between docked and 
experimental structures were assessed (cf. Figure 4 and Table 
S4 of the Supporting Information). Normally, a successful-
docked shape is the docked structure having RMSD to the 
respective experimental shape is less than 0.2 nm.67 However, 

in this work, we also assessed the successful-docking rate with 
a RMSD cutoff of 0.15, 0.10, and 0.05 nm.51 

 

Figure 4. The dependence of RMSD upon the change of the 
empirical parameters. The computed error is the standard er-
ror of the mean. 

 The original Vina adopted a mean RMSD of 0.116 ±  0.003 
nm compared to the respective experiments. The successful-
docking rate with an RMSD cutoff of 0.20 nm is of �̂� = 86 ± 1 
%. Besides, the modified Vina formed a mean RMSD ranging 
from 0.112 ±  0.003 to 0.127 ±  0.003 nm, resulting in 
adopting �̂� value in the range from 82 ± 1 to 88 ± 1 % 
corresponding with the repulsion and gauss1 terms of 1.260368 
(+50%) and -0.049811 (+40%), respectively. In particular, the 
dependence on alteration in the empirical parameters of �̂� 
with an RMSD cutoff 0ff 0.20 nm was fully reported in Figure 
5 and Table S5 of the Supporting Information. It should be 
noted that the obtained mean values of RMSD well correlated 
with the successful-docking rate. The smaller the mean RMSD 
means the larger the success rate of docking simulations. 
Moreover, �̂� reached its largest value of 6%, when the 
hydrogen bond term was altered within their respective 
ranges. The observation are in good agreement with 
discussion above. The �̂�ℎ𝑦𝑑𝑟𝑜𝑔𝑒𝑛 𝑏𝑜𝑛𝑑 value reached the largest 

values when the hydrogen bond metric is of -0.763671 (+30%). 
The �̂� is not sensitive to the change of the hydrophobic 
parameter since the value varies within a range of <1% only. 
Furthermore, changing the gauss1 term provides the largest 
successful-docking rate �̂�𝑔𝑎𝑢𝑠𝑠1 of 88 ±  1 %. The alteration of 

repulsion and hydrophobic terms are not enlarge the 𝑅 value. 
Other parameters including gauss2, hydrogen bond, and 
rotation metrics only formed the maximum value �̂� = 87 ± 1 
%. Furthermore, when the other cutoff was applied including 
0.15, 0.10, and 0.05 nm, the �̂� metric became more sensitive to 
the gauss1, gauss2, repulsion, and hydrogen bond terms and 
insensitive with the hydrophobic and rotation terms (cf. Tables 
S6-S8 and Figures S2-S4 of the Supporting Information). 
Consequently, the repulsion metric dominates over all of the 
metrics in influencing the successful-docking rate, which �̂� 
was changed in the range from 4 to 6 % upon the modification 
of the repulsion term. 
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Figure 5. Changing of the successful-docking rate, �̂�, upon the 
alteration of the empirical parameters with an RMSD cutoff of 
0.20 nm. The computed error was calculated via 1000 rounds 
of the bootstrapping analysis. 

 Considering the overall influence of empirical parameters 
on the Vina results, we proposed three sets of empirical 
parameters, which were shown in Table 2. In particular, over 
three sets of parameters, the gauss1 term was selected as -
0.049811 (+40%) since both 𝑅𝑔𝑎𝑢𝑠𝑠1 and �̂� reached the 

maximum values with the corresponding parameters 
compared the original one (Figure 5). The gauss2 term was 
chosen as -0.007218 (+40%) for set1 and set2 of parameters, 
because the 𝑅𝑔𝑎𝑢𝑠𝑠2 formed an appropriate value, which is 

larger than the original one by an amount of 6%, and the �̂� 
term achieved the largest amount of 87%. In set3, the gauss2 
parameter was selected as -0.007734 (+50%) since the 
obtained 𝑅𝑔𝑎𝑢𝑠𝑠2 and �̂�𝑔𝑎𝑢𝑠𝑠2 are almost the same as the 

corresponding values of set1 and set2. Moreover, the repulsion 
parameter was of 0.756221 (-10%) for set1 and set2 of empirical 
parameters, because the modified Vina adopted the largest 
correlation coefficient (0.510 ± 0.027). In set3, the repulsion 
term was picked as 0.672196 (-20%) since the �̂� value reached 
the largest amount (Figure 5). The hydrophobic term was -
0.028055 (-20%) for three sets since the docking package 
formed the maximum value of 𝑅ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 = 0.507 ± 0.028. 

