
   
 

 1 

Routescore: Punching the Ticket to More Efficient Materials 
Development 

 
 

Martin Seifrida,b, Riley J. Hickmana,b,, Andrés Aguilar-Grandaa,b, Cyrille Lavigneb, Jenya Vestfrida,b, 
Tony C. Wua,b, Théophile Gaudinb,c, Emily J. Hopkinsa, Alán Aspuru-Guzika,b,d,e 

 
aDepartment of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada 

bDepartment of Computer Science, University of Toronto, Toronto, ON M5S 3H6, Canada 
cIBM Research Zürich, 8803 Rüschlikon, Zürich, Switzerland 

dCIFAR Artificial Intelligence Research Chair, Vector Institute, Toronto, ON M5S 1M1, Canada 
eLebovic Fellow, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5S 1M1, Canada 

 
 

ABSTRACT: Self-driving labs, in the form of automated experimentation platforms guided by 
machine learning algorithms have emerged as a potential solution to the need for accelerated science. 
While new tools for automated analysis and characterization are being developed at a steady rate, 
automated synthesis remains the bottleneck in the chemical space accessible to self-driving labs.  
Combining automated and manual synthesis efforts immediately significantly expands the 
explorable chemical space. To effectively direct the different capabilities of automated (higher 
throughput and less labor) and manual synthesis (greater chemical versatility), we describe a 
protocol, the RouteScore, that quantifies the cost of combined synthetic routes. In this work, the 
RouteScore is used to determine the most efficient synthetic route to a well-known pharmaceutical 
(structure-oriented optimization), and to simulate a self-driving lab that finds the most easily 
synthesizable organic laser molecule with specific photophysical properties from a space of ~3500 
possible molecules (property-oriented optimization). These two examples demonstrate the power 
and generality of our approach in mixed synthetic planning and optimization. 
 
 
Introduction 
 

Molecular design and discovery is a universal challenge across the chemical sciences, which 
requires exploring a vast chemical space.1–3 Self-driving labs, also known as materials acceleration 
platforms (MAPs), have the potential to make faster, more efficient progress by “closing” the chemical 
discovery loop: integrating property prediction, synthesis, analysis, characterization and experiment 
planning.4–6 One of the key challenges in building self-driving labs is developing a platform capable 
of autonomously performing all experiments from synthesis to characterization. Automated 
synthesis platforms (ASPs) are therefore an integral element of MAPs: synthesis is the engine that 
drives exploration of chemical space. At the moment, ASPs are only capable of performing a very 
limited set of reactions compared to human chemists.7–12 As a result, the chemical space accessible to 
MAPs is limited by the reactions the ASP can perform, as well as the price and availability of the 
starting material library since high-throughput experiments often require more material than 
manual synthesis. Consequently, molecules incorporating starting materials that are unavailable or 
cost-prohibitive cannot be explored, even though computations may predict them to have highly 
desirable properties. To this end, we envision a combined synthetic strategy including both manual 
and automated synthesis (Figure 1), where human chemists synthesize the molecules inaccessible to 
the ASP while taking advantage of its increased throughput to more rapidly travel through chemical 
space. 
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The combined automated and manual synthetic approach to traversing chemical space can be 
likened to a subway system in a large city. In this “chemical metropolis,” the cost of the starting 
materials is analogous to rental or housing prices: the closer you are to your target, the more 
expensive the starting materials. In this analogy, the subway lines – fast and efficient with limited 
stops – are the reactions carried out by the ASP. Manual reactions – slow and costly, but much more 
versatile – are walking to or from the subway station. Finally, the “fare” for traveling through 
chemical space are the monetary, material and time costs of carrying out the syntheses. 
 

 
Figure 1. Subway map of chemical space (a) depicting travel through chemical space from (b) 1,4-
dibromobenzene and dimethyldichlorosilane (circle) to the target molecule (hexagon) using both 
manual reactions (blue) and automated iterative Suzuki-Miyaura cross-coupling reactions (pink). 
 

Quantifying the difficulty of synthesizing a target molecule is a very important challenge in both 
synthetic chemistry and cheminformatics. Commonly, synthetic accessibility is quantified based on a 
variety of structural features of the target molecule, including the number of rings and stereocenters, 
the complexity of the target molecule’s graph representation, or similarity to the starting materials.13–

15 Other approaches consider these factors, as well as more practical considerations, such as the 
probability of finding a similar molecule or substructure in a database of purchasable starting 
materials, or the costs of starting materials.16,17 However, some of these metrics rely on weights for 
each factor that are assigned based on fitting to expert opinion. In addition to the significant human 
labor required for determining the weights, this restricts the metric to evaluating only molecules 
similar to those which were scored by experts. Machine learning (ML)-based approaches for 
calculating synthetic accessibility have recently been shown to accurately estimate the complexity of 
a target molecule and synthetic route.18–21 However, these also face similar limitations in terms of 
transferability and training. Currently, no synthetic accessibility metrics exist for combined manual 
and automated synthetic routes. 

In this work, we present a new method to evaluate the cost of synthetic routes. The RouteScore 
requires no pre-training or fitting, and is based on objective inputs and weights such as cost of labor 
and materials and human or robot time. Although it is designed with the “subway map” approach of 
combined manual and automated synthesis in mind, the RouteScore is equally adaptable to fully-
automated or fully-manual synthesis. Furthermore, it can be used in both a priori synthetic route 
planning, as well as in a posteriori evaluation of syntheses. First, we describe how the RouteScore can 
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be used to determine the most efficient synthetic route from many (structure-oriented) by 
comparing ten different syntheses of a molecule with many known routes, modafinil. Then, we show 
how, by traveling through the chemical subway map, multi-objective optimization using the 
RouteScore as one of the objectives can be used to determine promising candidate molecules for 
organic laser molecules (property-oriented). 
 
