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Abstract

A structure-based drug design pipeline involves the development of potential drug

molecules or ligands that form stable complexes with a given receptor at its binding site.

A prerequisite to this is finding druggable and functionally relevant binding sites on the

3D structure of the protein. Although several methods for detecting binding sites have

been developed beforehand, a majority of them surprisingly fail in the identification and

ranking of binding sites accurately. The rapid adoption and success of deep learning

algorithms in various sections of structural biology beckons the usage of such algorithms

for accurate binding site detection. As a combination of geometry based software and

deep learning, we report a novel framework, DeepPocket that utilises 3D convolutional

neural networks for the rescoring of pockets identified by Fpocket and further segments

these identified cavities on the protein surface. Apart from this, we also propose another

dataset SC6K containing protein structures submitted in the Protein Data Bank (PDB)

from 1st January, 2018 till 28th February, 2020 for ligand binding site (LBS) detection.

DeepPocket’s results on various binding site datasets and SC6K highlights its better
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performance over current state-of-the-art methods and good generalization ability over

novel structures.

Introduction

An essential step in the structure-based drug design (SBDD) pipeline is to identify and

validate the receptor target.1 Once the receptor is identified, small molecules are designed

such that they can bind well to these targets and exhibit desired pharmocological effect.

However, for the rational design of such drug molecules, we need to locate the binding sites

of such molecules on the protein structure that are druggable and are functionally relevant.2

Furthermore, most docking and virtual screening techniques are efficient and are known to

perform better with prior knowledge of the binding site.3 Therefore, predicting locations on

the structure of protein where a ligand molecule can bind forms an indispensable step in the

drug design process. This requires development of highly accurate in-silico algorithms that

can detect ligand binding sites from a given 3D structure of the receptor.

Classical methods that utilise the 3D structure of the protein extract either geometry-

based or probe-energy-based features to detect binding sites.2 Since most ligand binding

sites occur in cavities on the 3D structure, geometry-based methods4–12 are designed to

identify these hollow spaces and then rank them based on their binding ability. Fpocket5

is a widely used geometry-based tool that works with Voronoi tessellation. It uses alpha

spheres to detect local curvatures on the protein surface. It then follows a 3-stage process

consisting of finding clusters of alpha spheres and ranking them according to their binding

site score which is calculated using properties of residual atoms present in each of the pockets.

The scoring functions of classical geometry-based methods are usually dependent on custom

featurization based on knowledge of binding site properties and therefore are limited in their

scoring capacity.

Probe-based methods13–17 on the other hand place small molecule like probes across the
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surface of the structure to identify locations with good binding ability on the structure.

FTSite,18 for example, spreads 16 different probes across specific positions on the grid which

are determined by empirical free energy functions. The probe molecules are then clustered

according to their types and clusters with favorable interaction energies with the protein

residues are predicted as binding sites. Q-SiteFinder is another very successful probe energy

method that uses methyl probes and Van der Waals energy to detect binding sites.19 SILCS20

uses a fragment based approach by generating probability maps of fragment binding using

MD simulations after which Ligand Free energies (LGFEs) are calculated. These methods

are highly dependant on the choice of probes, energy functions as well as the state of the

protein structure. Such methods may not work well in scenarios where energetically stable

sites are not sufficient enough to give accurate predictions.21 Furthermore, it is difficult

to design a set of probes and energy functions that simulate chemical properties that can

cover large amounts of small molecules and ligands.22 Therefore, the design of such methods

may lead to biases that could result in inaccurate predictions of binding sites on protein

structures.

Template-based methods23–25 are another class of binding site detection methods that

take advantage of the significantly large published databases for protein structures. The

basic algorithm involves searching for a similar protein in the database and mapping its

binding site to the query protein. FINDSITE26 is one of the earliest examples of these

methods. It identifies a template protein binding to the ligand from the PDB database and

overlays the template with the target protein. The binding sites on the template are then

ranked for predictions. However, such methods require a large database of protein templates

with annotated binding sites and therefore fail if such templates are not available for new

protein structures.

