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Kinetics can play an important role in the crystallization of molecules and give rise to polymorphism, the
prevalent ability of molecules to form more than one crystal structure. Current computational methods of
crystal structure prediction, however, focus almost exclusively on identifying the thermodynamically stable
polymorph. Kinetic factors of nucleation and growth are often neglected because the underlying microscopic
processes are thought to be complex and accurate rate calculations are numerically cumbersome. In this work,
we use molecular dynamics computer simulations to study a simple molecular model that reproduces the
crystallization behavior of real chiral molecules, including the formation of enantiopure and racemic crystals,
as well as polymorphism. We show that in many cases, the crystal that robustly forms in simulations is not
the one with the lowest free energy. We demonstrate that at high supersaturation the prevailing polymorph
can be accurately predicted by considering the similarities between prevalent oligomeric species in solution
and molecular motifs in the crystal structure. For the case of racemic mixtures, we even find that knowledge
of crystal free energies is not necessary and kinetic considerations are sufficient to determine if the system will
undergo spontaneous chiral separation. Our results suggest conceptually simple ways of improving current
crystal structure prediction methods.

I. INTRODUCTION

Predicting which crystal structure a given molecule
will form is a long-standing problem1 with consider-
able practical significance for the industrial produc-
tion of many chemical compounds, including medicinal
drugs,2–4 pesticides,5–8 and explosives.9–13 Finding the
crystal structure with the lowest free energy is a daunting
task, requiring efficient methods for sampling the space of
periodic molecular packings as well as accurate methods
for calculating crystal (free) energies.14–19 Crystal struc-
ture prediction (CSP) is further complicated by the fact
that the majority of molecules can form more than one
polymorph, depending on crystallization conditions.20

Predicting polymorphism requires not only knowledge of
the thermodynamic stability of different polymorphs, but
also insight into the mechanistic details of crystal forma-
tion as well as methods to estimate the rates of these
processes.21

Most current computational frameworks of CSP fo-
cus entirely on the thermodynamic aspects of crystal-
lization, and much progress has been made in recent
years. The most accurate CSP methods now frequently
identify all experimentally know polymorphs and their
ranking in terms of free energies.18,22,23 Nevertheless,
CSP has still not replaced time-consuming experimental
polymorph screening procedures. Many of the computa-
tionally predicted structures never materialize in experi-
ments, in some cases even those with free energies lower
than known polymorphs.24 In order to determine which
of the predicted low-energy polymorphs can likely be re-
alized in experiments and which cannot, kinetic effects
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need to be incorporated in CSP.

Why are kinetic factors not considered more routinely
in CSP? Rates of crystal nucleation and growth depend
sensitively on the experimental details (including solvent,
molecular concentrations, and temperature) and are de-
termined by a series of microscopic rare events including
the desolvation, attachment, and perhaps rearrangement
of molecular species on the surface of a growing crystal-
lite. Determination of the timescales of these events re-
quires numerically expensive molecular dynamics meth-
ods and highly accurate force fields.25 Routine calcula-
tion of crystal formation rates of many different poly-
morphs is therefore currently not feasible.

Traditional theories of crystal nucleation and growth
assume that the building blocks attaching to a growing
crystallite are monomers, or at least a unique species.
There is growing evidence, however, that molecules can
associate in solution to produce substantial concentra-
tions of oligomers.26–35 These oligomers can act as im-
portant building blocks in the nucleation and growth of
specific polymorphs.36–44 Concentrations of amino acid
oligomers in solution, for instance, have been studied
extensively using different techniques.26–35 Electrospray
ionization experiments have shown strong evidence of
oligomerization of amino acids at low concentrations34

and suggest the existence of ‘magic number’ oligomers
with particularly large concentrations (e.g., tetramers
of arginine).35 A recent sedimentation study has shown
that although monomers are the dominant species in un-
dersaturated aqueous environments, large oligomers are
present even at very low monomer concentrations and
relative oligomer concentrations increase as supersatura-
tion is approached.27 Oligomeric species that serve as
precursors for specific crystal structures are often re-
ferred to as pre-nucleation clusters (PNCs).45 Substantial
populations of PNCs in solution prior to crystallization
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have been observed in a range of systems with spectro-
scopic techniques38,39,41,42,46,47 The idea that oligomers
can foreshadow the crystal structure that will eventu-
ally form has given rise to the concept of the ”synthon”,
which refers to the dominant binding motifs in oligomeric
species.48 In a recent review, Davey and coworkers re-
ported that synthons present in solution also appear in
the final crystal structure in 11 out of 14 cases.21 Al-
though oligomers, PNCs, or synthons have been fre-
quently shown to correlate with the formation of spe-
cific polymorphs in experiments, the role of these species
in molecular crystallization has not been systematically
studied and no computational framework exists that in-
corporates oligomer concentration in CSP.

In this paper, we demonstrate with computer simu-
lations that oligomers can play a decisive role in deter-
mining crystallization outcomes. Our study is based on
a family of simple models of chiral molecules49 capable
of replicating the rich crystallization behavior found in
real molecules. We show that the crystallization of these
models in molecular dynamics (MD) simulations can be
accurately predicted based on classical nucleation theory
if available oligomer building blocks are accounted for.
Our estimated nucleation rates successfully balance the
kinetic and thermodynamic factors leading to polymorph
formation. Even though our study is based on mod-
els that lack chemical detail, it suggests computationally
tractable ways of augmenting existing CSP frameworks
with kinetic information.

II. RESULTS AND DISCUSSION

A. Molecular model and crystallization simulations

We simulated the crystallization of racemic mixtures
of simple chiral molecules in two dimension. Model
molecules are rigid and consist of 5 beads that repre-
sent different functional groups and interact via short-
ranged attractive pair potentials (see Methods section).
By varying the spatial arrangement of functional groups
and their interaction strengths, a large family of different
molecules can be constructed. In recent work, we stud-
ied a subset of 159 of these molecules and showed that
their simulated crystallization yields the same categories
of products found in experiments: racemic crystals, enan-
tiopure crystals (via spontaneous chiral separation) and
several types of partially ordered and disordered solids.
In this work, we focus on molecules that robustly form
large crystalline clusters with few defects in our simula-
tions. In addition to the 29 molecules from our previous
work that meet this criterion (called set A in the follow-
ing), we added 34 new molecules that we specifically se-
lected because of their tendency to form kinetically rather
than thermodynamically preferred polymorphs (set B).

