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ABSTRACT 

The Brazilian Compound Library (BraCoLi) is a novel open access and manually curated 

electronic library of compounds developed by Brazilian research groups to support 

further computer-aided drug design works. Herein, the first version of the database is 

described comprising 1,176 compounds. Also, the chemical diversity and drug-like 

profiles of BraCoLi were defined to analyze its chemical space. A significant amount of 

the compounds fitted Lipinski and Veber’s rules, alongside other drug-likeness 

properties. A comparison using principal component analysis showed that BraCoLi is 

similar to other databases (FDA-approved drugs and NuBBEDB) regarding structural and 

physicochemical patterns. Furthermore, a scaffold analysis showed that BraCoLi 

presents several privileged chemical skeletons with great diversity. Despite the similar 

distribution in the structural and physicochemical spaces, similarity analysis indicated 

that compounds present in the BraCoLi are generally different from the two other 

databases showing an interesting innovative aspect, which is a desirable feature for 

novel drug design purposes. 
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INTRODUCTION  

The application of computational tools as an ally in drug design was an important 

milestone in medicinal chemistry. This approach is now known as computer-aided drug 

design (CADD) and it is widely used to optimize the discovery and design of new drug 

candidates1,2. Molecular docking, structure-activity relationship (SAR) studies, and virtual 

screening are a few examples of available computational approaches that can be 

employed in drug design3.  

 

Currently, CADD data comes from individual works available in the literature or some 

websites. These strategies demand a large amount of chemical information to 

automatize the screening of novel bioactive compounds. Therefore, chemical databases 

were built as a resource to obtain this type of data more easily4,5. They were architected 

to store, organize, and enable the search for readily available and quantitative 

information for biological applications, as well as physicochemical and molecular 

properties of ligands and targets6,7. We listed some examples of free-to-access virtual 

chemical libraries that are extensively used on CAAD nowadays (Table 1). 

 

Table 1. Open-access databases containing information about small molecules and their 

biological activities useful for CADD. The databases are shown in descending order of 

the number of compounds. Reported numbers were obtained in July 2021. 

Database Entries Link Reference 

ZINC 750 M http://zinc20.docking.org/  [8] 

PubChem 110 M https://pubchem.ncbi.nlm.nih.gov/  [9] 

ChEMBL 2.1 M https://www.ebi.ac.uk/chembl/  [10,11] 

BindingDB 992 K https://www.bindingdb.org/bind/index.jsp  [12] 

TCM Database 37 K http://tcm.cmu.edu.tw/about01.php?menuid=1  [13] 

DrugBank 15 K https://go.drugbank.com/  [14] 

Drug Repurposing Hub 6.8 K https://clue.io/repurposing  [15] 

NuBBEDB 2.2 K https://nubbe.iq.unesp.br/  [16,17] 

AntibioticDB 1 K https://www.antibioticdb.com/  [18] 

AfroDB 954 http://zinc.docking.org/catalogs/afronp/  [19] 

BIOFACQUIM 421 https://biofacquim.herokuapp.com/  [20] 

 

Thus, the process of building libraries is critical since the data must be reliable to enable 

chemoinformatic experiments21. It is important to emphasize that in silico approaches 

help and speed up the search for new bioactive compounds. This can reduce the amount  

of compounds to be tested in in vitro and in vivo assays, anticipating adequate 

pharmacokinetic profiles, high selectivity, and low toxicity predictions22,23. In this way, 

http://zinc20.docking.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://www.bindingdb.org/bind/index.jsp
http://tcm.cmu.edu.tw/about01.php?menuid=1
https://go.drugbank.com/
https://clue.io/repurposing
https://nubbe.iq.unesp.br/
https://www.antibioticdb.com/
http://zinc.docking.org/catalogs/afronp/
https://biofacquim.herokuapp.com/
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virtual libraries contribute to increase the success rate in the process of selecting new 

leads and to gather information with parsimony, ensuring the quality, variety, and 

consistency of the curated data2,21,24. 

 

Inspired by these examples, the Brazilian Compound Library (BraCoLi) was built as a 

manually curated and open-access electronic database containing biological and 

chemical information of synthetic and natural semisynthetic molecules from Brazilian 

research groups. In this work, a description and a cheminformatic characterization of 

BraCoLi based on chemical features and drug-like profiling, comparing with other 

databases is presented. The comparison was based on molecular, pharmaceutical and 

physicochemical properties of interest in drug design. The data was initially compilated 

from our research group on Pharmaceutical and Medicinal Chemistry from the 

Universidade Federal de Minas Gerais (UFMG), encouraging us to provide the dataset 

to the scientific community. 

 

RESULTS AND DISCUSSION 

Description of BraCoLi database and biological applications 

To compose the first version of the BraCoLi database, 31 peer-reviewed thesis and 

papers that evaluated any biological activity of pure and characterized compounds from 

our research group were analyzed. 1,176 unique compounds derived from natural 

scaffolds or completely synthetic compounds were gathered. For each entry, the 

molecular formula, molecular weight (in g/mol), melting points (in °C) and, when 

available, biological information were reported. The structures are displayed in 3D lowest 

energy conformers and are available in Mol2 and SDF file formats. In addition, XLSX 

and PDF files with chemical and biological information and references regarding the 

compounds are also provided. All files are available for download at 

https://www.farmacia.ufmg.br/qf/downloads/. A flowchart of the strategy for the 

development of BraCoLi database is presented in Figure 1.  

https://www.farmacia.ufmg.br/qf/downloads/


4 
 

 

Figure 1. Flowchart highlighting the executed steps in BraCoLi construction. The main 

steps were grouped in a) dataset curation followed by structure treatment of the 

compounds, b) molecular and physicochemical properties prediction, and c) chemical 

space and diversity comparisons.  