In recent years, with the advancement in computer technology and increase in practicable

data, the use of data-intensive techniques like machine learning and deep learning has bur-

geoned in numerous domains.27–29 Consequently, this has also influenced the field of bio and
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cheminformatics greatly by providing solutions to a multitude of problems including binding

site prediction.30–34 The improvement in performance with an increase in accuracy of binding

site detection forms substantial evidence to the increasing adoption of ML methods for this

problem.

One such method that uses a conventional machine learning algorithm like random-

forest(RF) is PRANK.33 PRANK utilizes Fpocket and Concavity35 to select pocket points

and label them according to their physicochemical properties of the local neighborhood.

Then, the RF algorithm assigns a "ligandibility" score to each pocket point that evaluates

the pocket’s binding ability to a ligand. These scores are then merged into a final pocket

score for ranking. PRANK showed that replacing the conventional Fpocket scoring function

with their machine learning function led to much better accuracy. P2Rank,36 a better

implementation of PRANK was then developed to serve as a standalone tool.

With the further advancements in artificial intelligence, deep learning has proven to

surpass other statistical methods in almost every domain. It allows building such intricate

relations from data that are infeasible for traditional machine learning algorithms. Deep

learning models stack layers of interconnected neurons based on the principle of hierarchy

of concepts which states that complex concepts are learned by building them from simpler

ones.37 These algorithms have been shown to make great strides in computer vision38,39 and

natural language processing.40 Convolutional neural networks (CNNs),41 for example, have

shown state-of-the-art of performance in image recognition.38

Binding site detection can be modelled as a computer vision problem through the vox-

elization of 3D protein structures. This enables the usage of these CNNs for the same task.

DeeplyTough42 is a method that uses CNN-based siamese networks43 to compare pockets

using euclidean distances by encoding them into descriptor vectors. DeepSite44 follows a

similar approach to P2Rank as they use a CNN to score all points on the protein surface

and clusters all points with high scores to generate candidate binding pockets. Kalasanty,45

on the other hand, passes the entire protein structure through a CNN-based segmentation
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model inspired by the U-Net46 to generate the predicted binding sites in one step. It assigns

a probability to each voxel of being part of a pocket. It is shown to perform better than

DeepSite in binding site detection.

In this work, we propose rescoring of the pockets detected by a geometry-based software

called Fpocket with a CNN. We follow this approach as geometry-based softwares work suf-

ficiently well in identifying cavities on the protein surface. However, their scoring functions

usually perform worse than most modern methods at ranking these cavities. Therefore, we

supplement Fpocket with a CNN scoring function and show that it outperforms all state-

of-the-art methods at identifying and ranking binding sites on the protein structure. Fur-

thermore, we implement a CNN-based segmentation algorithm at high resolution to better

indicate sub-locations within a binding pocket that can be targeted for rational drug design.

This is further extended to predicting relevant binding residues present at the binding site

by taking residues within a certain distance threshold from the predicted mask.

Methods

Our approach

We propose DeepPocket, a novel and comprehensive framework for the efficient detection

of binding sites in a 3D structure of a protein. We follow a multi-step approach to get

the final pocket location and 3D shape prediction from the input protein structure. We

first clean the input structure by removing all hetero-atoms and solvent molecules from the

protein structure using the Biopython47 library. Then, we run Fpocket across the structure

and calculate the barycenter of each predicted pocket. These become the candidate pocket

centers that need to be ranked by the CNN scoring function. Therefore, constant-sized grids

are placed at each barycenter followed by scoring using the CNN. The top-ranked centers

are then sent through a CNN segmentation model to get the final pocket structure. The

pipeline for our approach is given in Figure 1. More details of the approach are given in the
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Figure 1: DeepPocket: Ligand binding site detection using 3D CNNs: A protein
structure taken from Protein Data Bank is passed to the geometry-based software Fpocket,
which detects candidate pockets. DeepPocket then uses 3D CNNs to learn the pocket struc-
ture and outputs a decreasing list of pockets probabilities with the most druggable pocket
at the top. The Top-n pockets are extracted and passed to a CNN-based segmentation mod-
ule for pocket shape estimation. Protein is shown in "grey", top pocket in "purple" and
other colors represent query pockets. Protein and pocket visualizations are generated using
PyMOL48

following sections.