 
Results and discussion 
 
The cost of a synthetic route 

To select the best synthetic route, we calculate the route’s cost per amount of target molecule 
produced. There are three principal considerations when determining the cost of a reaction: time, 
money and mass efficiency. The latter two are rarely considered in academic settings.17 Here, we 
define the mass cost as the total mass of material required for a reaction, and the monetary cost as 
the sum of the cost of human and robotic labor and the total cost of the starting materials used in the 
reaction. This is the factor that will be most variable between laboratories, institutions and countries 
due to differences in labor and material costs. For the purpose of clarity, we have included a full 
breakdown of our calculations of the labor costs in Tables S1 and S2. The monetary cost of starting 
materials synthesized in a previous step along the route is not factored into the monetary cost of a 
subsequent reaction so as to avoid double-counting. A “step” is defined as a reaction that requires 
setting up and later cleaning labware, that is to say that one-pot multistep reactions – although they 
involve multiple chemical transformations – only count for a single step in the RouteScore, as these 
are generally more efficient. Solvents used in the reaction, as well as work-up, purification and 
washing are not directly factored into the StepScore because they usually reflect only a small portion 
of the cost of a reaction. An easier approach to accounting for such “hidden” costs is to include them 
in the labor cost. In the case of a priori estimation of the RouteScore, the yield should be assumed to 
be 1. However, estimates of a reaction’s yield could also be provided by forward reaction prediction 
algorithms.22–24 

We define the total time cost (TTC) of combined human and robotic syntheses as follows: 
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The surface of all possible time costs is a cone with minimum of 0 at tH = 0 and tM = 0 (Figure 2). This 
results in a linear increase in the TTC for any combination of tH and tM. In the case where the hourly 
costs of human (CH) and machine (CM) labor are different, the surface is an elliptic cone where the 
semimajor and semiminor axes correspond to the ratio of CH and CM. We generally expect human time 
to be more expensive. This means that for equal increases in tH and tM, an increase in tH results in an 
increase of the TTC that is proportional to CH/CM. Therefore the RouteScore will disincentivize 
reactions that require large tH. Only taking into account tH could lead the RouteScore to favor reactions 
that require very large tM, which is also undesirable. 

Based on these considerations, we define the cost of a reaction step along the synthetic route 
(StepScore) to be: 
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where ni is the molar quantity of a given material, Ci is its cost and MWi is its molecular weight. For 
purely manual synthesis, CH, CM and tM can be dropped, giving TTC = tH. When determining the TTC 
for automated synthesis, it is also important to account for the human time required for maintenance 
of the robotic chemist. 
 

 
 
Figure 2. Plot of the TTC as a function of human and robot time. 
 

To make syntheses at different scales comparable, the sum of all StepScores is normalized by the 
quantity of target material produced (nTarget). The RouteScore, with units of hڄ$ڄgڄ(mol of target 
molecule)-1, can therefore be expressed with this equation: 
 

𝑅𝑜𝑢𝑡𝑒𝑆𝑐𝑜𝑟𝑒 ൌ  
∑ 𝑆𝑡𝑒𝑝𝑆𝑐𝑜𝑟𝑒ேே

𝑛்௔௥௚௘௧
 (3) 

 
Synthetic route optimization for a well-studied drug molecule 

It can be difficult to quantify the efficiency of a diverse set of synthetic routes. To demonstrate 
the usefulness of the RouteScore for addressing this challenge, we selected a drug, modafinil, which 
has many known synthetic routes (Table S3).25–32 For each route (Figure 3), we determined the 
required human time based on our own estimates (see SI for details) and calculated the RouteScore. 
The synthetic routes vary from a patented industrial-scale preparation31 to a milligram-scale 
synthesis performed to screen modafinil’s anti-inflammatory activity.27 
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Figure 3. Ten routes to synthesize modafinil, with route number bolded and log(RouteScore) in grey 
underneath. The rings of each molecule are colored based on how often that molecule appears in the 
10 routes. Dashed arrows represent one-pot multistep reactions, which we treated as a single step. 
 

