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Abstract 

The hydrophobicity of an interface determines the magnitude of hydrophobic interactions that 

drive numerous biological and industrial processes. Chemically heterogeneous interfaces are 

abundant in these contexts; examples include the surfaces of proteins, functionalized 

nanomaterials, and polymeric materials. While the hydrophobicity of nonpolar solutes can be 

predicted and related to the structure of interfacial water molecules, predicting the hydrophobicity 

of chemically heterogeneous interfaces remains a challenge because of the complex, non-additive 

contributions to hydrophobicity that depend on the chemical identity and nanoscale spatial 

arrangements of polar and nonpolar groups. In this work, we utilize atomistic molecular dynamics 

simulations in conjunction with enhanced sampling and data-centric analysis techniques to 

quantitatively relate changes in interfacial water structure to the hydration free energies (a 

thermodynamically well-defined descriptor of hydrophobicity) of chemically heterogeneous 

interfaces. We analyze a large data set of 58 self-assembled monolayers (SAMs) containing 

ligands with nonpolar and polar end groups of different chemical identity (amine, amide, and 

hydroxyl) in five mole fractions, two spatial patterns, and with scaled partial charges. We find that 

only five features of interfacial water structure are required to accurately predict hydration free 

energies. Examination of these features reveals mechanistic insights into the interfacial hydrogen 

bonding behaviors that distinguish different surface compositions and patterns. This analysis also 

identifies the probability of highly coordinated water structures as a unique signature of 

hydrophobicity. These insights provide a physical basis to understand the hydrophobicity of 

chemically heterogeneous interfaces and connect hydrophobicity to experimentally accessible 

perturbations of interfacial water structure.  
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Introduction 

The hydrophobicity of an interface reflects its thermodynamic tendency to minimize 

contact with surrounding water molecules and determines the magnitude of water-mediated 

hydrophobic interactions. Hydrophobic interactions between homogeneous nonpolar solutes in 

water have been extensively studied and the relationship between interfacial hydrophobicity and 

the scale-dependent structuring of water near nonpolar domains has been validated by experiment 

and simulation.1-4 In contrast, the hydrophobicity of interfaces that are chemically heterogeneous 

at the nanoscale — i.e., interfaces with nonpolar and polar groups in close (~nm) proximity — is 

poorly understood and difficult to predict.5-9 This knowledge gap is significant because 

hydrophobic interactions with chemically heterogeneous interfaces are central to wide-ranging 

industrial and biological processes, such as polypeptide folding,10, 11 protein interactions,12-15 non-

specific protein adsorption,16-18 cellular uptake,19, 20 and chromatographic separations.21, 22 As a 

result, substantial experimental, theoretical, and computational efforts have sought to understand 

how the polar groups, when placed adjacent to nonpolar domains, impact interfacial 

hydrophobicity and the associated structure of water.23-30  

Approaches to quantify the hydrophobicity of chemically heterogeneous interfaces 

typically assume that contributions to hydrophobicity are additive. For example, interfacial 

hydrophobicity is often estimated based on the amount of nonpolar solvent-accessible surface 

area31-35 or by group-specific parameters such as hydrophobicity scale values36 or octanol-water 

partition coefficients.19, 37, 38 However, these methods neglect perturbations to water structure by 

polar groups near nonpolar domains that lead to cooperative, non-additive contributions to 

hydrophobicity,24-26, 39 as highlighted by recent experimental measurements of hydrophobic forces 

with chemically heterogeneous interfaces.27-29 In these experiments, adhesion forces were 
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measured between an atomic force microscope (AFM) tip functionalized with a nonpolar self-

assembled monolayer (SAM) and planar gold substrates functionalized with mixed SAMs 

containing both nonpolar and polar ligand end groups. The difference between adhesion forces 

measured in water and in methanol was identified as the hydrophobic force.27-29 Comparing 

hydrophobic forces for different mixed SAM compositions indicated that replacing amine end 

groups that are adjacent to a nanoscale nonpolar domain with amide groups can weaken and even 

eliminate hydrophobic forces.28 Related experimental measurements similarly revealed that 

hydrophobic forces between a nonpolar AFM tip and β-peptide oligomers containing well-defined 

nonpolar and polar domains were modulated by the chemical identity of the polar group and 

followed similar trends as for the mixed SAMs.27, 28 Conversely, hydrophobic forces were 

eliminated for structural isomers of the same β-peptide oligomers in which polar and nonpolar 

groups were interspersed without a well-defined nonpolar domain. These findings underscore that 

both the chemical identity of polar groups and the nanoscale spatial arrangement (i.e., patterning) 

of polar and nonpolar groups at chemically heterogeneous interfaces substantially influence 

interfacial hydrophobicity.28 

To complement experimental studies, atomistic molecular dynamics (MD) simulations 

have been utilized to study relationships between interfacial water structure and the 

thermodynamic driving forces underlying hydrophobic assembly,3, 23, 40 enabling effective 

predictions of protein-ligand binding,13, 41 protein-protein interactions,30 and biomolecule 