For each of these molecules, we performed crystalliza-
tion simulations by placing racemic mixtures of 5184
molecules in square simulation boxes at a packing frac-

tion of 0.04σ−2 and solving the Langevin equations of
motion for several hundred millions of time steps. Sol-
vent molecules were not represented explicitly. To fa-
cilitate crystallization, we used the following tempera-
ture protocol: Starting from an initial temperature well
above crystallization conditions, we lowered the temper-
ature until the first cluster of 50 molecules was observed.
We then automatically adjusted the temperature to grow
the largest molecular cluster at a fixed rate. In the final
step of the procedure, temperature was linearly increased
to facilitate defect annealing. For the vast majority of
molecules, this protocol yields the same polymorphs as
constant-temperature simulations but with fewer defects
and without the need for manual optimization of simula-
tion conditions. Independent simulation runs of the same
molecules consistently yield the same polymorphs. A de-
tailed description of simulation methods can be found
in the Methods section and Ref. 49. Images of some of
the molecules we studied and the crystals they form are
shown in Figure 1. (All other molecules and their crystals
are depicted in Figs. S2 and S3.)

B. Thermodynamic Polymorph Landscapes

We use a recently developed algorithm (POLYNUM)
to identify millions of polymorphs for each of the 65
molecules and evaluate their thermodynamic stability in
terms of their lattice energy. Because molecules are rigid
and the range of intermolecular interactions is small,
polymorph free energies typically deviate from lattice en-
ergies by less than 1%.49 We will therefore use the two
terms interchangeably. To quantify the thermodynamic
role of the polymorphs that form in our simulations, we
calculate the relative energy difference

∆Eform =
Eform − Ecomp

|min (Eform, Ecomp)|
,

where Eform is the energy of the observed polymorph
and Ecomp is energy of the most stable competing poly-
morph, i.e., the smallest energy of all polymorphs that
did not form. Negative values of ∆Eform therefore indi-
cate that the observed polymorph is the thermodynamic
equilibrium structure, while cases of kinetically driven
polymorph formation are indicated by positive values of
∆Eform.

The polymorph energy landscapes show that a sub-
stantial fraction of the crystals that form in our sim-
ulations are kinetic products (∆Eform ≥ 0), as illus-
trated in Fig. 2. Of the 29 molecules in set A (which in-
cludes all good crystallizers from our previous work), 11
(41%) feature energy landscapes with polymorphs that
have energies equal to or lower than the polymorph that
is observed. This fraction of ”kinetic” crystallizers is
consistent with a recent estimate based on real organic
molecules.50 The fraction of molecules with ∆Eform ≥ 0
is even larger in set B since most of these molecules were
selected because they form enantiopure crystals even



3

FIG. 1. Examples of the 65 chiral molecules studied in this paper sorted by ∆Eform. For each molecule, we show from left
to right: space-filling representation of the two enantiomers (light colors indicate functional groups with strong interactions);
snapshot of the largest crystalline cluster observed in MD simulations and the bulk energy of the polymorph; number N0.95 of
energetically competing polymorphs; unit cells of examples of competing polymorphs and their energies. Energies are given in
units of ε per molecule. ∆Eform values are given in percent. Interactions between functional groups are specified in the SI.

though a racemic crystal is thermodynamically stable.
To further characterize the polymorph landscape for each
molecule, we calculate the number N0.95 of polymorphs

within 95% of the lowest energy. N0.95 varies substan-
tially between molecules, but in all but a few cases we
find at least several (and up to ≈ 100) competing poly-
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FIG. 2. Histograms of ∆Eform for molecules in sets A (blue)
and B (green).

morphs at low energies. Numerical values of Eform and
N0.95 for all molecules are given in Figure 1, Figure S2,
and Figure S3.

C. Polymorphs are heralded by oligomer species

Visual inspection of crystallization trajectories sug-
gests that oligomer species can be a decisive factor in the
crystallization of our model molecules. As an example,
let us consider molecule s9-A1, which forms an enantiop-
ure polymorph (called X in the following) that does not
have the lowest energy (Eform = 0.03, N0.95 = 168). The
polymorph landscape of s9-A1 is illustrated in Figure 4a
and features 55 polymorphs with lower energies than X.
The unit cells of X and four racemic and enantiopure
polymorphs with substantially lower energy (called V,
W, Y, and Z) are shown in Figure 3b.

Why does polymorph X prevail? Figure 3a shows a
snapshot from a simulation of the crystallization of s9-
A1. As evident from this image, the solution surround-
ing the growing nucleus of polymorph X contains various
oligomeric species at substantial concentrations. Con-
spicuously, many of these oligomers closely resemble mo-
tifs found in polymorph X; only rarely do we observe
oligomers that ”belong” to any of the four other poly-
morphs. The relative concentrations of these oligomers
are consistent with their zero-temperature energies. Fig-
ure 5 shows images of the lowest energy oligomers com-
prising between two and six molecules for each of the five
polymorphs; Figure 4c shows a plot of these energies as
a function of oligomer size. Even though polymorph X
has a higher lattice energy than any of the other four
polymorphs, its oligomeric motifs have the lowest ener-
gies for all oligomer sizes considered here. Energy differ-
ences between oligomers amount to several kBT at the
temperature of crystal formation (T ≈ 1.0 ε/kB), consis-
tent with the high concentrations of oligomers of poly-
morph X in our simulations. This observation suggests

that polymorph X has a kinetic advantage over compet-
ing polymorphs: Oligomers resembling motifs of a given
polymorph are likely to attach productively to the sur-
face of a nucleus of that polymorph, while they will ei-
ther only transiently attach to a different crystal sur-
face or will need to undergo energetically activated rear-
rangements before they can be incorporated. Can such
differences in attachment rates of oligomeric species be
sufficient to overcome a substantial thermodynamic dis-
advantage? And can relative formation rates of different
polymorphs be predicted from knowledge of oligomeric
species in solution?