Datasets and preprocessing

In this work, we used the scPDB v.2017 database49 for training and cross-validation of

the model. It contains 17594 binding sites, which corresponds to 16612 proteins and 5540

UniProt IDs. Different versions of the scPDB dataset have been used previously by other

binding site detection methods such as Kalasanty and DeepSite. The proteins, ligands,

and 3D shape of binding site structures in the dataset were generated by Volsite.50 Volsite

projects the protein on a 3D grid lattice of resolution 2 Å, after which, each accessible voxel is

assigned a pharmacophoric property based on the nearest protein atom. Since each voxel has
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a fixed volume, cavities are estimated by counting these pharmacophore-annotated voxels.51

The dataset was cleaned and split in a similar way as Kalasanty, into 10 cross-validation sets

based on their Uniprot IDs to avoid data leakage. We adopted the same data splits for our

model training and validation. In this case, 10 separate models are trained where for each

model, 9 folds are kept for training and 1 fold for validation. This ensures that we are able

to evaluate the model performance on structures not present in the training sets, thereby

avoiding data leakage.

To evaluate our model and compare it against existing baselines, we used 4 different

external datasets. Two of the datasets, COACH420 and HOLO4k, were first introduced

by P2Rank.36 Alongside, we developed a new dataset called SC6K to test the model on

structures recently added to the Protein Data Bank (PDB) database.52 In addition, we also

consider the problem of structured sub-pockets53 and benchmark the depth of coverage of

the binding site provided by our segmentation model on the Refined subset of the PDBbind

dataset.54

COACH420 and HOLO4k were first used by P2Rank to test their models against multiple

state-of-the-art methods. They also curated subsets (called Mlig) of each dataset that they

considered contained relevant ligands for binding site detection. We used this subset for our

model evaluation. Furthermore, we noticed that in multiple cases the dataset reported some

of the standard 20 amino acids as ligands. However, on visualisation of these structures, we

realised they were reported as ligands due to poor preparation of the PDB files. Therefore

we ignored such ligands in the dataset. The proteins and ligands were separated from the

corresponding structure files using the Biopython library47 and converted into Mol2 format

using Openbabel.55 After separation, any ligands that could not be parsed by RDKit56 or

BioPandas57 were also removed. The resultant datasets had 291 protein structures and 359

ligands, 3413 protein structures and 4288 ligands for COACH420 and HOLO4k respectively.

To prepare the test sets for segmentation we ran Volsite across the COACH420 and

HOLO4k datasets. Due to high buriedness of the ligand molecules in the binding site of some
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proteins, Volsite was only able to detect cavities in 207 out of 291 proteins (71.13%) and

2752 out of 3413 proteins (80.63%) for the COACH420 and HOLO4k datasets respectively.

This translates to a total of 248 cavities in the COACH420 dataset and 3449 cavities in the

HOLO4k dataset. We believe these sets are sufficiently large and diverse to evaluate our

segmentation model.

We developed a new dataset, SC6K by taking all the protein structures submitted to the

Protein Data Bank from 1st January, 2018 till 28th February, 2020 that contained at least one

ligand. These were run through the pdbconv tool from the IChem Toolkit51 to get a dataset

with the same filters and site selection algorithm as scPDB. Furthermore, we removed any

protein for which a ligand could not be parsed by RDKit or BioPandas.57 The final dataset

contained 2378 proteins and 6139 structure-ligand pairs.

Refined set is constructed by taking the union of the Refined sets of v2007, v2013, v2015

and v2016 from PDBbind. The dataset consists of 4414 protein-ligand pairs. On running

Volsite across this dataset we obtain ground truth segmentation masks for 2793 (63.28%)

protein-ligand complexes. These masks were used to obtain the best performing model

checkpoint from training for the substructure benchmark.

We used stringent conditions on external datasets to avoid data leakage. Concretely, we

removed all proteins from the training set that had either sequence identity greater than

50% or ligand similarity greater than 0.9 and sequence identity greater than 30% to any of

the structures in the test set. This ensured that the proteins in the training and test sets

neither had similar global structure nor similar binding sites. This resulted in the removal

of 2418 structures for COACH420, 7951 structures for HOLO4k, 6285 structures for SC6K

and 5801 structures for the Refined set from the scPDB training set.

