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Abstract

In recent years, the development of complex multi-metallic nanomaterials like high entropy

alloy (HEA) catalysts has gained popularity. Composed of 5 or more metals, the composi-

tions of HEAs exhibit extreme diversity. This is both a promising avenue to identify new

catalysts and a severe constraint on their preparation and study. To address the challenges

related to the preparation, study and optimization of HEAs, machine learning solutions are

attractive. In this paper, the composition of PtRuPdRhAu hydrogen oxidation catalysts is

optimized for the CO oxidation reaction. This is achieved by constructing a dataset using
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Bayesian optimization as guidance. For this quinary nanomaterial, the best performing com-

position was found within the first 35 experiments. However, the dataset was expanded until

a total of 68 samples were investigated. This final dataset was used to construct a random

forest regression model and a linear model. These machine learned models were used to

assess the relationships between the concentrations of the consituent elements and the CO

oxidation reaction onset potential. The onset potentials were found to correlate with the

composition dependent adsorption energy of ∗OH obtained from density functional theory.

This study demonstrates, how machine learning can be employed in an experimental setting

to investigate the vast compositional space of HEAs.

Introduction

Achieving a carbon neutral society though fossil fuel free technologies is probably one of

the main challenges faced by mankind today. Within the scope of this challenge, the proton

exchange membrane fuel cell has been developed.1–3 In this specific fuel cell, carefully selected

catalysts carry out the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction

(ORR) to generate electricity. The ORR, is a major topic for studies as it requires large

overpotentials to take place.4 On the other hand, the hydrogen reaction is efficiently catalyzed

by platinum with neglectable overpotentials.5 However, platinum is highly susceptible to CO

poisoning, whose traces are present in the hydrogen gas from the widely employed water gas

shift reaction and from on board methanol reformers.6–8 Therefore, it is still an ongoing

quest to find a HOR catalyst that shows resilience towards CO poisoning.9

A common strategy to increase the CO tolerance of platinum is to alloy it with ruthe-

nium.10 This produces a bifunctional catalyst that can perform both the HOR and the CO

oxidation at low overpotentials.11 The proposed mechanism for PtRu mediated catalysis is

that ruthenium facilitates the formation of adsorbed OH species at lower potentials.12 These

adsorbed OH species can oxidize the CO adsorbed on platinum which leads to the reactiva-
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tion of the surface. In addition, it has been proposed that an electronic effect of ruthenium

weakens the CO bond on platinum.13

Studies on alloy catalysts are conventionally limited to bi- and trimetallic alloys. However,

in very recent years the topic of high entropy alloys (HEAs) has become popular.14–16 HEAs

contain five or more elements in a randomized order, which produces a surface with multiple

different active sites.17 Further, the diversity of elements with different sizes distorts the

crystal lattice which gives HEAs not only unique mechanical properties but also changes

the electronic structure.18 This change in electronic structure is expected to provide unique

catalytic properties that have yet to be discovered.19

The experimental and theoretical investigations of HEAs form a major challenge due to

the immense amount of available compositions. In an HEA containing five elements there

are 99!
95!4!

= 3, 764, 376 compositions possible when each elemental concentration is varried

between 1 at.% (atomic percent) and 96 at.% only by 1 at.%. This amount of possible

compositions cannot be investigated experimentally in a timely manner. Consequently, new

strategies to approach the study and discovery of relevant HEAs with dedicated properties are

necessary.20,21 Currently, one approach is focused on constructing a methodology employing

density functional theory (DFT) that enables prediction of highly active HEA compositions,

which then are evaluated experimentally.22,23 Another approach, which is employed in this

paper, is based on combining screening experiments with machine learning.24,25

Machine learning is slowly spreading into fuel cell and electrocatalysis reasearch.26 One

application in fuel cell research is prediciting the stability of fuel cells.27,28 However, machine

learning has also been employed to optimize the synthesis protocol to construct Ni-rich

cathode materials for Li-ion batteries.29 Lately, machine learning has been used to optimize

the PtPdAu alloy for methanol oxidation.24 In future years, the use of machine learning in

nanomaterials discovery is only expected to rise.30

In this research, PtRuPdRhAu has been studied as a CO resistant HOR catalyst. Pt

and Ru were included in this HEA, since they form a well known bifunctional catalyst.31
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Figure 1: Schematic representation of the optimization loop and the analysis steps.