Our simulations suggest that polymorphs cannot be
predicted based on speciation of oligomers alone. Poly-
morphs with substantial thermodynamic advantage can
form despite a lack of suitable oligomers in solution. An
example of such a system is molecule s7-A1, whose poly-
morph landscape is shown in Figure 4b. There is a large
energy gap between the lowest energy polymorph (la-
beled Q) and its competitors. This decisive thermody-
namic advantage of polymorph Q is, however, not re-
flected in the energies of small oligomeric motifs, as il-
lustrated in Figure 7 and Figure 4d. Several other poly-
morphs (e.g., polymorphs R and S) have oligomeric mo-
tifs at substantially lower energies and larger concentra-
tions in solution, as evident from the simulation snapshot
in Figure 6. Nevertheless, polymorph Q forms, either
through monomer addition or through a more compli-
cated growth process. Clearly, kinetic factors associated
with growth of crystalline clusters through oligomer ad-
dition must be balanced appropriately with polymorph
energies in order to predict which polymorph will form
in our simulations.

D. Estimating nucleation rates from crystal structures

Crystallization rates are typically analyzed assuming
either nucleation or crystal growth as the rate limiting
step. In the former, the polymorph with the largest
nucleation rate, usually estimated using classical nucle-
ation theory (CNT), is thought to prevail. In a growth-
dominated scenario, one assumes that any kinetic ad-
vantages in the nucleation stage are irrelevant in com-
parison to differences in polymorph growth rates, which
determine the final crystallization outcome. Convincing
experimental and theoretical evidence exists for both sce-
narios and it is reasonable to assume that molecular crys-
tallization can be determined by either, depending on
conditions. In the majority of our simulations, clusters
containing several unit cells of the eventually successful
polymorph form already in the early stages of our simu-
lations, albeit with high concentrations of defects. Con-
comitant polymorphism, i.e., simultaneous formation of
large clusters of different polymorphs, is observed in only
a few cases (molecules s10-B2, s2-B5, and s5-A3). We
therefore chose to estimate crystallization rates in our
simulations based on classical nucleation theory. How-
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FIG. 3. Crystallization of molecule s9-A1. (a) Snapshot from an MD simulation of a racemic mixture of s9-A1, showing
formation of a cluster of polymorph X. Various oligomers of size n are highlighted and labeled according to the polymorph(s)they
occur in. (b) Unit cells of prominent low energy polymorphs (EX = −18.5ε, EV = EW = EY = EZ = −19.0ε).

FIG. 4. Thermodynamic landscapes of polymorphs and oligomers of molecules s9-A1 and s7-A1. Histogram of polymorph
energies of (a) s9-A1 and (b) s7-A1. (c) Energies per molecule of most stable oligomers of size n found in prominent polymorphs
of molecules (c) s9-A1 and (d) s7-A1. n =∞ indicates lattice energy per molecule.

ever, the kinetic factors associated with attachment of
oligomeric species, which are the focus of this work, are

relevant also for crystal growth rates. We demonstrate
below for one case (molecule s9-A1) that our nucleation
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FIG. 5. MD snapshots and energies (per molecule) of the most stable oligomers of size n found in prominent polymorphs of
molecule s9-A1. Polymorph unit cells and lattice energies are shown in the left-most column.

rate estimates correctly identify also the fastest growing
polymorph.

According to classical nucleation theory, the rate at
which super-critical nuclei are produced per unit area in
two dimensions is given by51

J = A exp

(
−∆G

kBT

)
, (1)

where A is the kinetic prefactor and ∆G is the free energy
barrier associated with forming a nucleus of critical size.

The simplicity of Eqn. (1) belies tremendous complex-
ity in practical applications. The kinetic prefactor A en-
compasses various factors relating to the attachment of
growth units to the nucleus. These factors include the
concentration and diffusion rate of growth units in solu-
tion, free energies of de-solvating growth units and nu-
cleus surface, as well as factors that determine the prob-
ability of growth units to attach correctly, including the
symmetry of growth units and the structural complex-
ity of the crystal surface. The kinetic prefactor is often
neglected entirely in the analysis of nucleation rates of
different polymorphs, under the assumption that the nu-
cleation barrier is the most important term.19,52 Other
studies have shown that, on the contrary, A can be a
decisive factor.53,54 We show below that both prefactor
and nucleation barrier need to be accounted for to predict

molecular crystallization in our simulations.
Assuming that the polymorph with the largest nucle-

ation rate will form, we wish to calculate nucleation rates
Jp of all polymorphs p with sufficiently low lattice energy.
But accurate estimates of Jp cannot be easily obtained,
even for a simple coarse-grained model like the one ana-
lyzed here, because of the large number of energetically
competitive polymorphs and the substantial numerical
effort associated with determining the various thermo-
dynamic and kinetic factors entering into Eq. 1. Mo-
tivated by the crystallization dynamics observed in our
simulations and with an eye towards applicability to real
molecules, we therefore focus on those elements of Eq. 1
that describe attachment of various oligomer species to a
growing nucleus and that can be straightforwardly esti-
mated from a set of predicted crystal structures. Other
factors are assumed to vary insignificantly between dif-
ferent polymorphs and are not considered here in any
detail.