We ran Fpocket across all datasets to generate data for the classification and segmentation

models. Fpocket version 3.0 was used to extract candidate pocket centers for all protein

structures. We used Fpocket as it is a geometry-based software that can detect pocket

curvatures in most protein structures with high accuracy and therefore has good recall.
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Figure 2: The classification architecture based on 3D convolutional neural networks. The
network takes a voxelized 4D image of a pocket present in the protein structure of shape
C@L×W×H (C = 14 is the number of atom-type channels and L = 48,W = 48, H = 48 are
the dimensions of the bounding box) as input. F represents the kernel size of the operation.
Different colors in the input represent atom types like carbon as "pink", nitrogen as "blue",
oxygen as "red", and so on. Intermediary shapes (shown in "light grey") follow the same
notation as input.

Specifically, Fpocket found pocket centers that were within 4 Å of any ligand atom for 96.4%

of ligands in scPDB, 80.78% of ligands in COACH420, 87.62% of ligands in HOLO4k, 91.64%

of ligands in SC6K and 95.89% of ligands in Refined set.

Classification of candidate pockets into binding sites

For this task, we processed the dataset using the pocket centers predicted by Fpocket. Any

center that was within 4 Å of any ligand atom was marked as positive data point and the rest

were marked as negative. Due to the presence of redundant proteins in the scPDB database,

we processed the dataset to take account of all the binding sites for a redundant protein and

labelled the candidate pocket centers from Fpocket according to the information from all of

these binding sites. We had a total of 5,18,460 data points across the cross-validation set,

out of which, 22,030 (4.25%) were positive and the rest negative. This data imbalance is

handled by oversampling the positive examples such that each batch contains equal amounts
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of positive and negative samples while training the model. To voxelize the 3D structure

around a pocket center onto a PyTorch tensor we used libmolgrid58 to generate cubic grids

of side 23.5 Å and resolution 0.5 Å. The libmolgrid default receptor atom types were used

as grid channels and are stated in the Table S1 of the Supporting Information

We used a simple CNN model for the classification and rescoring of candidate pocket

centers. The model is depicted in Figure 2 and the architecture is given in more detail in Table

S2 of the Supporting Information. The models were trained using the Adam optimizer with

a base learning rate of 0.001 and weight decay of 0.001. We trained the models on a NVIDIA

2080 Ti GPU hardware for 200,000 iterations, with rotational augmentation, and tested the

model at every 1000 iterations. Each iteration contained a batch of 50 samples that contained

an equal number of positive and negative samples through oversampling. Furthermore, we

used the stratify_receptor option in Libmolgrid to ensure equivalent sampling of all the

receptors during training. The Pytorch learning rate scheduler ReduceLROnPlateau was

also implemented to reduce the learning rate by a factor of 10 if model performance did not

improve after 15 contiguous test intervals.

Segmenting shapes of top ranked binding sites

Positive data points of the classification dataset were used to train the segmentation CNN

models. However, the cavities provided by Volsite are at a 2 Å resolution and therefore had

to be upsampled to a 0.5 Å resolution. We used Libmolgrid for this by placing binary atoms

of radius 1 Å at each cavity point followed by morphological binary dilation.

To train the model we used cubic grids of 0.5 Å resolution with sides of size 32 Å.

Our segmentation model is inspired by the U-Net and thus contains encoder and decoder

modules with cross-connections as shown in Figure 3. The segmentation model architecture is

described in detail in Table S6 of the Supporting Information. For reference, we also visualize

an example of input and ground-truth tensor used in training of the segmentation model in

Figure S3 and Figure S4 of the Supporting Information respectively. The model was trained
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Figure 3: An illustration of the segmentation architecture similar to U-net based on 3D
convolutional neural networks. The input (shown in "brown") is a re-voxelized 4D image
(with 0.5 Å resolution) of a pocket of shape 14@65 × 65 × 65 which is passed through 4
down and 4 up convolutional units to get a segmentation mask (shown in "cyan") of shape
1@65× 65× 65. Intermediary shapes are shown in "grey".

on the NVIDIA 2080 Ti GPU hardware for 200 epochs with rotational and translational

augmentation using the same optimizers and hyperparameters as the classification model.