Au was added as it is a known CO oxidation catalyst in alkaline media.32 Furthermore, Au

was used to facilitate the synthesis of the nanoparticles. Rh and Pd by them self show weak

activities towards the CO oxidation.33,34 However, in combination with Pt, this trio forms

the three-way catalyst which is widely used to remove CO from exhaust gasses.35,36

This study of PtRuPdRhAu, which was carried out in a screening setting, is summarized

in Figure 1. In the first part, the composition was optimized for the CO oxidation reaction.

This search was carried out using Bayesian optimization, similar to the approach of Nugraha

et al.24 The ratio of the precursor mixtures was used as the input parameter for the o

ptimization algorithm. The affinity of the alloy towards CO oxidation was used as the

output parameter. In the second part, the relationship between the concentration of the

elements and the CO oxdation reaction was elucidated by machine learned models. These

machine learned models used a new input parameter, namely the compositions that were

obtained from energy dispersive X-ray spectroscopy (EDX). Finally, the correlations were
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related to physical phenomena with DFT models.

Results and Discussion

Synthesis

In previous research a surfactant-free synthesis method in alkaline mono-alcohols of colloidal

precious metal nanomaterials has been developed.37,38 This synthesis is suitable to synthesize

catalytically active mono- or bimetallic nanoparticles at room temperature.39 It was observed

that at room temperature, and without surfactant, the same reduction occurs in the presence

of Au, as it could be expected from previous reports.40 The presence of a support limited

the formation of large Au nuggets, yet relatively large Au nanoparticles were formed (< 20

nm) when only a Au precursor like HAuCl4 was used. However, in the presence of other

complexes comprising elements like Pt, Ir, Ru, Rh, and Pd, a reaction proceeds very fast

at room temperature, as shown in Figure S1. This lead to ca. 3 nm nanoparticles, as

shown in Figure S2. This is only slightly larger than Pt, Ir or Pd nanoparticles obtained

in alkaline methanol which is an encouraging sign towards the formation of multi-metallic

nanomaterials.37,41

This surfactant-free synthesis at room temperature was used here as a fast and simple

production method of carbon supported mutlimettalic nanomaterials. The chloride based

precursors of the used metals were mixed together with carbon flakes in alkaline methanol

and left steering for 10 minutes. This resulted in the production of highly dispersed sup-

ported nanoparticles. The formation of nanoparticles was proved in transmission electron

microscopy (TEM) for the best performing catalyst. Its TEM micrographs can be observed

in Figure 2. With EDX, the incorporation of Pt, Ru, Pd, Rh, and Au in the nanostructures

was confirmed.
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Figure 2: TEM of the sample Pt12Ru38Pd8Rh41Au1.

Bayesian optimization

The samples for investigation were selected using Bayesian optimization. Bayesian optimiza-

tion is a tool that allows a guided search through an unkown multidimensional space.24,25

Therefore, it can be employed in combination with experiments to quickly identify a catalyst

with an optimal activity. In this research, this optimization is used to find the most active

composition within the PtRuPdRhAu space for the CO oxidation reaction. The Bayesian

optimization was performed in conjunction with a random forest regression model that was

trained on the experimental data to provide multiple suggestions for further investigation.

In order to construct this regression, it is important to first consider which parameters are

used is the input and output parameters.

Since the scope of this research is to find the best performing catalyst, the output pa-

rameter of the model must be a quantitative expression for the CO oxidation affinity. This

measure for the CO oxidation affinity will be further addressed with the CO oxidation onset

potential. The CO oxidation onset potential was measured electrochemically by depositing

a monolayer of CO on top of the nanoparticle, which was subsequently oxidized by an anodic

sweep in an H2 rich environment. The HOR functioned as a probe reaction to amplify the
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potential at which the CO monolayer was oxidized. We defined the CO oxidation as the point

where an increase of 1.5 mA mg−1
PtRuPhRhAu on top of the capactive current was measured.

As the CO oxidation was evaluated with the HOR as a probe reaction, only catalysts that

were active for the HOR above the CO oxidation onset potential were taken into account in

the machine learning models.

The input parameters for the model should reflect the properties of the HEA that influ-

ence the CO oxidation activity. For this, the most straight forward choise is the elemental

composition of the HEA. However, the final composition of the prepared nanomaterials can-

not be systematically and timely assessed. Arguably, the most controlled parameters that

characterize a given PtRuPdRhAu particle is the amount of each precious metal used during

the synthesis. Therefore, the at.% of metals used in the synthesis was used as an input

parameter. All models that used the synthesis precursor ratio as input will be denoted with

synthesis models.

