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Abstract: 

 

Using 13C NMR data that includes 1H coupling allows sophomore organic students to solve 

simple structural problems, even early in the first semester of the sophomore organic course.  
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Learning 13C NMR in the First Month of Sophomore Organic Lecture 

 

One objective of sophomore organic chemistry is to enable each student to construct their 

knowledge of organic structures. The efficacy of the guided inquiry/problem-based learning 

approach to instruction in organic chemistry has been well documented, particularly in the 

laboratory course.1-9 Incorporating guided inquiry into the sophomore organic lecture course10-12 

has been more challenging, especially early in the course. It is particularly dificult to formulate 

questions for the first hour exam that test the developing reasoning of the student. A way to 

approach this is to include 13C NMR early in the course, with appropriate in class and homework 

problems to give the student the opportunity to practice.  

 

While there has been much discussion13-26 of the use of 13C NMR in the sophomore organic 

course – Chamberlain23 in particular nicely summarized the reasons to teach 13C NMR before 1H 

NMR -  this has mostly focused on the laboratory portion of the course, or on advanced27-35 

coursework. Instruction in elementary 13C NMR from the beginning of the lecture course can 

equip the student with the tools necessary to solve simple structural problems.  

 

Usually, 13C NMR spectra are recorded without the coupling of the attached H atoms. If this 

were not so, a methyl group would appear as a quartet, a methylene as a triplet, a methine as a 

doublet and a carbon with no attached hydrogen atoms as a singlet. This offers a convenient 

shorthand for communicating to a student (Fig. 1) the number of hydrogens attached to a 

particular carbon in a digital summary of the 13C spectrum.  
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Often, the first reaction taught in the first semester of sophomore organic chemistry is free 

radical halogenation. This, then, can be the basis for a question on the first exam of the semester, 

as illustrated (Fig. 1).  

 

The butane starting material (Fig. 2) could be either linear, n-butane 1, leading to B or C, or 

branched, 2-methylpropane (iso-butane) 2, leading to D or E. Since there two identical methyl 

groups in the product, the starting material must have been branched. The student can then 

deduce that product A has structure D, and write the mechanism.  

 

Once the students have engaged with this reasoning process, it is useful to point out that one can 

deduce branching in an unknown structure. A methine (doublet in the 13C spectrum) is a branch 

point, and a fully substituted carbon (singlet in the 13C spectrum) is a double branch point. An 

unknown with no branching must be linear.  

 

In parallel reasoning, an unknown with no branching will have two end groups. A methyl is an 

end group, as is a –Br. If there is a single branch, the student should be able to discern three end 

groups. If there are two branch points or a double branch point, there should be four end groups. 

In the example of Fig. 1, there are three end groups, two methyls, and a –Br. 
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Figure 1. A first exam first semester 13C NMR problem.
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Symmetry is also important. In the example of Fig. 1, the two methyl groups are the same. Since 

there is no other symmetry in the molecule, these must be attached to the same carbon.  

 

The students can also note that there is one carbon with a larger chemical shift than the others. A 

reasonable hypothesis15,23,36 is that this is the carbon where the bromine is attached, since that is 

the only methylene (CH2) in the product. 
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Figure 2. The solution to the problem in Figure 1.
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The example in Fig. 3 is another such question from a first semester first exam. With five 

carbons in the starting material, the analysis becomes more complex. Applying the same 

reasoning as above, the starting material (Fig. 4) could be n-pentane 3, leading to G – I,  2- 

methylbutane 4, leading to J – M, or 2,2-dimethylpropane 5, leading to N. Since there is no 

symmetry in the product, F (Fig. 3) could not be I or K-N.  Further, the product F has two 

methyl groups, limiting the possibilities to H or J.  Since the carbon with the largest chemical 

shift, with the –Br attached, has only one H, the product F must be H. The mechanism would the 

same as Fig. 2.  
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Figure 3. Another first exam first semester 13C NMR problem.
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Each of the pentane-derived products G-N can be readily differentiated by 13C NMR, as 

illustrated by a third example drawn from a first semester first exam (Fig. 5).  Following the 

reasoning above, with two methyl groups and no symmetry, and –Br attached to a carbon with 

two H’s, this must be J. 

 

 Note that in these problems, there is no discussion as to why a particular product is formed. In 

the lecture, it was stressed that free radical bromination leads to a mixture of products.  

 

The problems depicted here were each used in the first exam of a first semester sophomore 

organic course. Over those three years, with a mean enrollment of 119 students, consistently 

more than 100 students correctly deduced the product and drew out the mechanism correctly.  

 

At the discretion of the instructor, more involved 13C problems can be incorporated in exams as 

the course continues. The 13C spectra of many simple organic molecules are readily available37 

online.  
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Figure 5. An additional first exam first semester 13C NMR problem.
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Note that in these problems the spectra are presented in digital format, for the convenience of the 

students. We have found that students have no difficulty transitioning to the more typical 

analogue format when they begin recording their own spectra.  

 

Conclusion: Incorporating 13C NMR early in the sophomore organic lecture course gives the 

student a way to reason about structural organic chemistry. Many additional problems with their 

answers, over a wide range of difficulty, are available at 

http://www1.udel.edu/chem/valhalla/C331.html, http://www1.udel.edu/chem/valhalla/C332.html 

and http://www1.udel.edu/chem/valhalla/C333.html. 
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