Besides, interestingly, the �̂�ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑜𝑏𝑖𝑐 is slightly increased 

corresponding to this hydrophobic term (Figure 5). 
Furthermore, in set1 and set2, the hydrogen bond metric was 
changed to -0.352463 (-40%) due to forming the strongest 
correlation to the experiments. However, in set3, the hydrogen 
bond value was chosen as -0.528695 (-10%), because the 𝑅 
value was increased but the �̂� metric was insignificantly 
decreased (cf. Figure 2 and Figure 5). Finally, in set1 of 
empirical parameters, the rotation term was 0.025722 (-60%), 
because the accuracy of the result was maximized with a value 
of 𝑅𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 0.529 ± 0.028 (Figure 2). Besides, the rotation 
parameter of set2 and set3 was selected as 0.012861 (-80%) 
since the modified Vina formed the largest successful-docking 
rate, 87 ± 1 %, and appropriate correlation coefficient, 0.514 ± 
0.027, (Figure 2).  

Table 2. Proposed Sets of Empirical Parameters. 

N0 Parameter Set1 Set2 Set3 Defaulta 

1 gauss1 -0.049811 -0.049811 -0.049811 -0.035579 

2 gauss2 -0.007218 -0.007218 -0.007734 -0.005156 

3 repulsion 0.756221 0.756221 0.672196 0.840245 

4 hydrophobic -0.031562 -0.031562 -0.031562 -0.035069 

5 hydrogen bond -0.469951 -0.469951 -0.528695 -0.587439 

6 rotation 0.025722 0.012861 0.012861 0.058460 

aThe default empirical parameters were reported in the 
previous study.49 

 Molecular docking simulations used three sets of empirical 
parameters were performed over 800 complexes, which 
complexes were reported in the previous work.51 The obtained 
results are displayed in Table 3 and Figure 6. The detailed 
results were shown in Supporting Information 2. Interestingly, 
according to the selection of empirical parameters, the 
increase of the correlation coefficient depends on set1, set2, 
and set3, in which the obtained coefficients are of 𝑅𝑠𝑒𝑡1 =
0.556 ± 0.025, 𝑅𝑠𝑒𝑡2 = 0.551 ± 0.026, and 𝑅𝑠𝑒𝑡3 = 0.536 ±
0.028, respectively. The obtained correlations are significantly 
larger than that of the original Vina (𝑅Default = 0.493 ±
0.028). Moreover, the performance of AutoDock Vina 1.2 
(Vina 1.2),68 a new version of Vina supporting the AutoDock4.2 
scoring function, was also assessed and reported in Table 3 
and the Supporting Information 2. Although the Vina 1.2, 
𝑅Vina 1.2 = 0.503 ± 0.029, is a more accurate ranking than the 
original Vina, 𝑅Default = 0.493 ± 0.028, the modified Vina 
formed a larger correlation coefficient (Table 3). 
Furthermore, the modified Vina formed a larger binding 
affinity compared with the original one. Furthermore, 
because, as mentioned above, the modified parameters were 
chosen by considering to increase the accuracy, the obtained 
�̂� values of modified packages were slightly decreased (cf. 
Table 3).  