Metrics and evaluation

There are mainly three metrics used to evaluate binding site detection algorithms. These

metrics check the algorithm’s ability to detect the location and shape of the binding site.

The metrics are:

• Distance to any atom of the ligand (DCA/PPC) - It is the shortest distance

between the predicted center and any atom of the ligand. Predictions with DCA lesser

than 4 Å are considered successful.

• Distance to the center of the binding site (DCC) - It is the distance between
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the predicted center and actual center of the pocket. Predictions with DCC lesser than

4 Å are considered successful.

• Discretized volume overlap (DVO) - It is the ratio of the volume of intersection

of the predicted and actual shapes to the union of their volumes. We calculate it using

the Jaccard index formula

DV O =
#|Vr ∩ Vp|
#|Vr ∪ Vp|

(1)

where Vr and Vp are the sets of voxels that fall inside the volume of real and predicted

binding pockets respectively.

Classification models were tested by comparing their ranking performance with different

baselines according to the DCA criterion which evaluates the model’s ability to find the

location of the binding site. To evaluate our CNN-based scoring system we followed the

ligand-centric approach as this seems to be more suitable in evaluating predictions with more

than one ligand binding site (LBS) in a protein.33 The CNN models output probabilities or

scores for all the candidate pockets which are sorted in decreasing order. We then evaluate

the ranking capability of the model based on the success rates that the model achieves when

we take the top ranked pockets. Top-n corresponds to the success rate score when we take

the top "n" ranked unique pockets for a proteins where "n" is the number of annotated

binding pockets for that protein. Similarly, Top-(n+1) corresponds to the success rate score

when take the top "n+1" ranked unique pockets for a proteins where "n" is the number of

annotated binding pockets for that protein. In a similar manner we take the other scores

(Top-(n+2),Top-(n+3) ... Top(n+7)) to evaluate the scoring capability of the CNN model.

We calculate the success rate % using the below formula:

Success_rate% =
No. of correctly identified pockets

Total number of pockets
(2)

On the other hand, segmentation models were used to elucidate the shape of the binding
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pockets from the top-ranked centers. The DCC criterion was used to check if the predicted

shape was centered around the true center and the DVO criterion was used to check the

level of overlap between the predicted and true shapes. The DVO criterion is only reported

for the prediction that pass the DCC criterion (true center is within 4 Å of the center of the

predicted shape).

Zhao et. al.53 designed a metric to evaluate a method’s ability in predicting binding site

residues given the pocket location. First, the ratio between the intersection of predicted and

known binding site residues and the known binding site residues is taken for each pocket.

Known binding site residues can be defined as the set of all residues that are within a distance

threshold from any ligand atom. The ratio can be represented mathematically as:

Ratio =
Predicted binding residues ∩Known binding residues

Known binding residues
(3)

Then, the success rate that a method achieves in getting ratios higher than a given ratio

threshold across the dataset is taken. The segmentation model’s ability in capturing relevant

binding site residues is tested for different distance and ratio thresholds on this benchmark.

Results and Discussion

In order to perform a comprehensive evaluation and test DeepPocket’s generalization abil-

ity, a 10-fold cross-validation of the classification and segmentation models on the scPDB

v.2017 database was performed, followed by testing on the COACH420, HOLO4k, and SC6K

datasets. Testing the segmentation models focused on comparing with Kalasanty which is

the current state-of-art method in predicting 3D shapes of pockets. Finally, we validate

DeepPocket’s ability in identifying binding site residues on an established benchmark using

the Refined set.

For cross-validation classification experiments returned an average validation accuracy of

0.943 and AUC-ROC of 0.966 from the 10 classification models that were trained on their
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Figure 4: Average success rate on scPDB v.2017 dataset of correctly identifying pockets for
ranks ranging from Top-n to Top-(n+7), where n is the number of pockets for a protein

corresponding cross-validation splits. The accuracy and AUC-ROC for each of the folds

are reported in Table S3 along with their training graphs in Figure S1 of the Supporting

Information. Success/recall rates for all 10 models on their corresponding validation sets

obtained an average of 70.27% for Top-n and 87.77% for Top-(n+2). Success rates for all the

folds have also been provided in the Table S4 of the Supporting Information. We also plot

the success rate from Top-n to Top-(n+7) across the validation set in Figure 4. We believe

the big jump of 17% in success rate from Top-n to Top-(n+2) could be an indication of the

presence of putative or cryptic binding sites2 that have not been annotated in the dataset.