We find that the scale of the synthetic route and the number of steps do not correlate strongly 
with the RouteScore (Figure 4). Routes 1 and 3 both start from diphenyl methanol, take three steps 
and have similar overall yields (65-66%, Figure S3). The main difference between the two routes is 
in the procedure. Repeated drying and purification by recrystallization are labor-intensive (Table S4), 
and often involve loss of 5-10% of the product. Route 1 requires numerous recrystallizations, which 
raises the total labor time from 4 hours (route 3) to 6.5 hours (route 1). Unlike the other routes, route 
5 is carried out as a one-pot multistep synthesis in bespoke 3D-printed reactionware, which is 
intended to minimize human labor required to carry out syntheses. However, this route requires 
many small operations (e.g., preparing syringes, transferring solutions from one reactor module to 
another) which add up to 6 hours of labor time. As a result, route 6, which is almost identical to route 
5, requires slightly less time (5.5 hours). The routes that include formation of the 2-
(benzhydrylthio)acetyl chloride intermediate (routes 4, 5, 6 and 10) are much less efficient, likely 
due to the extra precautions and labor required to use reagents such as thionyl chloride and oxalyl 
chloride. Route 7 takes 4 steps, but ends up being less costly (log(RS) = 6.136) than routes 5 and 6 
despite substantial labor costs (9.25 hours) and a mediocre overall yield (34%) because the 
monetary cost of each step is quite low (on average $123 per step). Finally, routes 2 and 3, which use 
Nafion as a catalyst, are the most efficient because they require very little labor, are cheap to carry 
out and efficiently utilize the catalyst and starting materials to build up the target molecule (Figure 
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S3). Notably, route 3 is less costly than route 2 despite requiring more labor and having one more 
step because it uses a much cheaper method of introducing the thioether and amide groups. The 2-
mercaptoacetamide reactant costs $2303 CAD/mol, while methyl thioglycolate only costs $29 
CAD/mol and the amide can easily be synthesized from ammonia ($83 CAD/mol) at the last step. The 
effectiveness of this strategy is supported by a similar approach in the patented industrial synthesis 
(route 9).31 Although route 9 is carried out on an industrial scale, it is the least efficient (log(RS) = 
7.700) because it suffers from a below average overall yield of 23% (Figure S3) and requires a 
significant amount of human labor (9.5 hours). Since the RouteScore has identified this industrial-
scale synthesis as being inefficient, its quantitative information can be used to translate the 
advantages of other syntheses of modafinil to a more efficient method to potentially produce large 
quantities of the target molecule. 
 

 
Figure 4. Results of evaluating the 10 modafinil synthetic routes  using the RouteScore. The 
horizontal axes correspond to the total human time required to perform each synthesis and the 
overall yield of the route. The vertical axis corresponds to log(RouteScore). Each point is colored 
based on the number of synthetic steps, and labeled by its route number. 
 
Multi-objective optimization of organic laser molecules 

To demonstrate the usefulness of the RouteScore approach for searching chemical space, we 
perform an in silico optimization of optoelectronic properties of potential organic laser molecules.33 
Organic laser molecules in the solid state could be a very interesting technology for portable devices, 
and is a logical extension of organic light emitting diode technology. The initial set of molecules are 
those that can be synthesized by two steps of automated iterative Suzuki-Miyaura cross-coupling 
(iSMC) reactions7,34 (Figure 5a) from three groups of building blocks – A, B and C – (Figure S4) to 
form A-B-C-B-A pentamers. The terms “building block” and “fragment” are sometimes used 
interchangeably in settings that include both computational and synthetic material design, which can 
cause confusion. Here, the term “building block” refers to a molecule, which has reactive functional 
groups, that is used as a reactant in the synthetic route. On the other hand, “fragment” refers to a 
structural template that is used in computational screening. We randomly picked  10 “A” blocks, 11 
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“B” blocks and 18 “C” blocks from a list of aromatic compounds, resulting in a space of 1980 
symmetric pentamers that could be synthesized in an automated fashion. Most of the blocks are 
commercially available, however three are not (blue in Figure S4c). In our model system, those were 
prepared by manual synthesis (Figure S5) using procedures in the literature.35–37 We estimated the 
human time required for each synthesis based on prior experience (Table S5). Due to compatible 
functional groups, certain pentamers can be expanded with post-automation manual synthetic steps 
involving either nucleophilic aromatic substitution38 (SNAr) by a carbazole (Figure 5b), or a 
Buchwald-Hartwig amination39 (BHA) with 2-bromopyrazine, via a t-butoxycarbonyl (Boc) 
deprotection step (Figure 5c). 
 

 
Figure 5. The three syntheses used in our example: iterative Suzuki-Miyaura cross-coupling (a), 
nucleophilic aromatic substitution (b), and Buchwald-Hartwig amination (c). The following reagents 
were used for each general type of reacton: (i) XPhos Pd G2, K3PO4; (ii) Cs2CO3; (iii) K2CO3; (iv) 
Pd2(dba)3, DavePhos, NaOt-Bu. Structures of the organic reagents are provided in Figure S6. 
 

The manually synthesized “C” blocks along with the SNAr and BHA reactions allow us to explore 
how adding manual synthetic steps into otherwise automated synthetic exploration of chemical 
space affects the RouteScore. There are 198 pentamers only subjected to manual synthetic 
modification via Buchwald-Hartwig amination, and 1231 pentamers only modified by manual SNAr 
reactions. Finally, there are 49 pentamers that undergo both SNAr and BHA. For these, we compare 
the cost of performing either the SNAr or BHA reactions first. Using only three general types of 
reactions and 41 total building blocks, we are able to access a chemical space of 3458 molecules. 