The inital 25 samples were randomly selected and fed to the Bayesian optimization al-

gorithm. This algorithem suggested 10 new compositions, which were experimentally in-

vestigated and added to the dataset. This addition of 10 new samples concludes a single

optimization cycle. In total five optimization cycles were carried out. The summary of this

Baysian optimization process is shown in Figure 3. Figure 3a-c shows the sampling of each

Bayesian optimization cycle. It can be observed that after the second cycle of optimization,

the computational methods start to select samples with large Ru content. Figure 3d shows

the average CO oxidation onset potentials for the investigated samples. It concludes that the

most active catalyst composition, with a precursor ratio of Pt16Ru46Pd2Rh34Au2, was found

within the first optimization cycle at the 32nd entry. The composition of this alloy, obtained

with EDX, was Pt12Ru38Pd8Rh41Au1. It is also observed that in the subsequent 2rd, 3th

and 4th cycles the onset potentials were around the maximum of 0.47 V vs. RHE. As the

samples in the 3rd-5th cycle have on average large Ru contents, it can be implied that Ru is

playing a major role in the CO oxidation reaction. In the 5th cycle, several low performing
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Initial data

Figure 3: a-c) The compositions experimentaly investigated in each Bayesian optimization
cycle, with Rh-Pd-Au contracted to a single concentration. a) cycle 1 (red), cycle 2 (blue); b)
cycle 3 (red), cycle 4 (blue), cycle 1-2(grey); c) cycle 5 (red), cycle 6 (blue), cycle 1-4 (grey).
d) The experimentally determined CO oxidation onset potential for each data point in the
investigated order. The dashed line indicate the regions of each Bayesian optimization cycle.
e) The change in the mean absolute error, obtained from the leave-one-out cross-validation
method, of the synthesis random forest regression model with each Bayesian optimization
cycle.
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compositions were selected for investigation, to explore further poorly represented regions.

This exploration produced samples with low CO tolerance, inline with the prediction. This

proposes that the optimization has already found the global maximum in the first cycle.

Finally, the evolution of the synthesis random forest regression models can be be observed

in Figure 3e. This evolution is represented by the mean absolute error (MAE) which was

calculated with leave-one-out cross-validation (LOOCV). This MAE showed an exponential

decrease with increasing dataset size. The final synthesis model, had a MAE of 13 mV.

Machine learning

While the precursor ratio serves as an excellent input parameter for the Bayesian optimiza-

tion procedure, it is poorly reflecting the true catalyst compositions. As such, the obtained

correlations between the precursor ratios and the CO oxidation onset might not be as in-

formative as required to understand in more depth this relationship. Therefore, all sampled

catalysts were evaluated with EDX, the results of which were used to construct new machine

learned models. These models, that use the EDX evaluated composition as input value will

be referred to as EDX models.

With this EDX corrected dataset, two intrinsically different machine learned models were

created. The first model was the EDX random forest regression, which is highly flexible in its

nature as it has no bias on the expected correlations. The second is a more rigid EDX linear

model. The linear model was limited to the first and second degree polynomial terms to avoid

overfitting with higher degree terms. The obtained coefficients were corrected to account for

the statistical probability of finding a specific elemental arrangement at the surface. This

model is outlined in Equation 1. In this equation E(X) is the CO oxidation onset potential,

f is the fraction of an element m in at.%, β is the fitted and corrected coefficient, P (X) is

the probability of finding a specific surface arangement. Nevertheless, this model has a total

of 21 predictors, which would severely overfit the small dataset of 68 points by using the

ordinary least squares regression. Therefore, in order to reduce the amount of predictors,
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the model was fitted using the lasso regression.42

E(fPt, fRu, fPd, fRh, fAu) = β0 +
∑
i

βmi
P (fmi

) +
∑
i≥j

βmimj
P (fmi

fmj
)

P (fmi
) = 0.5fmi

P (fmi
fmj

) =


fmi

fmj
if i > j

0.5fmi
fmj

if i = j

(1)

Figure 4: a) SHAP analysis of the EDX random forest regression model. b) The coefficients
of EDX Lasso regression model.