aggregation.42 Similar simulations have found that patterning influences the thermodynamics of 

the hydration layer near chemically heterogeneous surfaces.43, 44 To compare the hydrophobicity 

of different surfaces, simulation studies have also identified the magnitude of water density 

fluctuations as a descriptor of interfacial hydrophobicity.45-49 Water density fluctuations are 
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enhanced near hydrophobic surfaces, increasing the probability that a cavity near the interface 

spontaneously dewets. This probability can be quantified as a corresponding hydration free 

energy45-49 which captures correlations between interfacial water molecules and has been shown 

to effectively predict binding interactions on proteins.30, 50 By calculating hydration free energies, 

we previously determined that molecular-level order modulates the hydrophobicity of uniformly 

nonpolar SAMs by perturbing interfacial water structure, in agreement with similar trends 

identified through experimental hydrophobic force measurements.29, 51, 52 This accumulated 

research establishes strong connections between interfacial hydrophobicity, variations in the 

properties of homogeneous and chemically heterogenous interfaces, and interfacial water 

structure. However, these connections remain largely qualitative, and systematic studies to relate 

perturbations to interfacial water structure to the hydrophobicity of chemically heterogenous 

interfaces are lacking. 

In this work, we hypothesize that descriptors of interfacial water structure can be 

quantitatively related to the hydrophobicity of chemically heterogeneous interfaces. To test this 

hypothesis, we utilize atomistic MD simulations to calculate water structural order parameters and 

hydration free energies for a large set of SAMs containing amine, amide, and hydroxyl polar 

groups in various surface compositions and patterns. Using a feature selection workflow, we find 

that only five water structural features are important to accurately predict SAM hydration free 

energies. Analysis of these five features provides a physical basis for understanding how surface 

properties modulate the hydration free energy – and thus hydrophobicity - by altering the hydrogen 

bond network and orientation of interfacial water molecules. These results produce new 

understanding of perturbations to water structure at chemically heterogeneous surfaces which can 

be extrapolated to more complex materials like proteins and peptides. 
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Results and Discussion 

Hydration free energy calculations capture experimental trends. To understand how polar end 

groups modulate interfacial hydrophobicity, we first simulated the set of alkanethiol SAMs that 

were shown in Ref. 28 to exhibit substantially different hydrophobic interactions in prior AFM 

experiments. This set includes single-component SAMs in which ligands were functionalized with 

either nonpolar (methyl) or polar (amine or amide) end groups and mixed SAMs in which 40% of 

the ligands were functionalized with polar end groups and 60% of the ligands were functionalized 

with nonpolar end groups (Figure 1A).28 While the end group pattern is unknown in the 

experiments, we modeled fully separated SAM patterns because analogous experiments have 

shown that β-peptide oligomers only exhibit large deviations in hydrophobicity when they have 

well-defined separated polar and nonpolar domains.27, 28 This data set permits initial simulation 

interrogation of homogeneous and chemically heterogeneous surfaces for comparison to 

experimental trends. 

For each SAM, we performed Indirect Umbrella Sampling (INDUS) to compute the 

hydration free energy (𝜇𝜇𝜈𝜈), or excess chemical potential, of a 2.0 × 2.0 × 0.3 nm3 cuboidal cavity 

(denoted by the subscript 𝜈𝜈) near the SAM-water interface (see Methods). 𝜇𝜇𝜈𝜈 reports on the 

magnitude of water density fluctuations within the cavity that emerge from the collective 

interactions of water molecules with each other and with the SAM. Smaller values of 𝜇𝜇𝜈𝜈 

(corresponding to enhanced fluctuations) indicate a more hydrophobic interface. Although 𝜇𝜇𝜈𝜈 will 

depend on the size and placement of the cavity, 𝜇𝜇𝜈𝜈 can be used as a thermodynamically well-

defined descriptor to compare the interfacial hydrophobicity of different surfaces if the cavity is 

consistently defined.53 Past studies of SAMs have shown that 𝜇𝜇𝜈𝜈 correlates with equilibrium water 

contact angles45, 54 and experimentally measured hydrophobic forces.51 Similarly, Figure 1B  
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Figure 1. (A) Chemical structures and top-down simulation snapshots of SAMs with amine, amide, and 

hydroxyl end groups in checkered and separated patterns and 𝑓𝑓𝑃𝑃 = 0.25, 0.50, and 0.75 mole fractions. (B) 

Comparison between hydration free energies (𝜇𝜇𝜈𝜈) measured by INDUS (black squares) and hydrophobic 

forces measured by AFM experiments (red columns). Experimental hydrophobic force data are adapted 

from Wang et al.28. -𝜇𝜇𝜈𝜈 is plotted to illustrate the trend relative to the experimental values. (C) Hydration 

free energies as a function of the mole fraction of polar end groups (𝑓𝑓𝑃𝑃) for the checkered (squares) and 

separated (circles) patterned SAMs. 
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illustrates that 𝜇𝜇𝜈𝜈 values computed for this set of SAMs are negatively correlated with hydrophobic 

forces measured experimentally in Ref. 28, confirming that smaller values of 𝜇𝜇𝜈𝜈 correspond to  

SAMs that appear more hydrophobic in experiments. In particular, the simulations reproduce the 

finding that mixed SAMs with amide-functionalized ligands are less hydrophobic than mixed 

SAMs with amine-functionalized ligands. This result demonstrates that our simulation model 

qualitatively reproduces the effects of polar end group chemistry on SAM hydrophobicity, 

supporting further investigation into the origin of these effects. 