We rank polymorphs p of a given molecule according
to a ”nucleation score” χp, which is proportional to the
CNT nucleation rate (under assumptions described be-
low) and given by

χp = νp exp (−ηp). (2)

Here, νp is a dimensionless quantity proportional to the
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FIG. 6. Crystallization of molecule s7-A1. (a) Snapshot from an MD simulation of a racemic mixture of s7-A1, showing
formation of a cluster of polymorph Q. Various oligomers of size n are highlighted and labeled according to the polymorph(s)
they occur in. (b) Unit cells of prominent low energy polymorphs (EQ = −19.0ε, ER − 16.5ε, and ES − 16.1ε).

FIG. 7. MD snapshots and energies (per molecule) of the most stable oligomers of size n found in prominent polymorphs of
molecule s7-A1. Polymorph unit cells and lattice energies are shown in the left-most column.

rate of attachment of oligomeric species to the nucleus,
and ηp is a simple estimate of the nucleation barrier
∆Gp/kBTc at the temperature Tc of crystallization. In
the following, we describe the functional forms of νp and
ηp.

We assume that the growth rate of a nucleus of poly-
morph p is proportional to the total rate of attachment
of all oligomeric species in solution that match at least

one oligomeric motif found in p. We denote the set of
these special oligomers as Op. As discussed below, we
restrict our analysis to hexamers and smaller oligomers.
The numerical procedure used to identify these oligomers
is described in the Methods section. We ignore attach-
ment of monomers (assuming they contribute equally to
the growth of all polymorphs), attachment of oligomeric
species that are structurally incompatible with p, and all
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detachment events. The rate of attachment of a specific
oligomer i is assumed to be proportional to its concen-
tration Ci in solution and to its likelihood to attach to
the nucleus in the ”right” place. This ”sticking proba-
bility”, λi,p, depends in complicated ways on the details
of the surface of the nucleus and on the structure of the
oligomer. For simplicity, we assume that λi,p ∝ si/Z

′
p,

where Z ′p is the number of molecules in the asymmetric
unit cell of p and si is the rotational symmetry of the
oligomer. Crystals with larger Z ′p have structurally more
complex surfaces on average and display a smaller den-
sity of attachment points for a given oligomer, resulting
in a smaller attachment rate, as illustrated schematically
in Figure S4. Oligomers with higher rotational symme-
try si have a larger probability to attach to the surface
in the correct orientation. The contribution of a specific
oligomer i comprised of ni molecules to the total growth
rate of the nucleus of polymorph p is therefore propor-
tional to niCisi/Z

′
p. The part of the nucleation score

describing oligomer attachment, νp, is thus obtained by
summing over all oligomers of size 2–6,

νp =
1

Z ′p

∑
i∈Op

nisiCi. (3)

While oligomers consisting of more than six molecules
can sometimes be observed in our simulations, we show
below that satisfactory polymorph predictions can be
achieved based on hexamers and smaller species.

We estimate oligomer concentrations Ci straightfor-
wardly based on their energies and geometry. Accu-
rate estimates of oligomer concentrations would require
the numerically strenuous calculation of partition func-
tions for all oligomeric species, including loosely bound
oligomers and oligomers not found in any low-energy
polymorph. To obtain a computationally more tractable
estimate of oligomer concentrations, we first assume that
the total concentrations of species of size n do not vary
much, i.e., that there are, on average, the same total
numbers of dimers, trimers, 4-mers, 5-mers, and 6-mers
in solution. (We return to this assumption in the Discus-
sion section.) Furthermore, we assume that the relative
concentrations of oligomers of the same size are well rep-
resented by Boltzmann factors and rotational partition
functions of energy-optimized configurations. Based on
these considerations, we estimate the concentration of
oligomer i of size ni as

Ci ∝
s−1i
√
Iie
−Ei/kBTc∑

j∈Oni
s−1j
√
Ije−Ej/kBTc

. (4)

Here, Ii and Ei are the moment of inertia and potential
energy of the oligomer i in its optimized configuration, re-
spectively, the sum extends over the set On of all n-mers
that appear in at least one low-energy polymorph (see
Methods), and Tc is the temperature at which crystal-
lization is observed. While Tc could be obtained directly
from our simulations, it is more convenient to estimate

it based on crystal energies. In fact, we find that Tc is
approximately proportional to the lowest polymorph en-
ergy, kBTc ≈ αE0, where α = −0.055, as shown in SI
Fig. S6. (This relation is reminiscent of the well-known
relation between crystal melting points and sublimation
enthalpies.55)

We now turn to estimating the polymer-specific nucle-
ation barrier, ηp = ∆Gp/kBTc. According to CNT,

∆Gp =
πγ2p
ρp∆µp

.

Here, γp is the surface tension (i.e., the line tension in
2D), ρp is the number of molecules per unit area in the
crystal, and ∆µp = |µp − µsol| is the chemical potential
difference of molecules in the crystal and solution phase,
respectively.51 Since γp cannot be straightforwardly de-
termined from knowledge of the crystal structure alone,
we use the same value of γ̄ = 1.78 ε/σ for all polymorphs,
which we determined as an average over several large
crystalline clusters observed in our simulations (see SI).

We similarly use a single value ρ̄ = 2
√

3/15σ−2 (i.e., the
density of a close-packed crystal) for all polymorphs be-
cause polymorph packing fractions vary only little across
our models.

In order to estimate ηp, we need an expression for the
polymorph supersaturation ∆µp. To make progress, we
assume that upon cooling a solution of a given molecule,
crystallization is observed at a temperature (Tc) at which
the nucleation barrier of the lowest-energy polymorph
is small enough to be surmounted spontaneously on
the simulation time scale. Specifically, we assume that
∆G0/kBTc ≡ g, where ∆G0 is the nucleation barrier of
the polymorph with the lowest energy and g is a constant
that we treat as a fitting parameter. As shown below,
we find that our model is most predictive for g = 7.62.
(This value implies ∆G0 = 7.62 kBTc, consistent with
the assumption of spontaneous barrier crossing on the
microsecond timescale.)

With ∆G0/kBTc thus fixed, the nucleation barrier of
a given polymorph p can be obtained by expressing ∆µp
in terms of ∆µ0,

∆µp = ∆µ0 −∆Ep.