The interpretation of the EDX random forest model, was achieved using Shapely additive

explanation (SHAP), the results of which are shown in Figure 4a.43 The SHAP value repre-

sents the perturbation of the CO oxidation onset potential by the element from the average

onset potential. Hence negative SHAP values are associated with a decrease in overpotential

for the CO oxidation. It turns out that Ru has the largest impact on the CO oxidation.

In low quantities Ru exhibits a very large positive SHAP value and at large quantities a

negative SHAP value. This is congruent with the already reported activity of Ru towards
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CO oxidation being much higher compared to the other investigated metals.10 The next ele-

ments that show to improve the CO oxidation in large quantities are Pt and Rh. These two

metals have also been shown to oxidize the CO monolayer at higher potentials compared to

Ru, however at lower potentials than Pd.34 In contrast to Ru, Pt, and Rh, large quantities

of Pd showed to increase the CO oxidation onset potential, relative to the average, in large

quantities as shown in Figure 4a. Au, in comparison to the other elements, did not show to

have a large impact on the CO oxidation. This could be explained by a different mechanism

for the formation of the CO monolayer on Au. While CO is forming a stable chemisorbed

monolayer on Pt, Pd, Rh, and Ru, CO does not form a stable monolayer on gold in a CO

deficient environment.32 In addition, Au is inactive for the HOR.44 Therefore, Au might be

inactive for the CO oxidation in the current experimental setting.

The terms of the lasso regression with their coefficients can be observed in Figure 4b.

Similar to the random forest model, the lasso regression shows that the term P (fRu) has the

largest impact on reducing the potential. In addition, linear models show that P (fRufRu) is

increasing the potential, which suggests that there is an optimum amount of ruthenium in an

alloy. The next term that improves the CO oxidation is P (fPtfPt), which is also in agreement

with the random forest model. When the linear model is used to predict the performance

for a PtRu alloy, an optimum is found around the Ru52Pt48 composition. This composition

overlaps with previous studies that observed a similar maximum for this binary alloy.31,45

Finally, the lasso regression includes the terms: P (fRh), P (fAu), P (fRufRh), P (fPdfPd) in

the fit. However, their coefficients are too small to draw a solid conclusion upon.

The SHAP analysis of the EDX model concluded that among the investigated five ele-

ments Ru, Pt and Rh are lowering the CO oxidation onset potential the most. This allows a

visualization of the activity of this hypothetical RuPtRh ternary alloy. In Figure 5a and b,

the CO oxidation onset potential of the RuPtRh alloys are predicted using the EDX random

forest regression and EDX lasso regression respectively. Both EDX models show, that there

is not a single most active alloy, but different regions which contain alloys that exhibit similar
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Figure 5: a-b) The slice of the hyperspace spanned by Ru, Pt and Rh and c-d) the prediction
of the LOOCV vs the experimental value of the models: a,c) EDX Random Forest Regression
b,d) EDX Lasso Regression.

high activities. The shapes of these regions differ between the two EDX models due to their

intrinsic flexibility. The lasso regression assumes a quadratic relation ship, which produces

straight and smooth boundaries for the maximum domain. In comparison, the random forest

regression has no prior bias, which produces domains with an irregular boundary.

Finally, the performance of the two EDX models was compared using the MAE of the

LOOCV. This evaluation is shown in Figure 5c-d. The EDX random forest regression model

outperforms the lasso regression slightly with an MAE of 10 mV. This is highly correlated

with the high flexibility of the model. On the other hand the lasso regression has an MAE

of 13 mV. It should be noted that the investigated compositions were selected using an

optimization algorithm, which focused mainly on samples in the high performance region.

As observed, this region consists mostly of alloys with large concentrations of Ru. Therefore,

the models in this study are capable of predicting the activity of catalysts with Ru but the

error increases for alloys with little to no Ru content.
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Simulations with density functional theory (DFT)

In order to gain a pysical understanding of the dependence of the onset potential on the

composition, DFT simulations were conducted. The task of finding the potential limiting

step of the reaction enabling HOR is formidable given that the surface structures in this

work are not well defined. Additionally, the many possible adsorption sites on the HEA

surface contribute to an inherent complexity in the variation of active sites. This further

hinders a successful and timely discovery of the responsible chemical step. Therefore, we

pursued a predictive model which could explain the trend in the observed onset potentials

through electronic structure insights. This happened at the cost of loosing the explanation

for the onset at the atomic level.