To test the hypothesis that surface chemistry uniquely modulates hydrophobicity by 

perturbing interfacial water structure, we expanded the set of simulated SAMs to include mixed 

SAMs with amine-, amide-, and hydroxyl-functionalized ligands with six different mole fractions 

of polar end groups (𝑓𝑓𝑃𝑃) and two different patterns (“checkered” and “separated”). We also 

considered homogeneous SAMs in which the end group partial charges were scaled to fully span 

the range of possible 𝜇𝜇𝜈𝜈 values for each end group.23, 55 In total, we studied 58 SAMs to provide a 

large data set for further analysis. Figure 1A shows representative SAMs for each chemistry, 

composition, and pattern, with additional details included in Section S1 of the Electronic 

Supporting Information (ESI). For each SAM, we computed 𝜇𝜇𝜈𝜈 using INDUS (Figure 1C) to 

quantify interfacial hydrophobicity and computed a set of water order parameters from a 

complementary unbiased MD simulation to quantify the structure of interfacial water molecules 

(defined as water molecules within 0.3 nm of the SAM-water interface). These order parameters 

include information on SAM-SAM, SAM-water, and water-water hydrogen bonds, water 

orientations relative to the SAM, and the water triplet angle (i.e., the angle formed between an 

interfacial water molecule and two neighboring water molecules).56-58 ESI Section S2 provides a 

full description for each parameter and ESI Figures S7-12 show variations in these parameters for 
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different SAMs. Subsets of these parameters have been used previously to understand how peptide 

side chain chemistry affects binding,57 surface polarity alters interfacial water orientation,23 and 

SAM order affects hydrophobic interactions.52 However, quantifying which order parameters are 

most important for predicting hydrophobicity across a broad range of SAMs is challenging through 

traditional approaches that investigate single parameters independently. 

 

Data-centric analysis identifies important water structural features. We implemented a data-

centric workflow to relate interfacial water order parameters to interfacial hydrophobicity 

quantitatively. We defined a set of 152 features that were each related to a particular value of an 

order parameter; for example, the probability of observing zero water-water hydrogen bonds is a 

feature. Each of the 58 SAMs was associated with a feature vector containing normalized 

numerical values for all features (determined from the unbiased MD simulation) and a single value 

of 𝜇𝜇𝜈𝜈. We then developed a three-step workflow to select the minimum set of features required to 

accurately predict 𝜇𝜇𝜈𝜈, and, thus, interfacial hydrophobicity (Figure 2A). In the first step, we 

reduced the number of features by computing the Pearson’s correlation coefficient between all 

pairs of features and removing features that were above a correlation threshold (ESI Section S2). 

In the second step, we performed Lasso regression using the 45 remaining uncorrelated features 

(ESI Table S2) for each SAM as input to predict corresponding values of 𝜇𝜇𝜈𝜈. In the final step, we 

performed 5-fold cross validation using multiple linear regression to relate the minimum set of 

features identified from Lasso regression to 𝜇𝜇𝜈𝜈, thereby determining the overall accuracy of our 

approach. This entire approach (including INDUS and unbiased simulations) was repeated three 

times for independent sample sets to ensure robustness and estimate simulation error. 
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Figure 2. (A) Schematic of feature selection workflow. (B) Parity plot comparing hydration free energies 

(𝜇𝜇𝜈𝜈) predicted from multivariate linear regression to those calculated by INDUS. Each point is the 

prediction for the SAM when it is included in the validation set during 5-fold cross validation, such that the 

SAM is not included in model training. Error bars are smaller than the symbols. (C) Comparison of feature 

weights for the linear regression model. Error bars were calculated as the standard deviation of the weights 

from three independent repetitions of the simulation and feature selection workflow. 

 

Strikingly, we found that only five features are required to accurately predict the full range 

of SAM hydration free energies even though the SAM data set contains both homogeneous and 

chemically heterogeneous SAMs with different compositions, patterns, and end group chemistries, 

and contains SAMs with scaled end group partial charge (ESI Section S2), suggesting that the 

selected features may be universally relevant to SAM hydrophobicity. The five features, listed in 

order of model prediction importance (discussed below), are the probability that an interfacial 

water molecule forms zero SAM-water hydrogen bonds, 𝑝𝑝(𝑁𝑁SAM−water = 0), the probability that 
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an interfacial water molecule forms a triplet angle of 48°, 𝑝𝑝(𝜃𝜃 = 48°), the average total number 

of hydrogen bonds per molecule (ligand with a polar end group or water), 𝑁𝑁total, the average 