As expected, we find that the most efficient synthetic routes do not involve any manual synthetic 
steps after the automated pentamer synthesis (logଵ଴ሺଓ𝑆𝑀𝐶 𝑎𝑢𝑡𝑜.തതതതതതതതതതതതതതത ሻ ൌ  4.94, Figure 6). The relative 
cost for manual synthesis of starting materials depends strongly on the particular intermediates and 
the reactions being carried out. In the iSMC set, synthetic routes with the three manually-synthesized 
“C” blocks (logଵ଴ሺଓ𝑆𝑀𝐶 𝑚𝑎𝑛.തതതതതതതതതതതതതത ሻ ൌ  7.21) are ~186 times more costly on average than pentamers 
synthesized exclusively from commercially available starting materials. Candidate molecules can also 
be synthesized using SNAr (logଵ଴ሺ𝑆ே𝐴𝑟തതതതതതതሻ ൌ  7.49) or BHA (logଵ଴ሺ𝐵𝐻𝐴തതതതതതሻ ൌ  7.41) reactions. We find 
that for the set of 49 molecules that undergo both the SNAr and BHA reactions, it is less efficient to 
perform the BHA as the second step (logଵ଴ሺ𝑆 െ 𝐵തതതതതതതሻ ൌ  7.72), than as the first step logଵ଴ሺ𝐵 െ 𝑆തതതതതതതሻ ൌ
 7.69). The difference in RouteScore between the SNAr-followed-by-BHA (S-B) and BHA-followed-by-
SNAr (B-S) routes is due to the difference in mass of required starting materials for the Boc-
deprotection and BHA reactions (Figures S7 and S8). Since the carbazole groups have already been 
installed at the time of the Boc-deprotection and BHA reactions in the S-B routes, the mass of starting 
material required to produce the same quantity (mols) of target molecule is greater than for B-S 
routes. As a result, the RouteScore of S-B routes is ~4% greater than that of B-S routes.  
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Figure 6. Violin plots of log(RouteScore) based on the type of synthesis used in the route. The 
numbers next to each violin correspond to the number of molecules in each set. The abbreviations 
are as follows: iSMC auto., molecules synthesized only by automated iSMC; iSMC man., molecules 
synthesized only by automated iSMC and manual building block synthesis; SNAr, molecules involving 
post-functionalization with only SNAr reactions; BHA, molecules involving post-functionalization 
with only BHA reactions; B-S, molecules where BHA reactions were performed before SNAr; S-B, 
molecules where SNAr reactions were performed before BHA. The white dot represents the median 
value, and the black box indicates the interquartile range. 
 

One of the primary goals of MAPs is achieving efficient inverse design of functional molecules.5,40 
Rather than enumerating large combinatorial spaces of molecules with potentially costly property 
measurements, the inverse design paradigm seeks to discover molecules starting from a desired 
property or set of properties. Selecting molecules that satisfy multiple predefined targets 
simultaneously (e.g. strong emission in a particular wavelength range, low synthetic cost) is a critical 
but challenging decision-making process, especially when the property measurements are time- or 
resource-intensive. In this section, we simulate a MAP for the inverse design of organic laser 
molecules. 

The computationally predicted properties of laser molecules are optimized using a multi-
objective, categorical variable approach. As objectives, we chose three figures of merit that are 
important for developing new organic laser molecules33,41 and the RouteScore as objectives for the 
recently reported deep categorical Bayesian optimizer Gryffin.42 The four targeted figures of merit in 
descending order of importance are: (i) maximal fluorescence within a particular spectral range 
(400-460 nm in this case), (ii) minimal RouteScore, (iii) minimal spectral overlap between 
fluorescence and absorption spectra, and (iv) maximal fluorescence rate. First, maximizing 
fluorescence within a particular spectral range is necessary for developing a laser of a desired color, 
arguably the most critical property of any laser device. The RouteScore is chosen as the second most 
important figure of merit to reflect the necessity of finding organic laser molecules that can be 
synthesized in a cheap and efficient manner. Third, minimizing the spectral overlap corresponds to 
reducing losses from the self-absorption of emitted light, the inner filter effect.43 Finally, maximizing 
the fluorescence rate should improve the quantum efficiency of the laser. The RouteScore is calculated 
as described above, while the other three figures of merit are derived from the results of high-
throughput quantum chemical calculations (see SI for details). There are three categorical variables, 
corresponding to the “A” , “B“, and “C” fragments (Figure S1), with 14, 13 and 19 options respectively. 
This space corresponds to 3458 unique molecules. We use the scalarizing function Chimera44 to 
simultaneously optimize the four objectives. Chimera attempts to optimize each objective in order of 
importance to bring its value within a desired threshold, as described in Ref 44. We set absolute 
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tolerances such that roughly 1% of the entire molecular space (34 out of 3458 molecules) satisfies 
all 4 tolerances simultaneously (Figure 7a). We execute 50 independently seeded optimization runs, 
each evaluating properties for 500 molecules. Nearing 500 evaluations, we observe asymptotic 
behavior of the optimizer for each target property. Optimization traces for the four target properties 
are presented as blue traces in Figure 7b-e. 
 

 
Figure 7. The molecular space for the multi-objective optimization is represented in 4 dimensions 
(a). The grey points don’t satisfy the optimization thresholds. The red, purple, orange and blue points 
correspond to the molecules with the best peak score, RouteScore, spectral overlap and fluorescence 
rate, respectively (Figure S9). The peak scores of the full molecular space are shown in Figure S10. 
At each iteration of the multi-objective optimizations using Gryffin and Chimera, we plot the four 
properties that correspond to the measurement with the best merit: peak score (b), RouteScore (c), 
spectral overlap (d), and fluorescence rate (e). The shaded areas around the curves correspond to 
the bootstrapped 95% confidence interval. The grey shaded area indicates regions in which 
tolerances are not satisfied. The dashed lines correspond to the absolute tolerance that must be 
satisfied for the peak score (> 0.67), RouteScore (< 105 hڄ$ڄgڄ(mol target molecule)-1), spectral overlap 
(< 0.2) and fluorescence rate (> 0.16 ns-1). All four objectives are optimized simultaneously in the 
blue traces, while the RouteScore is excluded from the set of objectives in the maroon traces. 
 