We also see that most of the pockets in the dataset have been predicted in the Top-(n+7)

ranks itself.
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(a) (b)

Figure 5: Segmentation results on scPDB v.2017 dataset, (a) success rate vs distance in
DCC, (b) kernel density estimate (KDE) vs DVO

Similarly, we followed a 10-fold cross-validation and trained 10 separate segmentation

models. To get the segmented pockets, the predicted density was converted into a binary

tensor based on a threshold followed by morphological closing and border clearing. Only the

largest connected pocket density was retained by erasing the smaller pocket densities in the

prediction. We checked threshold values from 0.5 to 0.8 and obtained similar performances,

therefore we decided to maintain the threshold at a value of 0.5. The models achieved

an average Dice Coefficient of 0.740 and Intersection over union (IOU) of 0.596 across the

dataset. The Dice coefficient and IOU for each of the folds are reported in Table S7 along

with their training graphs in Figure S2 in the Supporting Information.

We extracted only the correctly predicted pockets in the Top-(n+2) ranks to evaluate

the model’s performance on the DCC and DVO metrics. If no predicted pocket shapes were

returned by DeepPocket for a data point, then values of maximum DCC and minimum DVO

were allocated to that prediction. The model returned an average DCC success rate of 85.2%

at 4 Å and an average DVO of 0.644 across all cross-validation folds. DCC success rates

and average DVO for each fold are provided in the Table S8 of the Supporting Information.

Success rate vs distance for DCC and the distribution of DVO across the dataset is depicted

in Figure 5. The success rate is plotted along with a 0.95 confidence interval region across
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all validation fold. The narrowness of this region indicates that the model performed almost

equivalently on all the folds. The DVO curve peaks at a value around 0.65-0.7, which, we

believe is a good enough estimate of the shape of the pocket.

Next, we compare the performance of DeepPocket in identifying binding cavities with

other state-of-the-art methods on the three test datasets - COACH420, HOLO4k and SC6K.

The classification model is compared to the other methods according to the DCA criterion.

We note that while we did extensive data leakage removal to train our models for testing,

we took pre-trained models for other machine learning and deep learning methods that were

trained on datasets that may have some overlap with the test sets. For DeepSite, the results

provided by P2Rank36 for COACH420 and HOLO4k were used. SC6K results were obtained

via a python script that submits the PDB files to the playmolecule web-service1, which is a

online version of DeepSite. On the other hand, we used the publicly released binary package

for P2Rank. For Kalasanty, pocket centers were calculated from predicted densities.

Table 1: DCA results comparison

COACH420 HOLO4K SC6K
Top-n Top-(n+2) Top-n Top-(n+2) Top-n Top-(n+2)

Fpocket 35.09% 51.25% 36.34% 51.53% 23.99% 37.23%
Deepsite 53.07% 53.07% 51.65% 51.67% 52.94% 65.41%
Kalasanty 63.51% 65.18% 61.21% 62.63% 61.75% 61.75%
P2Rank 68.24% 75.48% 70.6% 80.05% 62.9% 75.74%

DeepPocket 67.96% 79.94% 73.36% 82.97% 64.58% 83.01%

The success rate results for Top-n and Top-(n+2) are reported in Table 1. We also report

accuracy and AUC-ROC on these test sets in Table S5 of the Supporting Information. In

case a method failed to predict pockets for a protein, the pockets for that protein were given

a value of maximum DCA to avoid erroneous calculation of the success rate. DeepPocket

outperforms all other state-of-the-art methods in all the datasets except in the Top-n score

for COACH420, where P2Rank detects only 1 extra pocket therefore beating DeepPocket

by just 0.28%. DeepPocket is also the only deep learning method that does not fail to
1https://playmolecule.org/deepsite
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provide pocket locations on any of the proteins in the dataset. It is important to note here

that the performance of DeepPocket also depends on the performance of Fpocket. In the

COACH420 dataset, Fpocket found pocket centers within 4 Å of any ligand heavy atom for

only 80.78% of the binding sites which is much lesser than the other test sets (87.62% for

HOLO4k and 91.64% for SC6K). Despite that, DeepPocket has successfully ranked 85% of

the Fpocket detected binding sites in the Top-n ranks. We believe this to be the underlying

reason behind slightly higher performance of P2Rank in COACH420 Top-n.