number of SAM-water hydrogen bonds, 𝑁𝑁SAM−water , and the probability that an interfacial water 

molecule forms a triplet angle of 90°, 𝑝𝑝(𝜃𝜃 = 90°). Figure 2B shows a parity plot comparing 𝜇𝜇𝜈𝜈 

values predicted by the final linear regression model to those computed by INDUS. The linear 

regression model has an RMSE of 3.97 ± 0.19 kBT. For comparison, INDUS calculations have a 

replica error of about 2 kBT, indicating that the predictions are quite accurate. Predicted 𝜇𝜇𝜈𝜈 values 

are also strongly correlated with INDUS values with a Pearson’s r of 0.98 (a value of 1.0 indicates 

perfect linear correlation). We further performed 5-fold cross validation using Lasso regression 

and separately utilized a nonlinear Random Forest model with recursive feature elimination to 

select features for the same data set (ESI Section S2). Both approaches identified similar features, 

indicating the robustness of model findings. Figure 2C compares the weights of the coefficients 

from the linear regression model to quantify their relative importance. These results show that 

𝑝𝑝(𝑁𝑁SAM−water = 0) is the most important feature in the model, followed by 𝑝𝑝(𝜃𝜃 = 48°). 𝑁𝑁total 

and 𝑁𝑁SAM−water  of are comparable importance and 𝑝𝑝(𝜃𝜃 = 90°) is least important. These five 

features, and their physical significance, are described in detail in the sections below. 

 

SAM-water hydrogen bonding strongly correlates with hydrophobicity. Two of the features 

identified as strong predictors of hydrophobicity, 𝑝𝑝(𝑁𝑁SAM−water = 0) and 𝑁𝑁SAM−water,  quantify 

the formation of hydrogen bonds between the SAM and interfacial water molecules. The feature 

that has the highest weight in the linear regression model (and hence contributes most substantially 

to model predictions) is 𝑝𝑝(𝑁𝑁SAM−water = 0); large values of 𝑝𝑝(𝑁𝑁SAM−water = 0) indicate that 

water molecules are unlikely to form hydrogen bonds with the SAM and that the SAM is 
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accordingly more hydrophobic. This feature is thus a simple, intuitive descriptor for SAM 

hydrophobicity that is conceptually related to water density fluctuations because the enhancement 

of such fluctuations near more hydrophobic surfaces is due to weak surface-water interactions.45, 

47  

To determine if this feature alone can capture trends in SAM hydrophobicity, Figure 3A 

plots 𝜇𝜇𝜈𝜈 versus 𝑝𝑝(𝑁𝑁SAM−water = 0) for the SAM data set. For this comparison (and the 

comparisons in the following sections), homogeneous SAMs with scaled partial charges are 

omitted to determine how features correlate with the hydrophobicity of chemically heterogeneous 

SAMs with different ligand end groups, values of 𝑓𝑓𝑃𝑃, and patterns. 𝜇𝜇𝜈𝜈 and 𝑝𝑝(𝑁𝑁SAM−water = 0) are 

highly correlated with a Pearson’s r of -0.95; the negative correlation is expected because larger 

values of 𝑝𝑝(𝑁𝑁SAM−water = 0) indicate a more hydrophobic surface with lower 𝜇𝜇𝜈𝜈. Linear 

regression with only this feature predicts 𝜇𝜇𝜈𝜈 with an RMSE of 5.86 ± 0.07 kBT, demonstrating that 

this feature alone provides reasonable prediction accuracy but including the other four features 

reduces the prediction RMSE by approximately 2 kBT. The other important feature based on SAM-

water hydrogen bonds is 𝑁𝑁SAM−water . Figure 3B shows that this feature also has a linear 

correlation with hydration free energy and a Pearson’s r of 0.95. In contrast to 𝑝𝑝(𝑁𝑁SAM−water =

0), this feature quantifies favorable interactions between interfacial water molecules and the SAM, 

with larger values indicating more water molecules on average bound to the SAM. These two 

features provide complementary information on SAM-water interactions and demonstrate that 

analysis of hydrogen bonding can serve as a baseline prediction of trends in 𝜇𝜇𝜈𝜈. However, Figure 

3A also shows systematic deviations in predictions for different end groups and patterns: for 

example, 𝜇𝜇𝜈𝜈 is underpredicted for SAMs with amine end groups and overpredicted for separated 

patterns compared to checkered patterns. Accordingly, we investigated the physical origin of the 
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other important features identified by our workflow to determine why they lead to the more 

accurate predictions shown in Figure 2. 

 

 

Figure 3. Unnormalized values of features related to interfacial hydrogen bonding for the checkered 

(squares) and separated (circles) SAMs versus hydration free energies (𝜇𝜇𝜈𝜈). Values for SAMs with amine 

(purple), amide (green), and hydroxyl (orange) end groups are plotted separately. (A) Probability density 

for zero SAM-water hydrogen bonds formed by an interfacial water molecule. The black dotted line is a 

linear fit to all data. (B) Number of hydrogen bonds between SAM polar end groups and interfacial water 

molecules. (C) Total number of hydrogen bonds formed by an interfacial water molecule. Each value is 

averaged over all interfacial water molecules and simulation time. The dotted lines are linear fits for each 

end group (including both checkered and separated patterns).  