Figure 6 shows the overall reasonable predictive trend obtained by a computationally

inexpensive model. This model considers the weighted sum of normally distributed ∗OH

adsorption energies with means given by the pure metal constituents of the HEA and with

standard deviations set to 0.13 eV as observed previously for ∗OH adsorption energy distri-

butions on a comparable HEA.17 The molar fractions of each element in the compositions

found with EDX of each HEA constituted the weights of each of the normal distributions

in the linear combination given by Equation 2. Here, P is the resulting distribution of ∗OH

adsorption energies, ∆G∗OH, for a given HEA composition. fm is the molar fraction of metal

m, µm is the adsorption energy obtained for the pure metal m, and σ = 0.13 eV is the

spread in the adsorption energies.

P (∆G∗OH) =
metals∑

m

fmN (∆G∗OH;µm, σ)

=
metals∑

m

fm
1√
2πσ

e
− 1

2

(
∆G∗OH−µm

σ

)2

(2)

By picking the adsorption energy at the 5 percentile of most strongly adsorbing sites in the

modeled ∗OH adsorption energy distributions for each of the sampled HEA compositions,
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the trend in Figure 6 is obtained. A somewhat linear relationship can be observed with a

capability of predicting onset potentials with an MAE of 11 mV, comparable to the machine

learning models. This observed trend hints that the oxidation of water at the catalyst

surface and subsequent formation of oxygen adsorbed intermediates could be involved in the

potential-limiting step.

Although the ∗OH adsorption energy seems to explain the overall trend for lowering the

onset potential across a large span of ∗OH adsorption energies, there is not much explained

variance for the sampled Ru-rich compositions with strong ∗OH adsorption at around -0.1 eV.

Explaining the subtle differences between the Ru-rich compositions is out of the scope of the

current study. However, deeper understanding of the CO oxidation mechanism on randomly

populated multi-element surfaces might hold the key for better modeling on HEA catalysts.

Figure 6: Correlation of experimental onset potentials with the ∗OH adsorption energy at the
5 percentile of most strongly bound sites of the ∗OH adsorption energy distribution for the
EDX-analyzed compositions. The inset shows an example of the modeled ∗OH adsorption
energy distribution for an HEA sample. The 5 percentile ∗OH adsorption energy is found as
the energy at which 5% of the area of the distribution is to the left.
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Conclusion

In this research, the composition of the PtRuPdRhAu HEA was optimized for the CO

oxidation reaction using Bayesian optimization. This provided a guided search among the

vast amount of different HEA to find the best performing composition. This optimization

required minimal characterization of the nanoparticle catalyst and relyed mainly on the

synthesis variables and a measure for the catalytic performance. The most active alloy was

found within the first optimization cycle, after 32 experiments. Subsequent cycles provided

mostly alloys within the high performance region, with only several exploration points in the

low performance region.

The obtained dataset was used to gather knowledge on the CO oxidation reaction and the

elemental composition. This was achieved by constructing a random forest regression and a

lasso regression. Both models pointed out that Ru is the key element in the CO oxidation

reaction. With DFT calculation these relationships were also shown to correlate with the

∗OH adsorption energy, which is the lowest for Ru. Therefore, within this compositional

space, large amounts of Ru are obligatory for a high performing CO oxidation catalyst.
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Experimental

Synthesis

The solid precursors, H2PtCl6 (Sigma Aldrich, 99.9%) HAuCl3 (Alfa Aesar, 99.99%) RuCl3

(Sigma Aldrich, ReagentPlus), PdCl2 (Sigma Aldrich, ReagentPlus, 99%), and RhCl3 (Sigma

Aldrich, 99.98%) were dissolved in methanol (Merck, EMSURE) to produce 20 mM precursor

solution. A total of 1 mL of precursor solutions were added in stoichiometric ratios to 5.6 mL

57 mM NaOH MeOH with 50 wt% (metal to carbon) dispersed carbon flakes (Vulkan). The

obtained solution was stirred for ten minutes at room temperature and stored overnight in

a centrifuge tube. The following day, the suspensions were centrifuged, decanted and left to

dry in air.

Ink were prepared by adding isopropanol and H2O (3:1, v/v) to the dry HEA to produce

a 0.83 mg metal per mL ink. These inks were drop casted on a glassy carbon RDE tip to

produce a metal loading of 35 µg cm−2.

Electrochemistry

All experiments were carried out in a three electrode RDE cell. In between experiments, the

cell and all glass components were stored in 1 g mL−1 KMnO4 acidified with H2SO4. Before

the experiments, this solution is was removed and residual MnO2 was dissolved by adding a

dilution of H2SO4 and H2O2. Following, the cell and components were boiled three times in

MilliQ water.