Here, ∆E = Ep−E0 > 0 is the difference in lattice energy
between polymorph p and the lowest energy polymorph.
We therefore have

∆Gp
kBTc

=
πγ̄2

kBTcρ̄∆µp
=

πγ̄2

kBTcρ̄(∆µ0 −∆Ep)

=

(
g−1 − kBTcρ̄∆Ep

πγ̄2

)−1
.

Substituting our estimate for Tc, the barrier part of
the nucleation score is therefore given by

ηp =

(
g−1 − αE0ρ̄∆Ep

πγ̄2

)−1
. (5)
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Equations 2, 3, 4, and 5 completely describe the nu-
cleation score χp used to rank polymorphs in this work.

E. Nucleation score predicts outcomes of crystallization
simulations

To assess the predictive power of the nucleation score
introduced in the previous section, we computed χp for
each of the 100 lowest-energy enantiopure and racemic
polymorphs of each of the 63 molecular models. If the
polymorph with the largest value of χp matched the poly-
morph identified in MD simulations, the prediction was
considered successful. In the few cases of molecules that
formed two polymorphs simultaneously, the prediction
was considered a success if either of the two polymorphs
received the highest nucleation score. (For a handful of
molecules, the predicted and observed polymorphs were
super-cell variants of each other; consistent with other
studies, we considered these to be identical.56)

Despite the approximations underlying our model, the
nucleation score correctly predicts almost all simulated
crystallization outcomes. For molecules in set A, we pre-
dict the correct polymorph in 28 out of 29 cases (97%).
This success rate constitutes a significant increase over a
purely thermodynamic ranking based on lattice energies,
which selects the correct polymorph in 24 out of 29 cases
(83%) or 18 out of 29 cases (62%), depending on whether
the correct polymorph is selected in cases where several
polymorphs are found at the lowest energy or not. For
molecules in set B, which contains a much larger fraction
of ”kinetic” crystallizers with ∆Eform > 0, the nucle-
ation score correctly predicted 32 out of 34 cases (94%).
For this set of molecules, lattice energies correctly predict
only 7 out of 34 cases (21%). (Due to the way interactions
between molecules in set B were selected—see Methods—
all of these 7 models had unique ground state.) Remark-
ably, in both sets A and B the nucleation score predicts
spontaneous chiral separation (i.e., whether a racemic or
enantiopure polymorph will form) with 100% accuracy.
Overall, the nucleation score failed to predict the correct
polymorph in only 3 out of 63 cases; for these molecules,
the polymorph with the highest nucleation score shared
many similarities with the polymorph that formed in MD
simulations (see Figures S2 and S3).

1. Dimers are not enough

Many studies have demonstrated correlations between
polymorphs observed in experiments and a specific
prenucleation cluster with low energy. These investiga-
tions usually concentrate on dimers.37–42 We find that in
most cases studied here it is not sufficient to consider a
single oligomer species; larger oligomers need to be in-
cluded to achieve the best results. As illustrated in Fig-
ure 8, prediction based on dimer species alone is success-
ful only in 58% of all cases, a modest improvement over

a ranking based on lattice energies (45%). (Note that
because differences in surface energies and packing frac-
tions of polymorphs are neglected in our model, rankings
based on lattice energy are identical to rankings based on
nucleation barriers ηp.) When oligomers of larger sizes
are included in the analysis, the success rate increases ap-
proximately linearly and reaches 95% when all oligomer
sizes up to hexamers are considered.

FIG. 8. Fraction of correctly predicted polymorphs as a func-
tion of the largest oligomer size included in χp (green). The
red line represents the success rate (44%) based on lattice en-
ergies alone (assuming that the correct polymorph is selected
in half of all cases with multiple polymorphs at the lowest
energy). The success rate using only estimated oligomer at-
tachment rates νp (disregarding lattice energies) is shown in
blue color.

As an illustration of the importance of larger oligomers,
consider the crystallization of molecule s9-A1/5. If only
dimers and trimers of this molecule are included in the
calculation of νp, polymorph Y receives the largest nu-
cleation score, rather than the observed polymorph X. A
look at Figs. 4c and 5 reveals why: The dimer with the
lowest energy occurs in both X and Y, and the most im-
portant trimers present in the two polymorphs have the
same energy. Since polymorph Y has the lower lattice
energy, it receives the higher prediction score. The sub-
stantial kinetic advantage of polymorph X over Y only
becomes apparent at oligomer sizes larger than three.

2. Thermodynamics vs. Kinetics

Figure 8 demonstrates that our model achieves the
highest prediction accuracy when both kinetic and ther-
modynamic factors are included, as encoded in the at-
tachment rate νp and the nucleation barrier ηp, respec-
tively.

To evaluate the relative importance of kinetic and
thermodynamic factors in the crystallization of a given
model molecule, we define the normalized quanti-
ties: Xp = χp/χmax, Kp = νp/νmax, and Bp =
exp (−ηp)/ exp (−ηmin). Here, χmax and νmax are the
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Type I Type II Type III Type IV
Set A 17 7 3 2
Set B 3 4 22 5

TABLE I. Number of molecules of type I–IV (as defined in
the text) found in sets A and B.

largest nucleation score and attachment rate, respec-
tively, found for any polymorph, and ηmin is the nucle-
ation barrier of the polymorph with the minimum lattice
energy.

We identify 4 different types of molecules based on the
values of Kform and Bform of the polymorph observed to
form in simulations. (WhileXform = 1 for the vast major-
ity of molecules, Kform andBform may have values smaller
than one.) Type I molecules are those that produce poly-
morphs with Kform = Bform = 1, i.e., polymorphs that
have both a larger attachment rate and a smaller lattice
energy than any other polymorph of the same molecule.
Molecules of type II are defined by Kform < 1, Bform = 1;
these molecules form the polymorph with the smallest
lattice energy even though oligomer concentrations in so-
lution favor one or more other polymorphs. Type III
molecules (Kform = 1, Bform < 1) form the polymorph
most favored by oligomer species in solution, even though
that polymorph does not have the lowest energy. Finally,
molecules of type IV (Kform < 1, Bform < 1) produce
polymorphs that neither have the lowest lattice energy
nor the largest kinetic attachment rate, but still receive
the largest nucleation score. Molecules of type III and
IV form ”kinetic” polymorphs that cannot be easily pre-
dicted with most current CSP methods. Table I shows
that all four types are represented in molecule sets A and
B, with a majority of clear-cut cases of type I in set A,
and a majority of type III in set B.