 

Total interfacial hydrogen bonds vary with polar group chemistry. Another important feature 

that depends on hydrogen bonds is 𝑁𝑁total, which quantifies the total number of SAM-water, water-

water, and SAM-SAM hydrogen bonds per molecule. Increased SAM-water hydrogen bonds, as 

described in the previous section, indicate strong SAM-water interactions that decrease interfacial 

hydrophobicity. Increased interfacial water-water hydrogen bonds signify a more connected 

hydrogen bond network, or a more ordered interfacial water structure, which has been linked to 
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decreased hydrophobicity for idealized nonpolar solutes3 and SAMs.52 Increased SAM-SAM 

hydrogen bonds could indicate fewer hydrogen bonding donor or acceptor sites available for SAM-

water hydrogen bonding, consequently increasing interfacial hydrophobicity. Thus, this feature 

encodes information on a range of possible behaviors with distinct contributions to interfacial 

hydrophobicity that could vary for different SAM properties. 

Figure 3C plots 𝜇𝜇𝜈𝜈 versus 𝑁𝑁total following the previous approach in Figures 3A and 3B. 

Different trends are observed for each polar end group; notably, 𝜇𝜇𝜈𝜈 scales approximately linearly 

with 𝑁𝑁total for each polar end group separately but with substantially different slopes. The 

difference in scaling suggests that 𝑁𝑁total can distinguish between polar end group chemistries in 

the linear regression model (Figure 2B); that is, the relative contribution of this feature to the 

predicted value of 𝜇𝜇𝜈𝜈 differs between polar end groups. Figure 4 shows variations in the average 

number of SAM-SAM, SAM-water, and water-water hydrogen bonds that contribute to 𝑁𝑁total. For 

all three end groups, variations in 𝑁𝑁total reflect the competition between increased SAM-water and 

decreased water-water hydrogen bonds as 𝑓𝑓𝑃𝑃 increases (leading to an increase in 𝜇𝜇𝜈𝜈). These general 

trends can be interpreted in terms of the disruption of water structure near a uniformly nonpolar 

surface (for the lowest value of 𝜇𝜇𝜈𝜈) by the presence of polar groups that can interact favorably with 

interfacial water molecules. For the SAMs containing amine end groups, SAM-water hydrogen 

bonding is relatively weak and consequently the increase in SAM-water hydrogen bonds is 

insufficient to compensate for the decrease in water-water hydrogen bonds, leading to a decrease 

in 𝑁𝑁total as 𝜇𝜇𝜈𝜈 increases. Conversely, 𝑁𝑁total is nearly constant with 𝜇𝜇𝜈𝜈 for SAMs containing 

hydroxyl end groups because the increase in the number of favorable SAM-water hydrogen bonds 

compensates for the decrease in number the water-water hydrogen bonds.  
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Figure 4. Average number of hydrogen bonds per molecule (excluding ligands with methyl end groups that 

cannot form hydrogen bonds) for all hydrogen bonds (𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), SAM-SAM hydrogen bonds, SAM-water 

hydrogen bonds, and water-water hydrogen bonds. Top row: hydrogen bonds for checkered SAMs. Bottom 

row: hydrogen bonds for separated SAMs. 

 

The SAMs containing amide end groups exhibit similar trends as the SAMs containing 

amine end groups. However, these SAMs are unique because only the amide end groups form a 

significant number of SAM-SAM hydrogen bonds (Figure 4) which increases with increasing 

𝑓𝑓𝑃𝑃 and contributes to an overall increase in 𝑁𝑁total with 𝜇𝜇𝜈𝜈 (for SAMs in the checkered pattern; 

because the total number of hydrogen bonds is normalized by the number of polar end groups, 

SAM-SAM hydrogen bonds remain relatively constant for the amide-containing SAMs in the 

separated pattern since the local chemical environment does not change with 𝑓𝑓𝑃𝑃). Intra-surface 

hydrogen bonding has been shown to reduce surface hydrophilicity in prior simulation studies of 
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model surfaces,59 which explains why amide end groups contribute to lower values of 𝜇𝜇𝜈𝜈 than 

hydroxyl end groups (on average) despite larger values of 𝑁𝑁total. This behavior may also explain 

why 𝜇𝜇𝜈𝜈 for the checkered SAM with 75 mol% amide end groups is larger than 𝜇𝜇𝜈𝜈 for a 

homogeneous SAM with only amide end groups. 

Together, this analysis indicates that 𝑁𝑁total captures variations in hydrogen bonding 

behavior that depend on the chemical identity of SAM polar end groups and points to physical 

mechanisms underlying variations in SAM hydrophobicity. Incorporation of this feature into the 

linear regression model provides information to distinguish the influence of end group chemistry 

in predictions of  𝜇𝜇𝜈𝜈. Moreover, the ability to identify a single feature (rather than a subset of 

additional features related to the variation of each type of hydrogen bond separately) that 

quantitatively relates these complex behaviors to 𝜇𝜇𝜈𝜈 is a benefit of our data-centric workflow. 