 

The substances showed a broad range of activity, with reported antibacterial, antifungal, 

antileishmanial, antimalarial, antioxidant, antitrypanosomal, antiviral, and cytotoxic 

activities. From BraCoLi database, two classes of compounds with great advance in drug 

development could be highlighted. Firstly, 2-thiazolylhydrazone derivatives (Figure 2) 

such as RN104 and RI76, have shown promising in vitro and in vivo antifungal potential 

against both standard strains and clinical isolates of Candida and Cryptococcus species, 

25–32. Anti-diabetes and antioxidant activities were also reported for these analogs. These 

compounds have been evaluated in preclinical assays, including (i) analytical 

characterization33, (ii) in vivo, in vitro and in silico pharmacokinetic and toxicity 

profiles34,35, (iii) stability studies36, and (iv) tests with different formulations to improve 

solubility37.  
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Figure 2. Structures of prominent bioactive compounds from BraCoLi database. 

Compounds RS11 and Thac-m were selected by Asse Junior et al. (2020)38 and 

presented MIC values of 125-250 µM against S. aureus and MRSA strains. 2j, a 1,3-

bis(aryloxy)propan-2-amine derivative, presented fungicidal activity against Candida 

spp. in infected Drosophila melanogaster flies39. RI17 and RN104 are potent 2-

thiazolylhydrazone antifungal agents that were evaluated in the beforehand preclinical 

assays.  

 

Other important set of substances includes the 1,3-bis(aryloxy)propan-2-amines and 1,3-

bis(aryloxy)propan-2-ols derivatives such as compound 2j (Figure 2) with a broad 

spectrum of activities. There are reports describing their in vitro antibacterial40, 

antifungal41, antileishmanial42,43 and antitrypanosomal44 activities, as well as a 

pharmacokinetic and pharmacodynamic characterization in D. melanogaster model of 

candidiasis39 and a patent deposited in Brazil45.  

 

In addition, a preliminary unpublished version of the database has been applied to 

develop new antibacterial leads, exemplifying the application of BraCoLi in 

cheminformatics. Asse Junior and co-workers (2020) carried out a virtual screening to 

select potential Enoyl-ACP reductase (FabI) inhibitors. The authors carried out a ligand-

based virtual screening via chemical similarity models using the in-house dataset 

alongside ZINC, FDA-approved drugs, TCM, and NuBBEDB databases. Four compounds 

were selected from BraCoLi and 2 of them (Figure 2, RS11 and Thac-m) presented 

antibacterial activity against standard strains of Staphylococcus aureus and MRSA as 

well as clinical isolates38.  

 

Chemical space and drug-like profiling of BraCoLi 

The chemical space of BraCoLi database was compared to 728 drugs approved by FDA 

between 1900 and 201746 and 2,223 compounds retrieved from NuBBEDB in terms of 
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chemical features and drug-like profiles. Firstly, nine molecular and physicochemical 

properties aiming to compare their drug-likeness were calculated: molecular weight 

(MW), logarithm n-octanol/water partition-coefficient calculated using the Moriguchi 

method (MLogP), number of hydrogen bond acceptors (HBA) and donors (HBD), 

topological polar surface area (TPSA), number of rotatable bonds (nRotB), fraction of 

sp3 carbons (Fsp3), number of atoms (nAtoms) and the number of rings (nRings). The 

drug-like potential of the compounds was analyzed based on two drug-likeness empirical 

rules: Lipinski’s (Ro5) (MlogP ≤ 5, MW ≤ 500 Da, HBA ≤ 10, HBD ≤ 5)47 and Veber’s 

rules (TPSA ≤ 140 Å², nRotB ≤ 10)48. For the other properties, the value ranges provided 

by Ghose’s (20 ≤ nAtoms ≤ 70)49 and Muegge’s (nRings ≤ 7)50 rules were employed as 

references. These rules are applied to predict oral bioavailability of substances according 

to physicochemical fitness to the stablished ranges for each property. 

 

The compounds presented a remarkably similar Gaussian distribution for MW and 

MLogP (Figure 3a). These databases present both hydrophilic and hydrophobic 

compounds (1 < MLogP < 7), indicating a good to moderate solubility in water probability 

whereas a good absorption in TGI. Most of the molecules (980 entries or 82.98% for MW 

and 1,160 entries or 98.22% for MLogP) fitted the quartile between the maximum values 

provided by Ro5. The average values for MW and MLogP were 378.58 Da and 2.58, 

respectively. Still in Ro5 discussion, Figure 3b shows a high population in the quartile 

between the adequate ratio of hydrogen-bond acceptors and donors, where 926 

compounds (78.40%) showed no more than 10 HBA, and 1,103 (93.40%) presented no 

more than 5 HBD. Furthermore, 900 compounds (76.21%) fitted both conditions. Finally, 

Figure 3c represents a comparison between the two Veber’s rules: number of rotatable 

bonds and topological polar surface area. Both parameters are related to the flexibility 

and capability of penetration in the cell membrane. Most molecules (887 entries or 

75.11% for TPSA and 924 entries or 78.24% for nRotB) fitted the maximum values 

stablished by Veber and co-workers. The mean value for TPSA was 106.10 Å². Also, 

nRotB showed an average value of 7.77. The highest densities of points fitted the Lipinski 

and Veber’s rules ranges (MW < 500 Da, 1 < MLogP < 5, HBA < 10, HBD < 5, nRotB < 

10, TPSA < 140 Å²). At final count, 862 substances showed no violations and 133 

showed one violation to Ro5 (totalizing 995 entries or 84.25%), 815 compounds (69%) 

fitted Veber’s parameters, and 814 compounds (68.92%) fitted both empirical rules, 

showing a proper drug-like profile of the dataset.  
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Figure 3. Scatter plots of the compounds of the BraCoLi (blue), FDA-approved drugs 

(orange), and NuBBEDB (lilac) according to molecular and physicochemical properties 

of relevance for drug-like profiling. The gray dashed line shows the range of each 

property according to Lipinski’s and Veber’s rules. The visual representations are a) 

MlogP vs MW, b) HBD vs HBA, c) nRotB vs TPSA, d) Fsp³ vs MW, and e) nRing vs 

nAtoms. The graphics were obtained using R package.  