Table 3. Calculated Metrics of the Modified Vina in Comparison 
with the Original Version.a 

N0 Package 𝑹 ∆𝑮𝑫𝒐𝒄𝒌
  𝑹𝑴𝑺𝑫 �̂� 

1 set1 0.556 ± 0.025 -12.88 ± 0.11 0.119 ± 0.003 84 ± 1 

2 set2 0.551 ± 0.026 -17.77 ± 0.17 0.120 ± 0.003 83 ± 1 

3 set3 0.536 ± 0.028 -15.44 ± 0.14 0.118 ± 0.003 85 ± 1 

4 Default 0.493 ± 0.028 -8.60 ± 0.06 0.116 ± 0.003 86 ± 1 

5 Vina 1.2 0.503 ± 0.029 -8.60 ± 0.06 0.115 ± 0.003 87 ± 1 

aThe unit of ∆G𝐷𝑜𝑐𝑘 and RMSD is kcal mol-1 and nm, 
respectively. The computed error of ∆G𝐷𝑜𝑐𝑘 and RMSD is 
standard error of the mean. The �̂� value was calculated within 
a cutoff 0.2 nm.  



7 

 

 

Figure 6. Correlation coefficients between original/modified 
Vina versus experiments. The results were obtained over 800 
complexes, which were listed in the previous work.51 

 The influence of modified empirical parameters on 
individual enzymic targets was also evaluated and the results 
were shown in Table 4. Vina with the default parameters 
formed appropriate correlation coefficients (𝑅Default ≥ 0.500) 
over 31 targets. Vina with set1 parameters formed more 
suitable results with 32 targets having appropriate coefficients 
(𝑅𝑠𝑒𝑡1 ≥ 0.500). Besides, Vina with set2 and set3 parameters 
adopted suitable correlation coefficients for 33 targets. 
Absolutely, although the new sets of empirical parameters 
formed overestimated results, a better correlation to the 
respective experiments was observed. It is a critical increase 
because when screening a large number of ligands, we first 
need to know the ranking of ligand-binding affinity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. The Correlation Coefficient between the Docking and 
Experimental Binding Free Energy for 48 receptors. 