 

Orientational features encode information on crowded water coordination shells. The feature 

with the largest positive weight in the final linear regression model (Figure 2C) is 𝑝𝑝(𝜃𝜃 = 48°), 

which is the probability that an interfacial water molecule forms a triplet angle of 48°. The triplet 

angle is calculated by measuring the angle between an interfacial water molecule and its two 

nearest neighbors within a 0.33 nm radius. Figure 5A illustrates differences in the triplet angle 

distribution for SAMs with varying fractions of polar end groups, hinting at the ability of this 

distribution to distinguish surfaces with varying HFEs. While these distributions vary 

substantially, the importance of variations to 𝑝𝑝(𝜃𝜃 = 48°) identified by the feature section 

workflow indicates that this probability provides unique information not directly quantified by 

features associated with hydrogen bonding and thus merits further analysis.  Figure 5B plots 𝜇𝜇𝜈𝜈 

versus 𝑝𝑝(𝜃𝜃 = 48°). Like 𝑁𝑁total, 𝑝𝑝(𝜃𝜃 = 48°) exhibits different variations with respect to 𝜇𝜇𝜈𝜈 for  
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Figure 5. (A) Schematic of the calculation of the water triplet angle and example distributions for 

“checkered” SAMs with amine end groups as a function of the fraction or polar end groups (𝑓𝑓𝑃𝑃). 

Distributions show the difference relative to a SAM containing only methyl end groups, which corresponds 

to 𝑓𝑓𝑃𝑃=0.00. (B) Probability density for an interfacial water molecule forming a triplet angle, 𝜃𝜃, of 48° for 

the checkered (squares) and separated (circles) SAMs versus hydration free energies (𝜇𝜇𝜈𝜈). (D) Probability 

density for an interfacial water molecule forming a triplet angle of 90°. The dashed lines and dotted lines 

are linear fits for the checkered and separated SAMs, respectively, for each end group. 

 

different polar end groups and thus provides information to the regression model to distinguish 

between SAMs with different end groups. 𝑝𝑝(𝜃𝜃 = 48°) increases with 𝜇𝜇𝜈𝜈 for SAMs containing 

amide and hydroxyl end groups and decreases with 𝜇𝜇𝜈𝜈 for SAMs containing amine end groups, 

which follows a similar pattern as 𝑁𝑁total. While trends in the formation of hydrogen bonds have a 

clear physical interpretation, the physical significance of this feature is less clear. Monroe and 

Shell have suggested that a small peak in the triplet angle distribution at around 50° arises due to 

a fifth neighbor in the coordination shell of bulk water.58 However, it is unclear how interfaces and 

surface properties affect this feature.  

To investigate the origin of the 𝑝𝑝(𝜃𝜃 = 48°) feature, we calculated the water coordination 

number, 𝐶𝐶𝑁𝑁, by counting the number of heavy atoms within 0.33 nm of the oxygen atom of an  
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Figure 6. (A) Water coordination number (𝐶𝐶𝑁𝑁) probability density functions for all interfacial water 

molecules (blue lines) and only interfacial water molecules with a triplet angle of 48° (red lines). Bulk water 

probability density functions for all water molecules (dotted line) and water molecules with a triplet angle 

of 48° (dashed line) are included for reference. Shifts with increasing 𝑓𝑓𝑃𝑃 are indicated by the purple arrows. 

(B) Probability density function values for 𝐶𝐶𝑁𝑁 = 6. Stacked columns indicate the contributions from water-

water coordination (blue columns) and SAM-water coordination (red columns). A and B both consider only 

checkered SAMs. 

 

 

interfacial water molecule. Figure 6A compares the probability distribution of the coordination 

number, 𝑝𝑝(𝐶𝐶𝑁𝑁), when calculated separately for all water molecules (i.e., all possible triplet angles) 

and for only those water molecules with a triplet angle of 48°. Results are presented for bulk water 
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and for the checkered SAMs as a function of 𝑓𝑓𝑃𝑃; the separated SAMs follow approximately the 

same trend (ESI Figure S21). As previously suggested,58 𝑝𝑝(𝐶𝐶𝑁𝑁) for water molecules with a triplet 

angle of 48° is shifted toward larger values of 𝐶𝐶𝑁𝑁, with a maximum at 𝐶𝐶𝑁𝑁 = 5, for all SAMs and 

for bulk water. This finding indicates that 𝑝𝑝(𝜃𝜃 = 48°) captures information on the likelihood of 

observing highly coordinated water structures. We note that 𝑝𝑝(𝜃𝜃 = 48°) is very small for bulk 

water, so the observation of these highly coordinated structures is rare. Compared to bulk water, 

all 𝑝𝑝(𝐶𝐶𝑁𝑁) distributions are shifted toward small values of 𝐶𝐶𝑁𝑁 when 𝑓𝑓𝑃𝑃 is low, reflecting the vapor-

like arrangement of water molecules near more hydrophobic surfaces.60 Increasing 𝑓𝑓𝑃𝑃 shifts all 

distributions toward those of bulk water, which is consistent with an increase in the hydrophilicity 

of the surface. These shifts are less pronounced for SAMs with amine end groups due to the general 

decrease in hydrogen bonds for SAMs with amine end groups (Figure 3B). The difference in these  

shifts between different polar groups highlights that 𝑝𝑝(𝜃𝜃 = 48°) hence contains information on 

end group contributions to the formation of highly coordinated water structures.  