 

Further comparisons were carried out to evaluate other physicochemical parameters. 

Figure 3d shows the comparison of the fraction of sp3 carbons (Fsp3) values to MW. 

Fsp3 are related to the flexibility of the molecules, such as nRotB, and also represents 

the hybridization ratio of the structure. The average value of Fsp3 was 0.43, meaning an 

approximately Csp³ ratio of 1/2.3, indicating that the dataset contains more rigid than 

flexible structures. The parameters quantity of atoms (nAtoms) and quantity of rings 

(nRings) were also compared, as shown in Figure 3e, since these properties are related 

to the size of the molecules. As expected, the parameters presented high correlation to 

each other. The mean values calculated for nAtoms and nRings were 48.66 atoms and 
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2.45 rings, fitting the ranges predicted by the empirical rules, and 999 entries (84.59%) 

fit both rules simultaneously. It could be seen in all scatter plots from Figure 3, BraCoLi 

presented similar distributions to FDA-approved drugs and NuBBEDB in all 

comparisons.  

 

The BraCoLi database, FDA-approved drugs, and NuBBEDB were compared regarding 

their chemical and structural spaces (Figure 4). The chemical spaces were generated 

employing principal component analysis (PCA), using two major approaches: (i) drug-

like profiles in terms of the nine physicochemical properties evaluated beforehand 

(nAtoms, HBA, HBD, Fsp3, MLogP, MW, nRings, nRotB, TPSA) (Figure 4a); and (ii) 

molecular fingerprints, according to PubChem fingerprints set (Figure 4b). Both plots 

are represented by the first two principal components (PC1 and PC2), where PC1 

showed most contribution to the PCA (94.3% for drug-like-based PCA and 19.2% for 

fingerprint-based PCA). All three chemical sets show a similar distribution in the PCA 

plots, as expected from the drug-likeness analysis, indicating that the compounds 

present a comparable predicted pharmacokinetic profile. This indicate that, even they 

represent different datasets, BraCoLi presents an interesting applicability to discover 

lead candidates with adequate drug-like profiles in comparison to other largely used 

databases.  

 

 

Figure 4. Chemical space visualization for the BraCoLi (blue), FDA-approved drugs 

(orange), and NuBBEDB (lilac) generated by PCA. The comparisons were based on a) 

drug-like profiles and b) molecular fingerprints. The graphics were obtained using R 

package.  

 

Although these drug-likeness rules are still universally applied in the early stages of drug 

design, it is important to stress that some approved drugs violate them. Even Lipinski 
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(2004) states that some scaffolds do not fit the Ro5 four parameters, especially natural 

products or derivatives and molecules that are recognized by active transport systems51. 

Pathania and Singh (2020) discuss in an editorial paper when is the ideal stage of drug 

development to take account on pharmacokinetic optimization and how empirical rules 

are helpful. According to the authors, 15 out of 26 FDA-approved small molecules in 

2020 do not fit one or more drug-likeness rules. They suggest to apply those predictions 

after the evaluation of biological activity52. Other works also accent the necessity to 

revise those empirical rules after several years and expand the chemical space to fit new 

bioactive molecules with adequate experimental drug-like profiles53–57. Obviously, it is a 

compelling starting point that two-thirds of BraCoLi database present an adequate drug-

like prediction, which can facilitate the screening of potential bioactive compounds, but it 

is necessary to balance both pharmacokinetic and pharmacodynamic profiles, since a 

molecule with a good pharmacokinetic profile does not necessarily present potent 

bioactivity and vice-versa52,55.  

 

Chemical scaffolds 

To verify the chemical diversity of the dataset, the most frequent scaffolds were analyzed 

using the DataWarrior software. The software accounts how many times a certain ring 

system appears in the input dataset. We retrieved the twenty most frequent scaffolds in 

Table 2. As shown, most of them are heterocycles containing oxygen, nitrogen and/or 

sulfur in 5- or 6-membered rings. As discussed by Jampilek (2019), heterocycles are a 

very versatile group of structures with important applications in medicinal chemistry. Due 

to their privileged fragments, they present a broad spectrum of bioactivities as well as 

they can be easily modified or simplified to optimize pharmacodynamic and 

pharmacokinetic profiles58.  

 

We performed the same protocol using the NuBBEDB and FDA-approved drugs datasets 

and compared their top 20 most frequent scaffolds with BraCoLi’s top 20. NuBBEDB 

showed five similar scaffolds (benzene, oxane, oxole, oxalane and naphthalene), where 

FDA-approved drugs showed nine similar scaffolds (benzene, pyridine, oxane, 1,3-

thiazole, indole, oxalane, quinoline, morpholine, and naphthalene).   
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Table 2. Top 20 most frequent chemical scaffolds presented in the BraCoLi database 

and their respective frequencies.   