To illustrate the competition between thermodynamic
and kinetic factors in the nucleation score and in our MD
simulations, we revisit the crystallization of molecules s9-
A1 and s7-A1. Table II lists the values Xp, Kp, and
Bp for the competing polymorphs discussed earlier (see
Figs. 3–7). Molecule s7-A1 is of type II: As evident from
the simulation snapshot in Figure 6, few of the oligomers
present in solution can directly contribute to the growth
of Q (KQ << KS < KR) polymorphs. However, Q has
a large energetic advantage over polymorphs R and S
(BQ >> BR > BS). As a result, Q receives the largest
nucleation score and indeed forms in simulations; nuclei
of R or S are not observed.

By contrast, molecule s9-A1 is of type III. The poly-
morph that forms in MD simulations, X, has a clear ener-
getic disadvantage (BX < BY, BV, BW, BZ) over the four
other polymorphs (Y, V, W, Z) considered here. How-
ever, V, W, and Z have structural motifs that are not
reflected in the prevalent oligomer species in solution, re-
sulting in small values of Kp and thus Xp for these poly-
morphs. Polymorph Y shares some of the same dimer
motifs with X, but larger oligomers of Y have lower con-

centrations than those contributing to the growth of X,
leaving X with a modestly larger nucleation score than
Y despite its higher lattice energy. These examples are
characteristic for all molecules considered in this work
and illustrate that the proposed nucleation score is able
to successfully balance lattice energies and kinetic factors
of oligomer attachment to produce reliable polymorph
predictions.

Accounting for kinetic effects of oligomer attachment is
particularly effective if one only wishes to know if a given
molecule is likely to undergo spontaneous chiral separa-
tion, i.e., if it will form an enantiopure or racemic crys-
tal. In contrast to predictions of specific crystal lattices
(Fig. 8), our ability to predict chiral separation does not
improve when lattice energies (via the nucleation barrier
ηp) are included; predictions based on oligomer attach-
ment rates alone (νp) are just as successful, as illustrated
in Figure S9. Note that also in this case all oligomer
sizes up to hexamers need to be included in the calcu-
lation of νp to achieve the best results. We hypothesize
that accounting for these larger oligomer sizes success-
fully captures the fact that racemic polymorphs typically
do not contain enantiopure motifs consisting of more than
a few monomers. While low-energy enantiopure dimer or
trimer motifs frequently appear in both enantiopure and
racemic crystals, larger enantiopure oligomers in solution
clearly favor formation of enantiopure crystals.

F. Discussion

The nucleation score presented in this paper is
designed to systematically capture contributions of
oligomeric species (or prenucleation clusters) in solution
to the nucleation rate of different polymorphs within
a numerical framework that emphasizes computational
simplicity. The nucleation score contains only a single
fitting parameter and can be evaluated from a list of low-
energy crystal structures, as furnished routinely by CSP
methods; no dynamic information is needed. We have
demonstrated that the nucleation score accurately pre-
dicts crystallization and chiral separation in simulations
of a family of model molecules that display a range of
crystallization outcomes similar to real molecules.

We discuss several limitations and caveats of our
model. Starting from classical nucleation theory, we
made several approximations to render the nucleation
score useful for practical application. The most severe
of these approximations arguably include the neglect of
variations in surface tension of different polymorphs and
the assumption that oligomers of size 2–6 are present
in solution at similar concentrations. As shown in Fig.
S7, surface tensions of different polymorphs of a given
molecule can in fact vary by up to ≈ 1ε/σ; such varia-
tions, if included in our model, would result in substan-
tially different nucleation barriers. At the same time,
the total concentrations of oligomers of different size at
the temperature of crystallization can vary substantially
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molecule polymorph Xp Bp Kp Ep(ε) Z′
p Rac/Pure

s7-A1
Q 1.0 1.0 6.8E-3 -19.0 1 Rac
R 0.18 1.3E-3 1.0 -16.5 2 Rac
S 3.8E-3 1.1E-4 0.23 -16.1 6 Pure

s9-A1

X 1.0 0.46 1.0 -18.5 1 Pure
Y 0.50 1.0 0.23 -19.0 1 Rac
V 1.8E-3 1.0 8.3E-4 -19.0 1 Rac
W 3.6E-4 1.0 1.6E-4 -19.0 1 Pure
Z 2.4E-4 1.0 1.1E-4 -19.0 1 Rac

TABLE II. Kinetic and thermodynamic factors in the nucleation of molecules s9-A1 and s7-A1. Normalized nucleation scores
Xp, Bp, and Kp, lattice energy per molecule Ep, number of molecules in the asymmetric unit cell Z′

p, and composition
(racemic/enantiopure) of several competing polymorphs of molecules s9-A1 and s7-A1. Polymorphs X and Q form spontaneously
in MD simulations, as illustrated in Figs. 3 and 6, respectively.

between different molecules, as evident from simulation
snapshots in Figs. 3 and 6. These variations are not cap-
tured in the nucleation score. In particular, our model
likely overestimates the concentrations (and therefore
also the attachment rates) of larger oligomers. Why are
successful polymorph predictions possible despite these
simplifications? We hypothesize that variations of poly-
morph surface tension are partly encoded in the energies
of oligomers, particularly larger ones. Polymorphs con-
taining low-energy oligomeric motifs can be dissected into
sub-units that have strong bonds within a given motif but
much weaker interactions between different motifs, as il-
lustrated in Figure S8. Such a pronounced separation of
strong and weak interactions within a given crystal typ-
ically allows for cleavage of the polymorph along planes
of weaker interactions, resulting in a small surface ten-
sion. In contrast, a polymorph in which all monomers are
bound to their neighbors with similar strength will, on
average, have a larger surface tension and few oligomers
with low energy, resulting in a lower estimated attach-
ment rate νp. Effects of varying surface tension are thus
included effectively by overemphasizing larger oligomers
in our nucleation score.