The shift toward higher coordination numbers suggests that the polar end groups either 

interact directly with water molecules at the interface (thereby increasing their coordination 

numbers) or nucleate highly coordinated water structures near more polar SAMs. We tested both 

possibilities by separately calculating water-water and SAM-water contributions to 𝑝𝑝(𝐶𝐶𝑁𝑁 = 6) 

because the 𝑝𝑝(𝐶𝐶𝑁𝑁) distributions for the SAMs containing amide and hydroxyl groups have a 

shoulder at 𝐶𝐶𝑁𝑁 = 6 when 𝑓𝑓𝑃𝑃 is large. Figure 6B shows that the increase in 𝑝𝑝(𝐶𝐶𝑁𝑁 = 6) as 𝑓𝑓𝑃𝑃 increases 

is largely driven by the water-water contribution for all checkered SAMs. This result indicates that 

the polar groups nucleate highly coordinated water structures at the interface. As a secondary 

effect, we also find a substantial SAM-water contribution to 𝑝𝑝(𝐶𝐶𝑁𝑁 = 6) for the SAMs containing 

amide and hydroxyl end groups, indicating that the strong interactions between these polar end 
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groups and interfacial water molecules lead to crowded coordination shells that are rarely observed 

in bulk water. Together, this analysis indicates that 𝑝𝑝(𝜃𝜃 = 48°) encodes information on the 

formation of highly coordinated water structures that are nucleated near more hydrophilic SAMs 

and are thus signatures of hydrophilic surfaces.  

 

Disordered arrangements of molecules differentiate SAM patterns. The 𝑝𝑝(𝜃𝜃 = 90°) feature has 

the smallest weight of the important features (Figure 2C) but plays an important role in 

distinguishing SAMs with different patterns. Figure 5C plots 𝑝𝑝(𝜃𝜃 = 90°) versus 𝜇𝜇𝜈𝜈 and reveals 

that SAMs with checkered and separated patterns exhibit substantially different variations in the 

scaling of 𝑝𝑝(𝜃𝜃 = 90°) with 𝜇𝜇𝜈𝜈.  The physical significance of this feature can be inferred from the 

peak at 90° in the triplet angle distribution of an ideal gas (ESI Section S3), which indicates that 

large values of 𝑝𝑝(𝜃𝜃 = 90°) are characteristic of disordered, gas-like arrangements of water 

molecules. Prior simulation studies have shown that water structure near hydrophobic surfaces 

exhibits similarities to the water-vapor interface,60 which is consistent with our finding that more 

hydrophobic SAMs (smaller 𝜇𝜇𝜈𝜈) have larger values of 𝑝𝑝(𝜃𝜃 = 90°). The differences in behavior 

between checkered and separated SAMs can be attributed to the larger hydrophobic domains 

associated with separated patterns. ESI Figure S20 shows that 𝑝𝑝(𝜃𝜃 = 90°) increases near these 

hydrophobic domains but is lower on average for checkered surfaces with the same value of 𝑓𝑓𝑃𝑃, 

reflecting the pinning of the water-vapor interface when polar groups are uniformly distributed 

across the SAM. This finding is consistent with prior simulation studies26, 51 and indicates that 

𝑝𝑝(𝜃𝜃 = 90°) quantifies the formation of large hydrophobic domains found in certain SAM patterns. 
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Conclusions 

 We computed hydration free energies (as quantitative descriptors of interfacial 

hydrophobicity) and water structural parameters for 58 SAMs, encompassing variations in polar 

group chemistries, compositions, and spatial patterns, using MD simulations. Lasso regression 

revealed that only five water structural features were needed to quantitatively predict SAM 

hydration free energies with an accuracy comparable to that of rigorous enhanced sampling 

calculations. We investigated the physical significance of the five features identified and their 

importance in distinguishing different SAM properties. Two features — the probability that an 

interfacial water molecule forms zero SAM-water hydrogen bonds and the average total number 

of SAM-water hydrogen bonds — correlated strongly with SAM hydrophobicity and contribute 

substantially to the regression model. Consequently, analysis of SAM-water hydrogen bonding 

alone provides a baseline prediction for hydrophobicity that can be intuitively understood as 

quantifying the strength of SAM-water interactions. Two additional features — the average total 

number of hydrogen bonds per molecule and the probability that an interfacial water molecule 

forms a triplet angle of 48° — were necessary to distinguish contributions to hydrophobicity from 

different polar groups. The average total number of hydrogen bonds per molecule captured 

variations in SAM-water, SAM-SAM, and water-water hydrogen bonding in analogy to the 

restructuring of hydrogen bond networks that underlies the hydrophobicity of nonpolar solutes. 