N0 Complexes 𝑹𝑫𝒆𝒇𝒂𝒖𝒍𝒕
 𝑹𝒔𝒆𝒕𝟏

 𝑹𝒔𝒆𝒕𝟐 𝑹𝒔𝒆𝒕𝟑

1 3-Dehydroquinate Dehydratase 0.708 0.651 0.657 0.671 

2 Alpha-L-Fucosidase 0.920 0.897 0.903 0.935 

3 AmpC Beta-Lactamase 0.686 0.711 0.735 0.760 

4 Beta-Lactamase CTX-M-9a 0.951 0.918 0.927 0.965 

5 Beta-Galactosidase 0.828 0.819 0.758 0.813 

6 Beta-Hexosaminidase -0.452 0.440 0.571 0.496 

7 Calmodulin-Domain Protein Kinase 1 0.785 0.800 0.786 0.786 

8 Carboxypeptidase A 0.823 0.922 0.937 0.929 

9 Catechol O-methyltransferase 0.463 0.694 0.714 0.627 

10 Cathepsin K 0.428 0.441 0.428 0.298 

11 Coagulation Factor X 0.587 0.678 0.737 0.734 

12 Dipeptidyl-Peptidase 4 0.299 0.212 0.216 0.236 

13 Estrogen Receptor 0.459 0.568 0.544 0.555 

14 Glutamate Receptor, Ionotropic Kainate 1 0.754 0.696 0.650 0.667 

15 HSP90 0.236 0.338 0.399 0.366 

16 M1 Family Aminopeptidase 0.660 0.758 0.758 0.757 

17 Macrophage metalloelastase 0.867 0.870 0.846 0.846 

18 Mitogen-activated protein kinase 1 0.490 0.644 0.673 0.693 

19 Neuraminidase 0.439 0.227 0.201 0.217 

20 N-terminal Human Maltase-Glucoamylase 0.620 0.353 0.337 0.422 

21 Phosphodiesterase 10A2 0.733 0.782 0.786 0.796 

22 Purine nucleoside phosphorylase 0.835 0.742 0.722 0.741 

23 Queuine tRNA-ribosyltransferase 0.664 0.669 0.668 0.686 

24 Scytalone Dehydratase 0.576 0.516 0.511 0.525 

25 Serine/Threonine-Protein Kinase Chk1 0.840 0.841 0.776 0.819 

26 Thermolysin 0.636 0.781 0.777 0.838 

27 Thrombin 0.084 0.233 0.256 0.279 

28 Thymidylate Kinase -0.001 0.007 0.017 -0.052 

29 Thymidylate Synthase 0.539 0.438 0.422 0.353 

30 Trypsin 0.671 0.617 0.598 0.611 

31 Tyrosine Phosphatase 1b 0.222 0.525 0.601 0.636 

32 Tyrosine-protein kinase JAK1 0.597 0.754 0.820 0.797 

33 Tyrosine-protein kinase JAK2 0.594 0.728 0.728 0.784 

34 Urokinase-Type Plasminogen Activator 0.553 0.758 0.780 0.796 

35 Beta-secretase 1 0.607 0.623 0.580 0.587 

36 Carbonic anhydrase 2 0.041 0.101 0.074 0.039 

37 Cell Division Protein Kinase 2 0.729 0.749 0.762 0.776 

38 Cyclin Dependent Kinase 2 0.637 0.643 0.657 0.654 

39 Dehydrosqualene synthase  0.515 0.449 0.456 0.556 

40 Endothiapepsin 0.210 0.235 0.112 0.161 

41 Factor XA -0.184 -0.215 -0.208 -0.206 

42 Glycogen phosphorylase 0.535 0.419 0.352 0.432 

43 NS3 protease, NS4A protein 0.218 0.459 0.475 0.441 

44 Penicilin Amidohydrolase -0.569 -0.611 -0.687 -0.744 

45 Phosphatidylinositol 4,5-bisphosphate 3-kinase 
catalytic subunit gamma isoform 

0.742 0.787 0.791 0.767 

46 Ribonuclease A 0.471 0.611 0.610 0.663 

47 Stromelysin-1 0.662 0.815 0.852 0.877 

48 Alpha-Mannosidase 2 0.918 0.717 0.696 0.728 

 

 In addition, a further validated investigation about the 
performance of the modified Vina with the difference of 
empirical parameters was performed in comparison with the 
original one. 1315 complexes from the version 2019 of PDBbind 
refined structures, which were mentioned in Supporting 
Information, were redocked by using the original and 
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modified Vina package. The obtained results were mentioned 
in Table 5 and Figure 7. All of the modified versions of Vina 
formed larger correlation coefficients compared with the 
original one (𝑅Default = 0.552 ± 0.018) and the Vina 1.2 
version (𝑅Vina 1.2 = 0.549 ± 0.017). The obtained 𝑅 of 
modified Vina diffuse in the range from 0.592 ±  0.0.17 to 
0.621 ±  0.016. The Vina with set1  parameters adopted the 
largest coefficient of 𝑅𝑠𝑒𝑡1 = 0.621 ± 0.016. Moreover, the 
successful-docking rates were reduced, which range from 
80 ±  1 to 82 ±  1 % in comparison with the default package, 
�̂�Default = 84 ± 1 %, and the 1.2 version, �̂�Vina 1.2 = 83 ± 1 %,. 
The original Vina adopted the larger value �̂�Default compared 
to the modified packages (cf. Table 5) possibly because  the 
version 2009 of PDBbind refined complexes were used to train 
the empirical parameters of the original Vina.49 Fortunately, 
the set1 parameters formed a slight decrease of �̂� term (�̂�𝑠𝑒𝑡1 =
82 ± 1 %). However, reaching a higher correlation coefficient 
is the most important since docking simulations were mainly 
used to relatively rank the ligand-binding affinity (as 
mentioned above). Furthermore, the modified Vina adopted 
rigidly overestimate results. Although it is not an important 
issue since docking simulations were mainly used to relatively 
rank the ligand-binding affinity, Vina with set1 parameters 
formed the smallest value of the  difference of docking energy 
to experimental value compared with the other modified Vina 
versions (Table 5). Overall, we may assume that set1 is the 
most appropriate since it stably forms the largest 𝑅 and 
appropriate  �̂� over various groups of complexes.  