Another potential caveat of our approach is related to
the short time and length scales accessible to our MD
simulations. On much longer, experimental time scales,
differences in crystal growth rates rather than nucleation
rates might determine the fate of the crystallization pro-
cess. However, oligomer attachment, as estimated in
our model, can be an equally important factor in crys-
tal growth. We have convinced ourselves for one case
(molecule s9-A1) that the nucleation score also predicts
the fastest-growing polymorph at temperatures at which
spontaneous nucleation cannot be observed in our simu-
lations. Figure 9 shows the time evolution of the number
of molecules, averaged over three independent simulation
runs, of large seed crystallites of different polymorphs in
supersaturated solutions (see Methods). We find that
the polymorph with the largest nucleation score (X) also
grows fastest. Furthermore, we find that the ranking of
polymorphs according to increasing growth rates (Z–W–
V–Y–X) is identical to the ranking according to increas-
ing oligomer attachment rates (Kp, see Table II). We

FIG. 9. Average number of molecules in growing nuclei of
polymorphs X, Y, Z, W, and V of molecule s9-A1 at a tem-
perature of T = 1.125 ε/kB, slightly above the temperature at
which spontaneous nucleation is observed. The inset shows
a snapshot of a crystallite of polymorph X containing 254
molecules, at the beginning of the simulation.

are therefore optimistic that our model robustly captures
several important factors in molecular crystallization.

We expect our model to be most predictive under con-
ditions of large supersaturation. In this regime, oligomers
will be present at substantial concentrations and nucle-
ation barriers will be small. Closer to the saturation
curve, the importance of oligomer attachment in nucle-
ation and growth is diminished and differences in nu-
cleation barrier heights, which our model only crudely
estimates, will become decisive. We cannot straightfor-
wardly simulate crystal nucleation in this regime due to
excessively long time scales required to cross nucleation
barriers that exceed a few kBT . We have, however, sim-
ulated growth of crystalline seeds of molecule s9-A1 at
different temperatures above Tc, as illustrated in Figure
S5. Polymorph X grows fastest within ≈ 10% of Tc,
in good agreement with our model. At higher temper-
atures polymorph Y prevails, which has a substantially
lower lattice energy than X and an estimated oligomer
attachment rate that is smaller but comparable to that
of X (Table II). This result is consistent with the di-



12

minished role of larger oligomers in the growth of poly-
morphs at higher temperatures. Figure 5 shows that the
larger oligomer attachment rate of X estimated by our
model is primarily due to larger oligomers; this advan-
tage vanishes if only dimer and trimers are considered.
To more accurately predict nucleation (and growth) at
smaller supersaturation, more accurate estimates of nu-
cleation barriers and oligomer concentrations need to be
employed in our model.

How applicable is our model to the crystallization of
real molecules from solution? In its current form, our
model neglects all explicit solvent effects, which can
markedly influence oligomer concentrations and poly-
morph surface energies. Solvent can also play an im-
portant kinetic role in the attachment of molecules
and oligomers to the crystal surface, as these growth
units need to be partially desolvated before they can
be incorporated into the lattice.53,57 In addition, while
organic molecules can have substantial flexibility, our
model molecules are rigid. As a result, configurations of
oligomeric motifs appearing in crystal structures and in
solution are essentially identical in our model. Oligomer
motifs in real crystal structures, however, might rear-
range substantially in a solvent environment. This makes
identification of low-energy oligomers from real crys-
tal structure less straightforward than in our model, as
oligomer transformations and associated energy changes
need to be accounted for. Still, we believe that the model
presented in this paper constitutes a significant step to-
wards effective and numerically tractable incorporation
of kinetic effects into existing methods of crystal struc-
ture prediction. While correlations between oligomer mo-
tifs and crystallization are well documented, our work is
the first successful attempt to systematically connect en-
ergetically favorable oligomeric motifs and lattice ener-
gies with crystallization outcomes in a molecular model
with realistic polymorph landscapes. We expect that ap-
propriate extensions of our model will be useful for the
prediction of chiral separation, crystallization, and co-
crystallization of organic and inorganic molecules.

III. METHODS

A. Molecular dynamics simulations.

All molecular dynamics simulations were performed
with HOOMD58,59. All functional groups of molecules
have the same mass m and diameter σ, which we use
as our units of mass and length; the unit of energy is ε.
Langevin equations of motion for rigid bodies are inte-
grated with a time step of 0.004

√
mσ2/ε and a damping

coefficient of 5.0
√
mε/σ2. All simulation snapshots were

produced with OVITO.60

B. Molecular Interactions

Functional groups (beads) of molecules interact via the
short-ranged pair potential

u(r) = urep(r) + uatt(r).

The repulsive part of the potential is of the WCA form,61

urep(r) =

{
εrep

[(
σ
r

)12 − 2
(
σ
r

)6]
+ εrep if r < σ,

0 else.

The attractive part is given by

uatt(r) =


−εatt, if r < σ,

− εatt2

(
cos
[
(r−σ)π
ω

]
+ 1
)

if σ ≤ r < σ + ω,

0 if r ≥ σ + ω.

We set εrep = 5.0 ε and ω = 0.2σ. For molecules in
set A, we use εatt = ε for all weakly interacting func-
tional groups. For strongly interacting functional groups
of molecules in set A, we use εatt = 5 ε. The process we
used to select attractive interactions between molecules
in set B is described below. A comprehensive list of at-
tractive interactions in sets A and B is given in the SI,
tables S1 and S2, respectively.