     

benzene 

1164 entries (98.9%) 

oxane 

455 entries (38.7%) 

oxazolidine 

76 entries (6.46%) 

1,2,3-triazole 

76 entries (6.46%) 

1,3-thiazole 

60 entries (5.1%) 

 
  

 
 

benzimidazole 

50 entries (4.3%) 

cyclohexanimine 

46 entries (3.9%) 

oxole 

44 entries (3.7%) 

tetrahydrofuro[2,3-

d][1,3]dioxole 

40 entries (3.4%) 

quinoline 

37 entries (3.1%) 

   

 

 

naphthalene 

36 entries (3.1%) 

morpholine 

32 entries (2.7%) 

pyridine 

32 entries (2.7%) 

naphthoquinone 

28 entries (2.4%) 

oxalane 

24 entries (2%) 

  

 

 
 

azole 

22 entries (1.9%) 

butanolide 

21 entries (1.8%) 

cardenolide steroid 

20 entries (1.7%) 

indole 

20 entries (1.7%) 

1,3-dioxane 

17 entries (1.4%) 

 

Finally, we compared the similarity between BraCoLi and the two datasets using 

Tanimoto coefficient calculated with PubChem fingerprints. This analysis helped us to 

verify how chemically distinctive BraCoLi is when compared to other scaffolds based on 

a mathematical similarity. The Tanimoto similarity values were plotted into a kernel 

density distribution (Figure 5). As shown, the distributions are quite different, as BraCoLi 

showed low to medium similarity to NuBBEDB and FDA-approved drugs datasets, where 

their Tanimoto similarities values for the highest densities were around 0.25 and 0.4, 

respectively. Despite the three chemical sets showed similar distributions in the drug-like 

profile analysis (Figures 3 and 4), they are chemically diverse.  
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Figure 5. Kernel distribution plot for Tanimoto similarity comparison between BraCoLi 

with FDA-approved drugs (orange) and NuBBEDB (lilac).  

 

CONCLUSION 

After years cataloguing this information, a total of 1,176 compounds were gathered to 

build the BraCoLi database. As stablished in the cheminformatic characterization, the 

dataset present rich chemical diversity, broad spectrum of bioactivities and drug-like 

potential. More than two thirds of the compounds fitted both Lipinski’s Ro5 and Veber’s 

rules. These structures can be now explored by other medicinal chemistry groups to 

support their research. The dataset update is planned when novel substances are 

obtained by our group and other Brazilian laboratories to expand BraCoLi database, 

being a novel platform to compilate and organize information on Brazilian-developed 

bioactive compounds for computational studies and experimental assays. Also, we are 

developing a database website to improve the visualization of the data.  

 

MATERIALS AND METHODS 

Curation and preparation of the biological and chemical data 

The compounds were curated from prior works developed in the Laboratory of 

Pharmaceutical Chemistry (Faculty of Pharmacy, Federal University of Minas Gerais). 

Their chemical formula, molecular weight, and biological assays data were annotated. 

The 2D chemical structures were generated in Marvin Sketch 16.10.3 (Chemaxon, 

2015). After, the structures were converted to a 3D format and had their conformation 

energy minimized using Discovery Studio Visualizer (BIOVIA, 2020). Also, any lacking 

hydrogen atoms were added to the structures. The most stable conformers were 

generated by OMEGA 2.5.1.459. Ionization states in physiological pH (7.4) were 

corrected using fixpka software implemented in QUACPAC 1.6.3.1 (OpenEye Scientific 
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Software, 2016), in which the total energy was minimized using MMFF94 force field60. 

The 3D structures dataset is available in SDF and Mol2 file format.  

 

Drug-like profiling and cheminformatic characterization 

Molecular and physicochemical properties were calculated using PaDEL descriptor 

software61. R package was used to carry out statistical analysis. Principal component 

analysis (PCA) was carried out using prcomp function and histogram-scatter plots were 

generated via the function scatterhist. 

 

Chemical diversity and substructures scaffolds 

The chemical substructures were generated using the function “Analyse Scaffolds” and 

“Plain ring systems” filter criteria in software DataWarrior 5.2.162. Applying the option 

“Split multiple values row”, the most frequent and distinctive rings after the software 

counted the frequency of appearance of each substructure were manually verified. 

Ionized conjugate acids or bases were not differentiated from the non-ionized groups.  

 

ACKNOWLEDGMENTS  

The authors would like to thank FAPEMIG, CNPq, CAPES, and PRPq-UFMG for 

financial support and scholarships. Also, we would like to thank OpenEye Scientific 

Software for OMEGA and QUACPAC academic licenses. 

 

REFERENCES  

(1)  Lin, X.; Li, X.; Lin, X. A Review on Applications of Computational Methods in Drug 

Screening and Design. Molecules 2020, 25 (6), 1375. 

https://doi.org/10.3390/molecules25061375. 

(2)  Zhao, L.; Ciallella, H. L.; Aleksunes, L. M.; Zhu, H. Advancing Computer-Aided Drug 

Discovery (CADD) by Big Data and Data-Driven Machine Learning Modeling. Drug Discovery 

Today 2020, 25 (9), 1624–1638. https://doi.org/10.1016/j.drudis.2020.07.005. 

(3)  Ferreira, L. L. G.; Andricopulo, A. D. Chemoinformatics Approaches to Structure- and 

Ligand-Based Drug Design. Front. Pharmacol. 2018, 9. 

https://doi.org/10.3389/fphar.2018.01416. 

(4)  Shoichet, B. K. Virtual Screening of Chemical Libraries. Nature 2004, 432 (7019), 862–

865. https://doi.org/10.1038/nature03197. 



13 
 

(5)  Brown, N.; Ertl, P.; Lewis, R.; Luksch, T.; Reker, D.; Schneider, N. Artificial Intelligence in 

Chemistry and Drug Design. J Comput Aided Mol Des 2020, 34 (7), 709–715. 

https://doi.org/10.1007/s10822-020-00317-x. 

(6)  Nicola, G.; Liu, T.; Gilson, M. K. Public Domain Databases for Medicinal Chemistry. J. 