 
Table 5. Calculated Results of the Modified Vina Compared 
with the Original Version.a 

N0 Package 𝑹 ∆𝑮𝑫𝒐𝒄𝒌
  𝑹𝑴𝑺𝑫 �̂� 

1 set1 0.621 ± 0.016 -14.20 ± 0.10 0.127 ± 0.003 82 ± 1 

2 set2 0.607 ± 0.016 -20.04 ± 0.16 0.131 ± 0.003 80 ± 1 

3 set3 0.592 ± 0.017 -17.31 ± 0.13 0.124 ± 0.003 82 ± 1 

4 Default 0.552 ± 0.018 -9.20 ± 0.05 0.116 ± 0.003 84 ± 1 

5 Vina 1.2 0.549 ± 0.017 -9.15 ± 0.05 0.118 ± 0.003 83 ± 1 

aThe unit of ∆G𝐷𝑜𝑐𝑘 and RMSD is kcal mol-1 and nm, 
respectively. The computed error of ∆G𝐷𝑜𝑐𝑘 and RMSD is 
standard error of the mean. The �̂� value was calculated within 
a cutoff 0.2 nm.  

 

 

Figure 7. Correlation coefficients between original/modified 
Vina versus experiments. The results were obtained over 1315 
complexes from PDB refine structures. 

 Autodock Vina is a rapidly convergence molecular docking 
approach as well as forms a large successful-docking rate. 
However, adopting low correlated results to the respective 
experiments is the scheme weaknesses. Normally, docking 
simulations were mostly employed to relatively rank the 
ligand-binding affinity, the obtained accuracy is thus more 
important than the other metrics. In this work, we have 
evaluated the dependence of docking results over the change 
of empirical parameters. Although changing of six parameters 
alters the obtained correlation coefficient 𝑅, the gauss2 and 
rotation terms form more effects. Moreover, the successful-
docking rate �̂� are sensitive with the alteration of the gauss1, 
gauss2, and repulsion parameters. 

 Three sets of empirical parameters were proposed as well as 
set1 (more priority for accuracy), set2 (keep a balance between 
𝑅 and �̂�), and set3 (more priority for �̂�) based on the 
knowledge on the dependence of Vina on individual empirical 
parameters. The testing study of three modified Vina over 800 
complexes was then carried out. The obtained correlation 
coefficients were significantly larger than that by the original 
and 1.2 versions. Therefore, the Vina with proposed sets of 
parameters can provide more accurate results. Moreover, all 
of the modified versions formed appropriate correlation 
coefficients (𝑅 > 0.500) for ≥ 32 targets, where the 
corresponding number provided by the original Vina is 31 
only. Therefore, the Vina with proposed sets of parameters can 
apply wider compared with the default parameters. 

 Validating investigations over 1315 complexes from the 
version 2019 of PDBbind refined structures were also 
performed. The obtained correlation of three modified Vina 
was significantly larger than the original one suggesting that 
the docking approach with proposed parameters can rank 
ligand-binding affinity with more accuracy. However, because 
of the decrease of the successful-docking rate, we have 
suggested that set1 and set2 parameters are more appropriate 
than set3 parameters. 
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Information need to reproduce results in the article are 
reported in the main text and the Supporting Information and 
Supporting Information 2.  

Supporting Information Available: Information about how to 
prepare PDBQT file for receptors and ligands. The correlation 
between docked and experimental ligand-binding affinity. 
The average of docking energy was provided by molecular 
docking simulations. The RMSE between calculated and 
experimental data. The RMSD of non-hydrogen atoms 
between calculated and experimental binding poses. The 
successful-docking rate of the docking results with an RMSD 
cutoff of 0.20, 0.15, 0.10, and 0.05 nm. Python code used to 
calculate correlation coefficient, RMSE, successful-docking 
rate, and their computed error via bootstrapping analysis. 
Besides, the list of complexes and docking results in the 
Supporting Information 2. The material is available free of 
charge via the Internet at http://pubs.acs.org. 
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