In this work, we compute the four objective values for all 3458 molecules in our search space 
before commencing the optimization experiments. As such, we can apply the scalarizing function to 
the entire dataset a priori and rank the candidate molecules based on the merit returned by Chimera. 
The 34 satisfactory molecules ordered by the merit-based function constructed from the four 
objective hierarchy and absolute tolerances are shown in Figure S11, with their objective values in 
Table S6. Optimizations of the merit-based function should then converge upon the top ranked 
molecule. In the case of inverse design using Chimera with experimental data, this would not be 
feasible. Here, we calculate the merit for all the molecules in the search space to evaluate the 
performance of Gryffin and Chimera. 

b
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Gryffin rapidly identifies molecules with fluorescence spectra overlapping significantly with our 
target region (peak score > 0.67). After achieving the first objective, the RouteScore is decreased until 
its tolerance is satisfied after roughly 80 evaluations while the primary objective remains satisfied. 
In other words, the algorithm begins to evaluate molecules which have less costly syntheses whose 
fluorescence spectra fall into the target energy interval in the very first steps of the optimization. The 
tertiary objective tolerance is satisfied almost immediately after beginning the optimization. As we 
improve upon the quaternary fluorescence rate objective, we observe a slight regression upon the 
tertiary objective, i.e. increase in the spectral overlap. To emphasize the effect of including the 
RouteScore in the set of objectives, we conduct additional optimization runs using only three 
objectives: peak score, spectral overlap, and fluorescence rate. The top 20 molecules according to the 
merit-based function constructed from this three objective hierarchy and absolute tolerances are 
shown in Figure S12, with their objective values in Table S7. Optimization traces for these 
experiments are shown in Figure 7b-e in maroon. Without the additional task of minimizing the 
RouteScore, Gryffin identifies molecules as being meritorious based solely on the properties derived 
from quantum chemical calculations. As such, molecules identified after 500 iterations have 
comparable properties to the molecules in the blue traces but are significantly more costly to 
synthesize (average RouteScore > 107) in terms of a combination of effort, price and materials needed. 

Recently, several studies have highlighted the efficiency of ML-driven experiment planners for 
achieving inverse design.45–51 We follow suit for our simulated MAP by quantitatively comparing its 
aptitude for identifying synthetically feasible laser molecules to that of a simple random sampling 
strategy. Here we consider the following question: what fraction of total satisfactory molecules can 
each strategy identify given a budget of 500 evaluations (Figure S14)? In this context, satisfactory 
refers to a molecule whose properties simultaneously satisfy all the tolerances. The Gryffin + Chimera 
strategy identifies on average 35±3% of all satisfactory molecules after 500 evaluations, while 
random sampling identifies only 15±1% of satisfactory candidates (Figure S14). This corresponds to 
on average about 12 hits with Gryffin + Chimera, but only 5 hits with random sampling. For the 
entirety of the optimization experiment, the Gryffin + Chimera strategy evaluates on average a 
greater fraction of total satisfactory molecules, indicating that ML-driven experiment planning 
strategies yield greater exposure to promising candidates given budgeted resources than does 
random sampling. 

The results of our MAP simulation indicate that the RouteScore can be seamlessly used alongside 
photophysical figures of merit in the multi-objective inverse design of organic laser molecules. In our 
50 optimizations, the Gryffin + Chimera strategy identified 12 distinct molecules (Figure 8a), all of 
which can be synthesized using only automated iSMC reactions. The optimizations overwhelmingly 
(42% of the time, Figure 8b) identify molecule 1 as the top candidate for synthesis. In contrast, the 
optimizations that only consider the peak score, spectral overlap and fluorescence rate identify 10 
molecules (Figure S15). Molecules 1, 2 and 3 in the four-objective (with RouteScore) optimizations 
are the same as molecules F, I and J in the three-objective (without RouteScore) optimizations. 
However, these three molecules are only identified as the top choice in 12% of the three-objective 
optimizations, while they are identified as the top choice in 72% of the four-objective optimizations. 
Notably, all the molecules identified in the RouteScore optimizations contain unusual substitution 
patterns for organic laser molecules.33 For example, many of the top molecules are severely sterically 
hindered due to, e.g., 2,3- or ortho-substitution. This may be related to biases within the choice of 
building blocks and the target spectral range since 400-460 nm corresponding to relatively high 
energy violet light. Nonetheless, this design motif may be worth exploring further experimentally and 
computationally. 
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Figure 8. Structures (a) of the top molecules from the four-objective optimizations, numbered by 
their ranking by merit, and (b) the frequency with which they were found. Molecular structures of all 
satisfactory molecules are provided in Figure S11. 
 
 
Conclusion 
 

We have demonstrated a general new approach to quantifying the cost of synthesizing organic 
molecules, the RouteScore, based on factors including the labor and monetary cost of the route, as 
well as the mass of material consumed. The RouteScore promotes more practical considerations 
about the amount of work required, rather than the elegance of the synthetic route. We have shown 
how this can be used to select the most efficient synthetic route to a well-known API with numerous 
reported syntheses. Furthermore, our approach – which takes into account the labor of both manual 
and automated synthesis – can be used as a tool in self-driving labs to expand the chemical space 
accessible by MAPs. To demonstrate this principle, we have carried out a multi-objective 
optimization to select a candidate organic laser molecule based on its fluorescence within a desired 
wavelength range, its RouteScore, the overlap between its absorption and fluorescence spectra and 
its fluorescence rate using the Gryffin and Chimera algorithms. The ML-driven optimizations 
efficiently identify top candidate molecules. In addition, optimizations that ignore the RouteScore 
identify molecules with similar predicted photophysical properties, but that are more costly to 
synthesize. Although we focused on organic materials, this method can be expanded to, e.g., inorganic 
materials synthesis. In general, the RouteScore and subway approaches may be a solution to the 
challenges of developing self-driving labs. 