Med. Chem. 2012, 55 (16), 6987–7002. https://doi.org/10.1021/jm300501t. 

(7)  Bajorath, J. Extending Accessible Chemical Space for the Identification of Novel Leads. 

Expert Opinion on Drug Discovery 2016, 11 (9), 825–829. 

https://doi.org/10.1080/17460441.2016.1210126. 

(8)  Irwin, J. J.; Tang, K. G.; Young, J.; Dandarchuluun, C.; Wong, B. R.; Khurelbaatar, M.; 

Moroz, Y. S.; Mayfield, J.; Sayle, R. A. ZINC20—A Free Ultralarge-Scale Chemical Database for 

Ligand Discovery. J. Chem. Inf. Model. 2020, 60 (12), 6065–6073. 

https://doi.org/10.1021/acs.jcim.0c00675. 

(9)  Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B. A.; 

Thiessen, P. A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E. E. PubChem in 2021: New Data 

Content and Improved Web Interfaces. Nucleic Acids Research 2021, 49 (D1), D1388–D1395. 

https://doi.org/10.1093/nar/gkaa971. 

(10)  Davies, M.; Nowotka, M.; Papadatos, G.; Dedman, N.; Gaulton, A.; Atkinson, F.; Bellis, 

L.; Overington, J. P. ChEMBL Web Services: Streamlining Access to Drug Discovery Data and 

Utilities. Nucleic Acids Research 2015, 43 (W1), W612–W620. 

https://doi.org/10.1093/nar/gkv352. 

(11)  Mendez, D.; Gaulton, A.; Bento, A. P.; Chambers, J.; De Veij, M.; Félix, E.; Magariños, 

M. P.; Mosquera, J. F.; Mutowo, P.; Nowotka, M.; Gordillo-Marañón, M.; Hunter, F.; Junco, L.; 

Mugumbate, G.; Rodriguez-Lopez, M.; Atkinson, F.; Bosc, N.; Radoux, C. J.; Segura-Cabrera, A.; 

Hersey, A.; Leach, A. R. ChEMBL: Towards Direct Deposition of Bioassay Data. Nucleic Acids 

Research 2019, 47 (D1), D930–D940. https://doi.org/10.1093/nar/gky1075. 

(12)  Gilson, M. K.; Liu, T.; Baitaluk, M.; Nicola, G.; Hwang, L.; Chong, J. BindingDB in 2015: A 

Public Database for Medicinal Chemistry, Computational Chemistry and Systems 

Pharmacology. Nucleic Acids Research 2016, 44 (D1), D1045–D1053. 

https://doi.org/10.1093/nar/gkv1072. 



14 
 

(13)  Chen, C. Y.-C. TCM Database@Taiwan: The World’s Largest Traditional Chinese 

Medicine Database for Drug Screening In Silico. PLOS ONE 2011, 6 (1), e15939. 

https://doi.org/10.1371/journal.pone.0015939. 

(14)  Wishart, D. S.; Feunang, Y. D.; Guo, A. C.; Lo, E. J.; Marcu, A.; Grant, J. R.; Sajed, T.; 

Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; 

Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A Major 

Update to the DrugBank Database for 2018. Nucleic Acids Research 2018, 46 (D1), D1074–

D1082. https://doi.org/10.1093/nar/gkx1037. 

(15)  Corsello, S. M.; Bittker, J. A.; Liu, Z.; Gould, J.; McCarren, P.; Hirschman, J. E.; Johnston, 

S. E.; Vrcic, A.; Wong, B.; Khan, M.; Asiedu, J.; Narayan, R.; Mader, C. C.; Subramanian, A.; 

Golub, T. R. The Drug Repurposing Hub: A next-Generation Drug Library and Information 

Resource. Nature Medicine 2017, 23 (4), 405–408. https://doi.org/10.1038/nm.4306. 

(16)  Valli, M.; dos Santos, R. N.; Figueira, L. D.; Nakajima, C. H.; Castro-Gamboa, I.; 

Andricopulo, A. D.; Bolzani, V. S. Development of a Natural Products Database from the 

Biodiversity of Brazil. J. Nat. Prod. 2013, 76 (3), 439–444. https://doi.org/10.1021/np3006875. 

(17)  Pilon, A. C.; Valli, M.; Dametto, A. C.; Pinto, M. E. F.; Freire, R. T.; Castro-Gamboa, I.; 

Andricopulo, A. D.; Bolzani, V. S. NuBBE DB : An Updated Database to Uncover Chemical and 

Biological Information from Brazilian Biodiversity. Scientific Reports 2017, 7 (1), 7215. 

https://doi.org/10.1038/s41598-017-07451-x. 

(18)  Farrell, L. J.; Lo, R.; Wanford, J. J.; Jenkins, A.; Maxwell, A.; Piddock, L. J. V. Revitalizing 

the Drug Pipeline: AntibioticDB, an Open Access Database to Aid Antibacterial Research and 

Development. J Antimicrob Chemother 2018, 73 (9), 2284–2297. 

https://doi.org/10.1093/jac/dky208. 

(19)  Ntie-Kang, F.; Zofou, D.; Babiaka, S. B.; Meudom, R.; Scharfe, M.; Lifongo, L. L.; Mbah, J. 

A.; Mbaze, L. M.; Sippl, W.; Efange, S. M. N. AfroDb: A Select Highly Potent and Diverse Natural 

Product Library from African Medicinal Plants. PLOS ONE 2013, 8 (10), e78085. 

https://doi.org/10.1371/journal.pone.0078085. 

(20)  Pilón-Jiménez, B. A.; Saldívar-González, F. I.; Díaz-Eufracio, B. I.; Medina-Franco, J. L. 