All measurements were carried out with a Nordic Potentiostat EC200. As a reference

electrode a trapped RHE electrode was employed. A platinum wire separated by a glass frit

was used as a counter electrode. The electrolyte was 0.1 M H2SO4 (Merck Suprapur). The

working electrode consisted of a Radiometer RDE which has a glassy carbon disk on which

the HEA ink was drop casted. This working electrode was put under controlled potential of

0.05 V vs. RHE into the solution. In the first 30 seconds CO gas (Air Liquide, Quality 37)
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was bubbled through the electrolyte which were followed by 10 cyclic voltammograms (CVs)

between 0 and 0.6 V vs. RHE at a speed of 100 mV s−1. After, the electrode was kept for

2 minutes longer at 0.05 V vs. RHE in CO atmosphere. Next, the solution was degassed

for 20 minutes with H2 (ALPHAGAZ, 99.999%) and 2 CVs were recorded between 0 and

1.4 V vs. RHE at a scan speed of 10 mV s−1.

EDX and TEM

The samples were prepared by dropcasting several times 10 µL on copper foil over each other,

to yield a think catalyst film. The EDX measurement were performed in a GeminiSEM450

(Zeiss), operated with Smart SEM 6.05, using the EDS Photodetector Ultim max 65 (Oxford

instruments), operated with AZTec 4.2. The EDX spectra were measured at four different

locations with a size of 800 µm2 at a working distance of 8 mm and an accelerating voltage

of 25 kV.

TEM samples were prepared by dropcasting once the ink on a copper grid. TEM micro-

graphs and their associated EDX spectra were acquired on a JEOL 2100 TEM operated at

200 kV.

Machine learning

Dataset construction

The dataset for the different PtRuRhPdAu alloy compositions was constructed in a Bayesian

manner similar to the research of Nugraha et al.24 The first 25 data points were selected

randomly but they included the 5 extreme compositions that span the domain of interest.

These extreme HEA compositions consisted of 96% of one element and 1% of each remaining

element. The electrochemistry for the CO oxidation was evaluated using the hydrogen

oxidation as a probe reaction. Subsequently, only HEA particles that remained active for

the HOR after the CO got oxidized were included into machine learning. This made the
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initial dataset contain a total of 21 points. The input parameter for the machine learning

models were the precursor ratios used in the synthesis. The output parameter was the CO

oxidation onset potential. This potential was defined at a current increase of 1.5 mA mg−1

on top of the capacitive current. For every synthesized alloy, 3 electrochemical experiments

were carried out.

This obtained information was used to construct a random forest regression model us-

ing the python package scikit learn.46 The parameters, n estimatros, bootstrap, max depth,

max features, min sample leaf, min sample split, criterion, were tuned using a 500 Bayesian

optimization cycles which optimized the k-fold cross validation score. All Bayesian Opti-

mization loops made use of the GpyOpt library in python.47 The obtained random forest

regression model was further used to find new alloy compositions of interest for investigation.

It was optimized using Bayesian optimization, in which the first iteration consisted of the

compositions that were used to train the model initially. This way, the Bayesian optimiza-

tion constructed the prior using the same data that was available in the lab. Following, the

Bayesian optimization was continued for an additional 50 iterations, in which new compo-

sitions were suggested for evaluation. Among these 50 compositions, a selection of 10 was

made based on their distance to other samples. These 10 samples, were synthesized and

subsequently added to this optimization cycle. The expansion of the dataset was halted

after 5 optimization cycles, as the MAE of the LOOCV showed to reach a constant value

around 13 mV. This suggested that an exponential amount of data is becomming necessary

to improve the models. In addition, the target of finding the best performing alloy was

reached in the first cycle. In the end, this resulted in a dataset of 68 unique HEAs. The

code for constructing the models will be provided on request.

After the HEAs were analyzed with EDX, new input parameters were obtained, which

corresponded to elemental ratios observed by EDX. These allowed to construct a new random

forest model, which used the same hyperparameter tuning script as the synthesis model. All

random tree models were explained using the SHAP package.43
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Linear models

Linear models were constructed using the scikit learn package. Features were expanded to

include also polynomial terms up to the second degree. The best Lasso Regression model

was selected by using a custom loop that varied the lambda penalty until the change in

lambda was less than 1%.