Although the RouteScore is generally robust, there are some important caveats. For example, 
determining the labor – and its cost – needed for each reaction will require more careful accounting 
than is typically carried out in academic laboratories. However, we believe that better understanding 
the underlying costs of material design will have significant benefits. Additionally, it may be desirable 
to remove the variance between RouteScore values in different currencies by normalizing price with 
respect to some commonly used chemical, similar to the Big Mac index.52 Further refinement of the 
RouteScore code to calculate the required labor from a chemical descriptive language9 will reduce the 
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need for estimation by experts. In addition, although the RouteScore can only be most easily 
compared between laboratories where the material and labor costs are relatively similar, the code 
released with this work is sufficiently flexible and easy to implement that we hope calculating the 
RouteScore for different laboratories does not impede its adoption. 
 
 
Supporting Information 
 
The Supplementary Information is available free of charge at [link to SI]: 

x Methods 
x Supplementary text 
x Figure S1 to S15 
x Tables S1 to S7 

The code and supporting data are freely available as a GitHub repository at 
https://github.com/aspuru-guzik-group/routescore, and at Zenodo 
(https://doi.org/10.5281/zenodo.5106659).53 
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Supplementary Information 
 
 
Methods 
 
RouteScore calculations 

The RouteScore for each molecule was calculated with a set of custom Python scripts, which rely 
on an inventory file and a number of .pkl files that contain details of the hourly costs, reagents, tH, tM, 
etc. 

All monetary quantities are given in Canadian dollars (CAD). Material costs were determined 
based on prices in CAD listed on supplier websites (usually Sigma Aldrich). In cases where prices 
were not available in CAD, the price was converted from US dollars (USD) by the following rough 
estimate: CAD = 1.33 × USD. 

Estimates for the required human time for reactions were provided by a PhD-level chemist with 
extensive experience in synthetic organic chemistry. The tH is based on estimates of how long the 
basic operations (setting up and monitoring the reaction, work-up, purification, cleaning up 
glassware, etc.) of each reaction would take the average chemist. 
 
Estimating the labor cost of human and machine chemists 
Table S1. Basis for estimates of hourly cost of performing iterative Suzuki-Miyaura cross-coupling 
with the Chemspeed automated synthesis platform. 

General Parameters Quantity Unit 
Parallel reactions 48  
Hours per reaction set 28  
Vials per reaction 5  
Biotage cartridges per reaction 2  
Solvent per reaction mixture and work up 0.02 L 
Solvent of washing per reaction mixture 0.02 L 
Cost breakdown CAD/unit CAD/reaction 
Biotage cartridge $1.76 $3.52 
THF $105.33 $4.21 
Vials $0.45 $2.26 
Total costs CAD/hour CAD/reaction 
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 $17.13 $9.99 
 
Table S2. Basis for estimates of hourly cost of human researchers. 

General Parameters Hours 
Work weeks per year 50 
Work hours per week 40 
Cost breakdown CAD 
Salary (postdoctoral fellow) $64,800.00 
Benefits (10%) $6,480.00 
Overhead (53.5%) $34,668.00 
Total costs CAD 
Per year $105,948.00 
Per hour $52.97 

 
High-throughput quantum chemical calculations of molecular optical properties 

We use a computational workflow consisting of semi-empirical, quantum chemical, and in-house 
software components to generate absorption and emission spectra and fluorescence rates for each 
molecule. In total, we subject 3458 molecules accessible through 3 general reaction types and 46 total 
fragments (Figure S1)  to computation. We generate molecules from fragments using an in-house 
code based on the functionality of the RDKit.1 Molecular conformers are generated using 
OpenBabel2,3 and optimized using the xTB-GFN2 semi-empirical Hamiltonian.4 The molecular 
Hessian is evaluated using the same approach at those geometries. Time-dependent density 
functional theory calculations (B3LYP/6-31G*) are then performed using Q-Chem 5.25  to obtain 
energy  gradients for ground and excited electronic states. These gradients, projected over normal 
modes of the Hessian matrix, are used to estimate ground and excited state optimal geometries, using 
the Vertical Gradient method described in Ref. 6. Normal modes of vibration and estimated optimal 
geometries were used to simulate absorption and emission spectra as well as fluorescence rates 
using standard path-integral equations.7 We applied inhomogeneous broadening to the spectra (300 
cm-1). 
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Figure S1. List of all fragments for computational multi-objective optimization. 
 

Workflow results are post-processed to obtain the fluorescence peak score and the spectral 
overlap. The dimensionless fluorescence peak score is the fraction of the fluorescence power spectral 
density PSDሺ߱ሻ  that falls within the interval from 400-460 nm, computed using the following 
formula, 

 

peak score ൌ න d߱PSDሺ߱ሻ
௅

௎
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ିஶ
൘  (S1) 

 
 
where L and U are the frequencies of 460 nm and 400 nm light, respectively. The peak score is unity 
if all of the emitted light is within the desired wavelength interval, and is zero if all the emitted light 
falls outside of the desired interval. 

The spectral overlap between emission and absorption is given by their L2 inner product 
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where ߝሺ߱ሻ is the extinction coefficient. It is dimensionless and bound from below by zero and above 
by unity. 
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Figure S2. Visualization of the extreme values of the peak score and spectral overlap within the 3458 
molecules considered in the inverse design optimization experiment. The region shaded in blue 
indicates the fluorescence spectrum target range (400-460 nm) used to compute peak score.  
 