BIOFACQUIM: A Mexican Compound Database of Natural Products. Biomolecules 2019, 9 (1), 

31. https://doi.org/10.3390/biom9010031. 



15 
 

(21)  Zhao, L.; Wang, W.; Sedykh, A.; Zhu, H. Experimental Errors in QSAR Modeling Sets: 

What We Can Do and What We Cannot Do. ACS Omega 2017, 2 (6), 2805–2812. 

https://doi.org/10.1021/acsomega.7b00274. 

(22)  Anuraj, N. Experimental and Computational Approaches to Improve Binding Affinity in 

Chemical Biology and Drug Discovery. Current Topics in Medicinal Chemistry 2020, 20 (19), 

1651–1660. 

(23)  Martinez-Mayorga, K.; Madariaga-Mazon, A.; Medina-Franco, J. L.; Maggiora, G. The 

Impact of Chemoinformatics on Drug Discovery in the Pharmaceutical Industry. Expert Opinion 

on Drug Discovery 2020, 15 (3), 293–306. https://doi.org/10.1080/17460441.2020.1696307. 

(24)  Fourches, D.; Muratov, E.; Tropsha, A. Trust, But Verify: On the Importance of Chemical 

Structure Curation in Cheminformatics and QSAR Modeling Research. J. Chem. Inf. Model. 

2010, 50 (7), 1189–1204. https://doi.org/10.1021/ci100176x. 

(25)  Pereira de Sá, N.; Lino, C. I.; Fonseca, N. C.; Borelli, B. M.; Ramos, J. P.; Souza-Fagundes, 

E. M.; Rosa, C. A.; Santos, D. A.; Barbosa de Oliveira, R.; Johann, S. Thiazole Compounds with 

Activity against Cryptococcus Gattii and Cryptococcus Neoformans in Vitro. European Journal 

of Medicinal Chemistry 2015, 102, 233–242. https://doi.org/10.1016/j.ejmech.2015.07.032. 

(26)  Sá, N. P. de; Lima, C. M. de; Lino, C. I.; Barbeira, P. J. S.; Baltazar, L. de M.; Santos, D. A.; 

Oliveira, R. B. de; Mylonakis, E.; Fuchs, B. B.; Johann, S. Heterocycle Thiazole Compounds 

Exhibit Antifungal Activity through Increase in the Production of Reactive Oxygen Species in 

the Cryptococcus Neoformans-Cryptococcus Gattii Species Complex. Antimicrobial Agents and 

Chemotherapy 2017, 61 (8). https://doi.org/10.1128/AAC.02700-16. 

(27)  Cruz, L. I. B.; Lopes, L. F. F.; De Camargo Ribeiro, F.; De Sá, N. P.; Lino, C. I.; 

Tharmalingam, N.; De Oliveira, R. B.; Rosa, C. A.; Mylonakis, E.; Fuchs, B. B.; Johann, S. Anti-

Candida Albicans Activity of Thiazolylhydrazone Derivatives in Invertebrate and Murine 

Models. Journal of Fungi 2018, 4 (4), 134. https://doi.org/10.3390/jof4040134. 

(28)  Sá, N. P.; Pôssa, A. P.; Pilar, P.; Jaqueline, M. S. F.; Nayara, C. F.; Cleudiomar, I. L.; Lana, 

B. C.; Renata, B. de O.; Carlos, A. R.; Beatriz, M. B.; Eleftherios, M.; Beth, B. F.; Susana, J. 

Antifungal Activity Directed Toward the Cell Wall by 2-Cyclohexylidenhydrazo- 4-Phenyl-

Thiazole Against Candida Albicans. Infectious Disorders - Drug Targets 2019, 19 (4), 428–438. 

(29)  Lino, C. I.; Gonçalves de Souza, I.; Borelli, B. M.; Silvério Matos, T. T.; Santos Teixeira, I. 

N.; Ramos, J. P.; Maria de Souza Fagundes, E.; de Oliveira Fernandes, P.; Maltarollo, V. G.; 



16 
 

Johann, S.; de Oliveira, R. B. Synthesis, Molecular Modeling Studies and Evaluation of 

Antifungal Activity of a Novel Series of Thiazole Derivatives. European Journal of Medicinal 

Chemistry 2018, 151, 248–260. https://doi.org/10.1016/j.ejmech.2018.03.083. 

(30)  Sá, N. P.; Lima, C. M.; A dos Santos, J. R.; Costa, M. C.; de Barros, P. P.; Junqueira, J. C.; 

Vaz, J. A.; Oliveira, R. B.; Fuchs, B. B.; Mylonakis, E.; Rosa, C. A.; Santos, D. A.; Johann, S. A 

Phenylthiazole Derivative Demonstrates Efficacy on Treatment of the Cryptococcosis & 

Candidiasis in Animal Models. Future Science OA 2018, 4 (6), FSO305. 

https://doi.org/10.4155/fsoa-2018-0001. 

(31)  de Sá, N. P.; de Barros, P. P.; Junqueira, J. C.; Vaz, J. A.; de Oliveira, R. B.; Rosa, C. A.; 

Santos, D. A.; Johann, S. Thiazole Derivatives Act on Virulence Factors of Cryptococcus Spp. 

Medical Mycology 2019, 57 (1), 84–91. https://doi.org/10.1093/mmy/myx158. 

(32)  Sá, N. P. de; Barros, P. P. de; Junqueira, J. C.; Valério, A. D.; Lino, C. I.; Oliveira, R. B. de; 

Rosa, C. A.; Johann, S. Antivirulence Activity and in Vivo Efficacy of a Thiazole Derivative against 

Candidiasis. Journal of Medical Mycology 2021, 31 (2), 101134. 

https://doi.org/10.1016/j.mycmed.2021.101134. 