C. Molecular interactions in set B

Set B was created with a bias towards molecules that
undergo spontaneous chiral separation even though the
lowest-energy crystal is racemic. To select molecules that
would produce the desired behavior, we only considered
molecular shapes s2, s4, s5, s7, and s10, because these
shapes tend to crystallize best in our MD simulations.49

We then generated a set of random interaction vectors
using the Bayesian Bootstrap method.62 Here, the inter-
action vector ~ε is defined as an ordered list of attractive
interactions between all pairs of functional groups (num-
bered 1–5) of a given molecule,

~ε = (εatt,1:1, εatt,1:2, . . . , εatt,5:5)

For each interaction vector, we determined the ”hetero-
geneity” ϕ~ε of interactions according to

ϕ~ε = cos−1
(
~ε0 · ~ε
|~ε0||~ε|

)
,

where ~ε0 is the uniform interaction vector

~ε0 = (ε, ε, . . . , ε).

We discarded interaction vectors with ϕ~ε < 38◦ since we
have previously shown that molecules with such interac-
tions have a small likelihood of producing good crystals
in MD simulations.49 For interaction vectors with ϕ~ε ≥
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38◦, we determined the lowest-energy racemic (E
(R)
0 )

and enantiopure (E
(P)
0 ) polymorphs using the molecular

shapes mentioned above. Approximately 1000 molecules

with 0 ≤ E
(P)
0 − E

(R)
0 ≤ 0.4 ε/molecule were selected

as potential candidates for MD simulations. (These
molecules have a racemic polymorph at the lowest energy
but its energetic advantage over enantiopure polymorphs
is small enough to be overcome by kinetic factors.)

For all candidate molecules, we performed MD sim-
ulations using the crystallization protocol described in
our previous study.49 All molecules that either formed
an enantiopure crystal or produced a racemic polymorph
that had not been observed in set A were selected for set
B, resulting in a set of 34 molecules.

D. Polymorph enumeration (POLYNUM)

POLYNUM uses a numerically efficient exact-cover
algorithm to tile periodic unit cells with molecular
shapes, exploiting the simple hexagonal symmetry of
our molecules. This method naturally generates poly-
morphs with all symmetries, with different numbers of
molecules in the asymmetric unit, and different enan-
tiomer ratios ranging from enantiopure to racemic. While
POLYNUM is limited to unit cells containing less than
≈ 15 molecules, it has identified all but one polymorph
found in MD simulations in this work (a polymorph with
exceptionally large unit cell), as well as the vast major-
ity of polymorphs for hundreds of other molecules we
have studied so far. We are therefore confident that
POLYNUM identifies essentially all low-energy poly-
morphs of a given molecule. Details of POLYNUM are
described in Ref. 49.

E. Oligomer Enumeration

In order to enumerate all oligomeric motifs of a given
polymorph that contain n = 2–6 molecules, we first repli-
cate the unit cell of the polymorph in two dimensions un-
til both edge lengths of the resulting supercell are longer
than 16σ, ensuring that oligomers do not make contact
with their periodic images. We then construct a neighbor
list of functional groups belonging to different molecules
with a cutoff distance of 1.65σ. (This cutoff selects only
directly contacting molecules.) From the neighbor list,
we generate a graph that represents molecules as nodes
and contacts between molecules as edges. An efficient
connected induced subgraph algorithm is used to enu-
merate all subgraphs with n nodes.63 These subgraphs
represent oligomers of size n within the given polymorph.
Resulting oligomers are then checked for uniqueness us-
ing oligomer fingerprints, which are described in the SI.

F. Simulations of seeded crystal growth

We create initial configurations for the simulated
growth of a given polymorph from a seed as follows.
First, we create a single compact crystallite of the poly-
morph containing at least 500 molecules by replicating its
unit cell. To equilibrate the shape of the crystallite, it is
then surrounded by a racemic mixture of 4684 molecules
in a simulation box of dimension 361.25σ × 361.25σ. A
molecular dynamics simulation is performed at a tem-
perature of 1.5 ε/kB, resulting in slow dissolution of the
crystallite. When the crystallite has reached a size of 250
molecules, the simulation is terminated and the config-
uration is saved. This configuration is then used as the
initial condition in growth simulations at different tem-
peratures (Fig. 9 and S5).

ACKNOWLEDGMENTS

The authors thank Ryan Looper and Julio Facelli for
useful discussions. The support and resources of the Cen-
ter for High Performance Computing at the University of
Utah are gratefully acknowledged. This work was sup-
ported by the National Science Foundation under Grant
No. CHE-1900626.

1J. Maddox, “Crystals from first principles,” Nature 335, 201–201
(1988).

2M. Hilfiker, Rolf; Raumer von, Polymorphism in the Pharma-
ceutical Industry: Solid Form and Drug Development , edited by
R. Hilfikerand M. von Raumer (Wiley-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany, 2018).

3A. Y. Lee, D. Erdemir, and A. S. Myerson, “Crystal Polymor-
phism in Chemical Process Development,” Annual Review of
Chemical and Biomolecular Engineering 2, 259–280 (2011).

4H. G. Brittain, Polymorphism in Pharmaceutical Solids: Second
Edition, edited by H. G. Brittain (CRC Press, 2018).

5J. Yang, X. Zhu, C. T. Hu, M. Qiu, Q. Zhu, M. D. Ward, and
B. Kahr, “Inverse Correlation between Lethality and Thermo-
dynamic Stability of Contact Insecticide Polymorphs,” Crystal
Growth & Design 19, 1839–1844 (2019).

6X. Zhu, C. T. Hu, J. Yang, L. A. Joyce, M. Qiu, M. D. Ward, and
B. Kahr, “Manipulating Solid Forms of Contact Insecticides for
Infectious Disease Prevention,” Journal of the American Chemi-
cal Society 141, 16858–16864 (2019).

7J. Yang, B. Erriah, C. T. Hu, E. Reiter, X. Zhu, V. López-
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