Multi-objective optimization of  organic laser dye molecules 

The optimization of the computational properties of laser dye molecules is framed as a multi-
objective categorical optimization problem. There are three categorical variables, corresponding to 
the “A” , “B”, and “C” fragments, with 14, 13 and 19 options respectively. We choose Bayesian 
optimization as the means of traversing the molecular space in search of desired target properties. 
Specifically, we employ the recently reported deep categorical Bayesian optimizer Gryffin.8 Gryffin 
provides favorable scaling compared to Gaussian process-based strategies. We use the naive Gryffin 
implementation which does not consider physicochemical descriptors of the categorical options. Use 
of descriptors has been shown to accelerate the optimization rate of the algorithm and should be 
explored for this problem in future work. We use 2 sampling strategies, λ = {-1, 1}. 

We consider 4 objectives: fluorescence peak score, RouteScore, spectral overlap, and fluorescence 
rate. RouteScore is calculated as described in the main text, while the other 3 are derived from the 
results of high-throughput quantum chemical calculations (See previous subsection). We use the 
scalarizing function Chimera9 to transform sets of properties to a scalar-valued merit which is 
optimized using Gryffin. Chimera expects the objectives to be organized in a hierarchy representing 
the ranking of the objective’s importances to the research goal. We also must provide tolerances to 
Chimera for each objective. Tolerances indicate the threshold value beyond which the researcher is 
satisfied with that objective’s value, and moves on to optimize the subsequent objective in the 
hierarchy. We choose to use absolute tolerances in this study. The softness parameter of Chimera is 
set to 0.001. 
 
 
Synthetic route optimization for a well-studied drug molecule 
 
Table S3. References for each of the modafinil synthetic routes. 

Route Reference 
1 Naddaka, et al.10 
2 Maurya, et al.11 
3 Maurya, et al.11 
4 Chatterjie, et al.12 
5 Hou, et al.13 
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6 Prisinzano, et al.14 
7 Jung, et al.15 
8 Fornaroli, et al.16 
9 Lafon17 
10 Lafon17 

 

 
Figure S3. Correlation (or lack thereof) between RouteScore and (a) overall yield, (b) number of steps, 
(c) total human labor time, (d) scale, (e) average human time per step, (f) average monetary cost per 
step and (g) average mass cost per step for the 10 modafinil routes. 
 
Table S4. Time estimates for the steps of each route to make modafinil. 

Route Step Time (hours) Time (h:mm) 
1 1 1.5 1:30 
 2 2.4167 2:25 
 3 2.667 2:40 
2 1 1 1:00 
 2 2 2:00 
3 1 1 1:00 
 2 1.5 1:30 
 3 1.5 1:30 
4 1 2.75 2:45 
 2 3.0833 3:05 

a b c

e

f g

d
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 3 1.667 1:40 
5 1 6.0833 6:05 
6 1 1.667 1:40 
 2 2.667 2:40 
 3 1.25 1:15 
7 1 3 3:00 
 2 1.5 1:30 
 3 3.5 3:30 
 4 1.25 1:15 
8 1 3.75 3:45 
 2 1.833 1:50 
9 1 4.833 4:50 
 2 2.0833 2:05 
 3 2.5 2:30 
10 1 1.5 1:30 
 2 2.4167 2:25 
 3 1.833 1:50 

 
 
Multi-objective optimization of organic laser molecules 
 

 
Figure S4. There are 10 “A” blocks (a), 11 “B” blocks (b) and 18 “C” blocks (c) that make up the 
space of 1980 symmetric pentamers that can be accessed by automated iterative Suzuki-Miyaura 
cross-coupling. The structures depicted in blue are not commercially available and must be 
manually synthesized. 
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Figure S5. Synthetic routes for manually-synthesized building blocks: (a) 2,5-dibromobenzofuran, 
(b) bis(4-bromophenyl)dimethylsilane and (c) bis(2-bromophenyl)dimethylsilane. Dashed arrows 
represent one-pot multistep reactions, which are treated as a single step. 
 
Table S5. Time estimates for manual syntheses. The steps correspond to those enumerated in Figure 
S5. 

Reaction Estimated labor (h) 

2,5-Dibromobenzofuran step 1 7.84 
step 2 2.52 

Bis(4-bromophenyl)dimethylsilane step 1 6.75 

Bis(2-bromophenyl)dimethylsilane step 1 6.05 
step 2 6.325 

Boc deprotection  6.5 
Buchwald-Hartwig amination 6.0 
Nucleophilic aromatic substitution (SNAr) 6.5 

 

 
Figure S6. Molecular structures of the catalysts and ligands mentioned in the caption of Figure 5: (a) 
XPhos Pd G2 (chloro(2-dicyclohexylphosphino-2′,4′,6′-triisopropyl-1,1′-biphenyl)[2-(2′-amino-1,1′-
biphenyl)]palladium(II)), (b) Pd2(dba)3 (tris(dibenzylideneacetone)dipalladium(0)), (c) DavePhos 
(2-dicyclohexylphosphino-2′-(N,N-dimethylamino)biphenyl), (d) NaOt-Bu (sodium tert-butoxide). 
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Figure S7. Analysis of the difference in costs of the S-B and B-S routes. Values for the S-B routes are 
in the vertical axis, while values for the B-S routes are in the horizontal axis. Rows correspond to the 
different cost components: time (a-c), money (d-f) and materials (g-i). Columns correspond to the 
different reactions: SNAr (a, d, g), Boc-deprotection (b, e, h) and BHA (c, f, i). The outliers in g, h and 
i are due to molecules with 4 carbazole groups instead of 2. 
 