The probability that an interfacial water molecule forms a triplet angle of 48° quantifies the 

formation of highly coordinated interfacial water structures as a unique, previously unreported 

signature of hydrophilic surfaces. The last feature, the probability that an interfacial water 

molecule forms a triplet angle of 90°, distinguishes nanoscale spatial patterns by capturing 

disordered arrangements of water molecules near large nonpolar domains. 



22 
 

These findings establish a link between variations in water structure and hydrophobicity 

for chemically heterogeneous interfaces. Typical experimental approaches can directly quantify 

hydrophobic interactions for simple systems (e.g. planar interfaces28, 29, 61) or approximate 

interfacial hydrophobicity based on additive approximations (e.g. hydropathy scales62, 63). The 

finding that surprisingly few water structural features are needed to predict interfacial 

hydrophobicity with high accuracy provides opportunities to quantify the hydrophobicity of 

complex interfaces (e.g., proteins, colloids, or amphiphile membranes) via more readily accessible 

experimental measurements of interfacial water structure.64-66 Our findings further provide a 

framework to understand how polar group chemistry and patterning modulate hydrophobicity, 

which could be applied to materials design for the many applications involving water-mediated 

interactions. We further note that the regression model predicts hydration free energies using water 

structural features obtained with substantially reduce simulation time compared to INDUS 

simulations yet achieves comparable accuracy. This computational efficiency indicates that 

structure-property models based upon water structural features could be utilized as screening tools 

to rationally fine-tune hydrophobicity, complementing recently developed machine learning 

techniques55 by permitting analysis of the importance of water structural features. 

 

Methods 

SAM models. Three types of SAMs were modeled in this study: single-component charge-scaled 

and mixed SAMs with ligands arranged in either a “checkered” or “separated” pattern. Charge-

scaled SAMs contained ligands where the partial charges of the end groups were multiplied by a 

scaling factor, k, to modify the hydrophobicity of the surface.23, 55 The two SAM patterns were 

selected to capture the extremes of possible ligand arrangements. SAMs in the checkered pattern 
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contained ligands with polar and nonpolar end groups arranged such that the polar end groups were 

most dispersed on the SAMs. SAMs in the “separated” pattern contained ligands with polar and 

nonpolar end groups arranged in distinct groups resembling a 2D phase-separated system. All 

SAMs contained 144 ligands arranged on a 12×12 hexagonal lattice to be consistent with a grafting 

density of 21.6 Å/ligand to be consistent with experimental measurements for the Au(111) 

lattice.67, 68 SAMs were then solvated and periodic boundary conditions were applied to the 

resulting 5.2 × 6.0 × 11.7 nm3 SAM-water systems. Ligand atoms were modeled using the 

CHARMM36 General Force Field (CGenFF-jul2017).69 Water atoms were modeled using the 

TIP4P/2005 force field.70 Additional details of the SAM models are included in ESI Section S1. 

 

Hydration free energy and water order parameter calculations. Two different types of MD 

simulations were performed for each of the 58 SAMs. INDUS simulations were implemented to 

calculate the hydration free energies (𝜇𝜇𝜈𝜈) and unbiased simulations were performed to compute 

water order parameters. Detailed descriptions of both simulation types are provided in ESI Section 

S1. INDUS was used to quantify the relative hydrophobicity of the SAMs by calculating 𝜇𝜇𝜈𝜈 for a 

2.0 × 2.0 × 0.3 nm3 cuboidal cavity at the SAM-water interface. INDUS applies a biasing harmonic 

potential to the positions of water molecules in the cavity so that the number of water molecules 

in the position can be sampled continuously. We biased the number of water molecules inside the 

cavity using 16 independent simulation windows, each performed for 5 ns (80 ns total). The 

weighted histogram analysis method (WHAM) was used to compute the unbiased probability 

distribution of the number of water molecules in the cavity71 and 𝜇𝜇𝜈𝜈 was obtained via Equation 1: 

𝜇𝜇𝜈𝜈 = −𝑘𝑘𝐵𝐵𝑇𝑇 ln𝑝𝑝𝜈𝜈(0) (1) 
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𝑘𝑘𝐵𝐵 is the Boltzmann constant, 𝑇𝑇 is the temperature, and 𝑝𝑝𝜈𝜈(0) is the probability that zero water 

molecules are within the cavity.  

 Unbiased simulations were performed for 10 ns and used to compute water order 

parameters as described in the Results section. Descriptions of the parameters and details about 

their calculation are include in the ESI Section S2. Water order parameters were only computed 

for interfacial water molecules, which were defined as all water molecules with a center of mass 

position within 0.3 nm of the SAM-water interface. Three replicas for both the INDUS and 

unbiased simulations were used to compute error bars and ensure the robustness of the data-centric 

feature selection workflow. 
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