(33)  Franco, P. H. C.; Braga, S. F. P.; Oliveira, R. B. de; César, I. C. Purity Determination of a 

New Antifungal Drug Candidate Using Quantitative 1H NMR Spectroscopy: Method Validation 

and Comparison of Calibration Approaches. Magnetic Resonance in Chemistry 2020, 58 (1), 97–

105. https://doi.org/10.1002/mrc.4936. 

(34)  Silva, I. R.; Braga, A. V.; Gloria, M. B. de A.; Machado, R. de R.; César, I. C.; Oliveira, R. B. 

Preclinical Pharmacokinetic Study of a New Thiazolyl Hydrazone Derivative with Antifungal 

Activity in Mice Plasma by LC-MS/MS. Journal of Chromatography B 2020, 1149, 122180. 

https://doi.org/10.1016/j.jchromb.2020.122180. 

(35)  Tonholo, D. R.; Maltarollo, V. G.; Kronenberger, T.; Silva, I. R.; Azevedo, P. O.; Oliveira, 

R. B.; Souza, L. C. R.; Tagliati, C. A. Preclinical Toxicity of Innovative Molecules: In Vitro, in Vivo 

and Metabolism Prediction. Chemico-Biological Interactions 2020, 315, 108896. 

https://doi.org/10.1016/j.cbi.2019.108896. 

(36)  Franco, P. H. C.; Vieira, J. G.; Ramos, C. A. de O.; Johann, S.; Oliveira, R. B. de; César, I. 

C. Stability-Indicating Method for the Novel Antifungal Compound RI76: Characterization and 

in Vitro Antifungal Activity of Its Active Degradation Product. Biomedical Chromatography 

2021, 35 (3), e5014. https://doi.org/10.1002/bmc.5014. 



17 
 

(37)  Silva, I. R.; Kronenberger, T.; Gomes, E. C. L.; César, I. C.; Oliveira, R. B.; Maltarollo, V. 

G. Improving the Solubility of an Antifungal Thiazolyl Hydrazone Derivative by Cyclodextrin 

Complexation. European Journal of Pharmaceutical Sciences 2021, 156, 105575. 

https://doi.org/10.1016/j.ejps.2020.105575. 

(38)  Asse Junior, L. R.; Kronenberger, T.; Magalhães Serafim, M. S.; Sousa, Y. V.; Franco, I. 

D.; Valli, M.; Silva Bolzani, V. da; Monteiro, G. C.; Bruno Prates, J. L.; Kroon, E. G.; Fernandes 

Mota, B. E.; Santos Ferreira, D. dos; de Oliveira, R. B.; Maltarollo, V. G. Virtual Screening of 

Antibacterial Compounds by Similarity Search of Enoyl-ACP Reductase (FabI) Inhibitors. Future 

Medicinal Chemistry 2019, 12 (1), 51–68. https://doi.org/10.4155/fmc-2019-0158. 

(39)  Dalla Lana, D. F.; Kaminski, T. F. A.; Lavorato, S. N.; Merkel, S.; Zanette, R. A.; da Rosa, 

P. D.; Staudt, K. J.; de Araújo, B. V.; da Costa, B.; Quatrin, P. M.; Bazana, L. C. G.; Ferreira, F. A.; 

Caurio, C. F. B.; de Andrade, S. F.; Alves, R. J.; Fuentefria, A. M. In Vitro 

Pharmacokinetics/Pharmacodynamics Modeling and Efficacy against Systemic Candidiasis in 

Drosophila Melanogaster of a Bisaryloxypropanamine Derivative. Medical Mycology 2021, 59 

(1), 58–66. https://doi.org/10.1093/mmy/myaa030. 

(40)  Serafim, M. S. M.; Lavorato, S. N.; Kronenberger, T.; Sousa, Y. V.; Oliveira, G. P.; Santos, 

S. G. dos; Kroon, E. G.; Maltarollo, V. G.; Alves, R. J.; Mota, B. E. F. Antibacterial Activity of 

Synthetic 1,3-Bis(Aryloxy)Propan-2-Amines against Gram-Positive Bacteria. MicrobiologyOpen 

2019, 8 (11), e814. https://doi.org/10.1002/mbo3.814. 

(41)  Lana, D. F. D.; Lavorato, S. N.; Giuliani, L. M.; Cruz, L.; Lopes, W.; Vainstein, M. H.; 

Fontana, I. C.; Zimmer, A. R.; Freitas, M. de A.; Andrade, S. F. de; Alves, R. J.; Fuentefria, A. M. 

Discovery of a Novel and Selective Fungicide That Targets Fungal Cell Wall to Treat 

Dermatomycoses: 1,3-Bis(3,4-Dichlorophenoxy)Propan-2-Aminium Chloride. Mycoses 2020, 63 

(2), 197–211. https://doi.org/10.1111/myc.13027. 

(42)  Lavorato, S. N.; Duarte, M. C.; Lage, D. P.; Tavares, C. A. P.; Coelho, E. A. F.; Alves, R. J. 

1,3-Bis(Aryloxy)Propan-2-Ols as Potential Antileishmanial Agents. Chemical Biology & Drug 

Design 2017, 90 (5), 981–986. https://doi.org/10.1111/cbdd.13024. 

(43)  Lavorato, S. N.; Duarte, M. C.; Lage, D. P.; Tavares, C. A. P.; Coelho, E. A. F.; Alves, R. J. 

Synthesis and Antileishmanial Activity of 1,3-Bis(Aryloxy)Propan-2-Amines. Med Chem Res 

2017, 26 (5), 1052–1072. https://doi.org/10.1007/s00044-017-1805-1. 