 
Figure S8. Comparison of RouteScores for the S-B and B-S routes. The S-B routes are systematically 
4% more costly. 
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Figure S9. Structures of the molecules with (a) the best (highest) peak score, (b) the best (lowest) 
RouteScore, (c) the best (lowest) spectral overlap and (d) the best (highest) fluorescence rate. 
 

 
Figure S10. Distribution of the 4 properties of all 3458 molecules in the full molecular space. 
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Figure S11. The 34 molecules that satisfied all 4 objectives, ordered from highest (1) to lowest (34) 
by merit. 
 
Table S6. Properties of the 34 molecules in Figure S11. 

Molecule 
rank Peak score RouteScore  Spectral 

overlap 
Fluorescence 
rate (ns-1) 

1 0.7934 60357.1 0.1115 0.4516 
2 0.7827 58576.9 0.1039 0.4949 
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3 0.7772 58126.4 0.1526 0.6280 
4 0.7763 58299.6 0.1908 0.4986 
5 0.7674 87094.4 0.1670 0.6922 
6 0.7641 68333.6 0.0904 0.2540 
7 0.7638 97761.9 0.1319 0.3572 
8 0.7616 57009.4 0.1411 0.3674 
9 0.7568 39307.1 0.0935 0.5277 

10 0.7501 69953.5 0.1450 0.5669 
11 0.7493 71612.5 0.0851 0.2856 
12 0.7480 41279.8 0.0480 0.5902 
13 0.7459 38016.0 0.0445 0.1659 
14 0.7457 98414.8 0.0972 0.6371 
15 0.7447 39014.6 0.0493 0.2121 
16 0.7395 41115.0 0.0788 0.1920 
17 0.7331 85376.1 0.0424 0.3794 
18 0.7326 58442.4 0.0340 0.5583 
19 0.7325 46764.2 0.0450 0.3513 
20 0.7315 56825.5 0.0253 0.1777 
21 0.7307 39051.3 0.1554 0.2086 
22 0.7304 71276.8 0.0767 0.1673 
23 0.7286 41124.8 0.0697 0.6272 
24 0.7283 58604.0 0.0679 0.1920 
25 0.7255 44935.2 0.0793 0.1895 
26 0.7242 44282.2 0.1186 0.4287 
27 0.7187 86815.1 0.0776 0.5641 
28 0.7150 37364.1 0.0334 0.2463 
29 0.7139 98583.1 0.1070 0.5460 
30 0.7100 57024.8 0.0237 0.4267 
31 0.7063 40485.7 0.0912 0.1910 
32 0.6992 57146.6 0.0165 0.3154 
33 0.6894 88451.2 0.0144 0.1850 
34 0.6881 99113.9 0.0309 1.0870 
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Figure S12. Top 20 molecules by merit in the three-objective hierarchy (i.e., without optimizing the 
RouteScore), ordered from best (A) to worst (T) by merit. 
 
Table S7. Properties of the molecules in Figure S12. 

Molecule 
rank Peak score RouteScore Spectral 

overlap 
Fluorescence 
rate (ns-1) 

A 0.8598 22550876.1 0.1937 0.2071 
B 0.8298 23563142.3 0.1287 0.3195 
C 0.8291 208347.1 0.1709 0.4555 
D 0.8274 34944339.2 0.1604 0.2397 
E 0.8208 207807.4 0.1864 0.1586 
F 0.7934 60357.1 0.1115 0.4516 
G 0.7926 40271200.7 0.1473 0.2537 
H 0.7863 21943307.3 0.0981 0.2834 
I 0.7827 58576.9 0.1039 0.4949 
J 0.7772 58126.4 0.1526 0.6280 
K 0.7763 58299.6 0.1908 0.4986 
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L 0.7674 87094.4 0.1670 0.6922 
M 0.7641 68333.6 0.0904 0.2540 
N 0.7638 97761.9 0.1319 0.3572 
O 0.7616 57009.4 0.1411 0.3674 
P 0.7568 39307.1 0.0935 0.5277 
Q 0.7501 69953.5 0.1450 0.5669 
R 0.7493 71612.5 0.0851 0.2856 
S 0.7485 34925534.8 0.0627 0.2312 
T 0.7480 41279.8 0.0480 0.5902 

 
We observe systematic identification of molecules with larger fluorescence rates in the blue 

traces after roughly 150 evaluations compared to the maroon traces (Figure 7e). This could be caused 
by the fact there exists a slight negative monotonic correlation between the RouteScore and the 
fluorescence rates for the candidate molecules considered here (Pearson coefficient of –0.25, Figure 
S13). A possible explanation for this observation is that larger molecules fluoresce more strongly, but 
are typically more expensive to synthesize. 
 

 
Figure S13. Pairwise correlations for all unique pairs of objectives calculated using the entire set of 
3458 laser molecules. The fluorescence rate has a moderate positive linear correlation with the 
spectral overlap as evidenced by the Pearson correlation coefficient of 0.59. We also note a slight 
negative  correlation between the fluorescence rate and the RouteScore (Pearson correlation 
coefficient of -0.25) for this set of molecules. 
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Figure S14.  Percentage of satisfactory molecules identified by each strategy over 500 evaluations. 
Each trace comprises 40 independently seeded runs, and the shaded area displays a 95% confidence 
interval. The Gryffin + Chimera strategy identifies on average 35±3% of satisfactory molecules after 
500 evaluations, while random sampling identifies 15±1% of satisfactory candidates.  
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Figure S15. Structures (a) of the top three-objective molecules and the frequency with which the 
optimizations found them. Molecular structures of all top 20 three-objective molecules are provided 
in Figure S12. 
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