The ternary contour plots were created by using the plotly library.48 The models were

fitted using the entire dataset of 68 experimental points. Following these models were used

to predict the values of a grid, that spanned the slice of the hyperspace that is shown in the

contour plot.

DFT

DFT calculations were done with the GPAW code49,50 version 19.8.1 and the revised Perdew-

Burke-Ernzerhof (RPBE) exchange-correlation functional.51 Manipulation of atomic struc-

tures was performed with the Atomic Simulation Environment (ASE).52 Four-layered face-

centered cubic (fcc) (111) surface slabs measuring 2x2 atoms laterally, and periodically

repeated laterally from orthogonal unit cells, were constructed for each of the contituent

elements Au, Pd, Pt, Rh, and Ru for ∗OH adsorption energy calculations. The surface slabs

were constructed with fcc lattice constants that were obtained as the minimum energy lattice

parameters for the pure fcc bulk constituents (see Table 1).

Table 1: Fcc lattice constants and ∗OH adsorption free energies of the pure elements used.

Metal Au Pd Pt Rh Ru

DFT fcc lattice constant (Å) 4.2149 3.9814 3.9936 3.8648 3.8285
DFT ∆G∗OH (eV) 1.30 0.80 0.76 0.44 0.04

During structure relaxations all but the two top layers of the slab were fixed, and the

∗OH adsorbate was put at on-top positions with the oxygen atom contrained to move only

perpendicular to the surface. The slabs were constructed with a vacuum of 15 Å above

and below the structure. The wave functions were expanded in plane waves with an energy
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cut-off of 500 eV, and sampling of the Brillouin zone was done on a Monhorst-pack grid of

k-points sized 8x8x1. The structures were relaxed so that the maximum force on any atom

did not exceed 0.05 eV/Å. For other parameters, the default parameters of GPAW were used.

∗OH adsorption free energies were calculated relative to the ∗OH adsorption energy on

Pt(111) which has been shown to adsorb ∗OH about 0.1 eV stronger53 than the maximum

of the oxygen reduction reaction (ORR) activity volcano at 0.86 eV relative to H2O(l) and

H2(g),54 i.e. setting the free energy of ∗OH adsorption on Pt(111) to about 0.76 eV.

∆G∗OH = (E∗OH − E∗)−
(

E
Pt(111)
∗OH − EPt(111)

∗

)
+ 0.76 eV (3)

Here, ∆G∗OH is the free energy of ∗OH adsorption, E∗OH and E∗ are the DFT calculated

energies of the surface slab with and without ∗OH adsorbed, respectively. The adsorption

energies used in this work are given in Table 1.
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Supporting Information

Figure S1: Time series photographs of H2PtCl6, IrCl3, RuCl3 and PdCl2 in alkaline NaOH
methanol under stirring at room temperature a) before, b) 5 s and c) 10 s after addition of
HAuCl4. d) is the same solution after 24 hours of synthesis and after centrifugation whereas
e) is the same solution as d) after removing the supernatant, redispersion in methanol and
a new centrifugation cycle. This reaction is for illustration purposes of the simplicity of
the general synthesis approach and no carbon support was used to more clearly obverse the
speed of the reaction (in presence of support the reaction mixture is completely black). The
final metal concentration for each element is here 0.5 mM and the final NaOH concentration
is here 48 mM.
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Figure S2: a-b) TEM and c) EDX characterization of the sample Pt12Ru38Pd8Rh41Au1

with the expected intensity peaks positions for different elements as indicated in colour in
d) where the spectrum is in dark. The copper signal (Cu) comes from the TEM grid.

a) b) c)

Figure S3: Example of how the data was obtained. a) Raw data as measured experimentally.
b) Dashed line shows the linear fit through the capacitance. c) Dashed line indicates the
current density at which the CO oxidation onset potential is defined.
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a) b) c)

Figure S4: The CO monolayer oxidation on a 35 µg cm−2 Pt12Ru38Pd8Rh41Au1 film. a-c
CVs were recorded in H2 atm after a CO monolayer was adsorbed on the surfaces at 10 mV/s
from 0 to 1.4 V vs. RHE. The solid line represents the first cycle, the dashed line represents
the second cycle.
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Figure S5: The distance of the grids points for the EDX models in the ternary plots of Ru,
Pt, Rh to the closest measured experimental data point in the five dimensional space of
RuPtRhPdAu.

30