18 
 

(44)  Lavorato, S. N.; Sales Júnior, P. A.; Murta, S. M. F.; Romanha, A. J.; Alves/, R. J.; 

Lavorato, S. N.; Sales Júnior, P. A.; Murta, S. M. F.; Romanha, A. J.; Alves/, R. J. In Vitro Activity 

of 1,3-Bisaryloxypropanamines against Trypanosoma Cruzi-Infected L929 Cultures. Memórias 

do Instituto Oswaldo Cruz 2015, 110 (4), 566–568. https://doi.org/10.1590/0074-

02760150007. 

(45)  Coelho, E. A. F.; Alves, R. J.; Romanha, A. J.; Lavorato, S. N. Diarilaminas, composições 

farmacêuticas contendo as diarilaminas e usos. B.R. Patent BR1020140290788, November 21, 

2014. 

(46)  Shultz, M. D. Two Decades under the Influence of the Rule of Five and the Changing 

Properties of Approved Oral Drugs. J. Med. Chem. 2019, 62 (4), 1701–1714. 

https://doi.org/10.1021/acs.jmedchem.8b00686. 

(47)  Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and 

Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and 

Development Settings1PII of Original Article: S0169-409X(96)00423-1. The Article Was 

Originally Published in Advanced Drug Delivery Reviews 23 (1997) 3–25.1. Advanced Drug 

Delivery Reviews 2001, 46 (1), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0. 

(48)  Veber, D. F.; Johnson, S. R.; Cheng, H.-Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. 

Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 

2002, 45 (12), 2615–2623. https://doi.org/10.1021/jm020017n. 

(49)  Ghose, A. K.; Viswanadhan, V. N.; Wendoloski, J. J. A Knowledge-Based Approach in 

Designing Combinatorial or Medicinal Chemistry Libraries for Drug Discovery. 1. A Qualitative 

and Quantitative Characterization of Known Drug Databases. J. Comb. Chem. 1999, 1 (1), 55–

68. https://doi.org/10.1021/cc9800071. 

(50)  Muegge, I.; Heald, S. L.; Brittelli, D. Simple Selection Criteria for Drug-like Chemical 

Matter. J. Med. Chem. 2001, 44 (12), 1841–1846. https://doi.org/10.1021/jm015507e. 

(51)  Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug 

Discovery Today: Technologies 2004, 1 (4), 337–341. 

https://doi.org/10.1016/j.ddtec.2004.11.007. 

(52)  Pathania, S.; Singh, P. K. Analyzing FDA-Approved Drugs for Compliance of 

Pharmacokinetic Principles: Should There Be a Critical Screening Parameter in Drug Designing 



19 
 

Protocols? Expert Opinion on Drug Metabolism & Toxicology 2020, 0 (0), 1–4. 

https://doi.org/10.1080/17425255.2021.1865309. 

(53)  Varma, M. V. S.; Obach, R. S.; Rotter, C.; Miller, H. R.; Chang, G.; Steyn, S. J.; El-Kattan, 

A.; Troutman, M. D. Physicochemical Space for Optimum Oral Bioavailability: Contribution of 

Human Intestinal Absorption and First-Pass Elimination. J. Med. Chem. 2010, 53 (3), 1098–

1108. https://doi.org/10.1021/jm901371v. 

(54)  Giordanetto, F.; Kihlberg, J. Macrocyclic Drugs and Clinical Candidates: What Can 

Medicinal Chemists Learn from Their Properties? J. Med. Chem. 2014, 57 (2), 278–295. 

https://doi.org/10.1021/jm400887j. 

(55)  Lipinski, C. A. Rule of Five in 2015 and beyond: Target and Ligand Structural 

Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions. Advanced Drug 

Delivery Reviews 2016, 101, 34–41. https://doi.org/10.1016/j.addr.2016.04.029. 

(56)  Furukawa, A.; Schwochert, J.; Pye, C. R.; Asano, D.; Edmondson, Q. D.; Turmon, A. C.; 

Klein, V. G.; Ono, S.; Okada, O.; Lokey, R. S. Drug-Like Properties in Macrocycles above MW 

1000: Backbone Rigidity versus Side-Chain Lipophilicity. Angewandte Chemie 2020, 132 (48), 

21755–21761. https://doi.org/10.1002/ange.202004550. 

(57)  Protti, Í. F.; Rodrigues, D. R.; Fonseca, S. K.; Alves, R. J.; Oliveira, R. B. de; Maltarollo, V. 

G. Do Drug-Likeness Rules Apply to Oral Prodrugs? ChemMedChem 2021, n/a (n/a). 

https://doi.org/10.1002/cmdc.202000805. 

(58)  Jampilek, J. Heterocycles in Medicinal Chemistry. Molecules 2019, 24 (21), 3839. 

https://doi.org/10.3390/molecules24213839. 

(59)  Hawkins, P. C. D.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T. Conformer 

Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the 

Protein Databank and Cambridge Structural Database. J. Chem. Inf. Model. 2010, 50 (4), 572–

584. https://doi.org/10.1021/ci100031x. 

(60)  Halgren, T. A. MMFF VI. MMFF94s Option for Energy Minimization Studies. Journal of 

Computational Chemistry 1999, 20 (7), 720–729. https://doi.org/10.1002/(SICI)1096-

987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X. 



20 
 

(61)  Yap, C. W. PaDEL-Descriptor: An Open Source Software to Calculate Molecular 

Descriptors and Fingerprints. Journal of Computational Chemistry 2011, 32 (7), 1466–1474. 

https://doi.org/10.1002/jcc.21707. 

(62)  Sander, T.; Freyss, J.; von Korff, M.; Rufener, C. DataWarrior: An Open-Source Program 

For Chemistry Aware Data Visualization And Analysis. J. Chem. Inf. Model. 2015, 55 (2), 460–

473. https://doi.org/10.1021/ci500588j. 

 