Table 2: No. of proteins where the method fails

COACH420 HOLO4K SC6K
Fpocket 0 0 0
Deepsite 1 18 206
Kalasanty 12 340 611
P2Rank 0 0 70

DeepPocket 0 0 0

The number of proteins where each method failed to predict pockets for the three datasets

are provided in Table 2. We note that the online version of DeepSite has a limitation of

only processing protein structures with ≤ 1000 amino acids and therefore failed for larger

proteins. P2Rank, on the other hand, failed in parsing some protein PDB files. However,

this error only occurs for approximately 1% of our dataset and therefore does not greatly

affect the results. Kalasanty, mostly failed due to an absence of predicted pocket densities.

This conclusively indicates that DeepPocket can be considered a more accurate and robust

method than the rest for binding site detection.

The segmentation algorithm is designed to predict the shape of top-ranked pockets re-

trieved from the classification scores. Therefore, only the correctly identified pockets in the

Top-(n+2) predictions of the three test datasets are used to evaluate the segmentation mod-

els. The major difference between DeepPocket and Kalasanty is that while Kalasanty tries to

segment out the pockets by taking the entire protein as input, DeepPocket identifies pockets

by taking sub-locations around predicted pocket centers as input. This enables DeepPocket

to function at a finer resolution of 0.5 Å. Like before, we used the provided pre-trained
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Kalasanty model to get its predictions. The final pocket shape and coordinates are obtained

from the pockets.cmap file that Kalasanty outputs.

Table 3: DCC and DVO results comparison

COACH420 HOLO4K SC6K
DCC DVO DCC DVO DCC DVO

Kalasanty 78.33% 0.43 57.12% 0.43 74.33% 0.35
DeepPocket 81.31% 0.64 65.79% 0.64 80.24% 0.62

The DCC success rate for a 4 Å threshold and average DVO values for both the methods

are reported in Table 3. We also report IOU and Dice-Coefficient values on these test sets in

Table S9 of the Supporting Information. DeepPocket is seen to have a better performance

than Kalasanty for both DCC and DVO criterion. We believe that the major reason for this is

the difference in resolutions at which the models operate. A resolution of 0.5 Å, as compared

to 2 Å, allows for more fine-grained computation and predictions which in turn leads to

better segmentation predictions. DeepPocket achieves an overwhelming DCC success rate

of 81.31% on COACH420 and 80.24% on SC6K showing that most of the predicted pocket

shapes are centered near the true center of the pocket whereas on the HOLO4K dataset, the

success rate is lower (65.79%) but still relatively better. DeepPocket also returns mean DVOs

greater than 0.6 when tested on the three datasets indicating good segmentation accuracy.

The success rate curves and DVO distribution plots for all the three datasets are depicted

in Figure 6. The success rate plots of DeepPocket on the COACH420 and SC6K datasets

are very similar to the success rate plots in the cross-validation experiments indicating good

generalisation. For HOLO4k, DeepPocket has a slightly lower success rate performance as

compared to the cross-validation set. We deduce that the reason for this is because training

on the scPDB dataset does not generalize the DeepPocket segmentation model well to the

HOLO4k dataset. This is also evidenced by the lower performance of the pretrained kalasanty

model. Furthermore, it is also worthwhile to note that we had to remove 7951 structures

from the training set in order to avoid data leakage while testing on the HOLO4k dataset.

This lead to a significant reduction in training dataset size for the segmentation model. The
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Figure 6: Segmentation results of DeepPocket and Kalasanty on test datasets. Success rate
and DVO distributions for (a),(b) COACH420, (c),(d) HOLO4K, and (e),(f) SC6K
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returned DVO distributions of the test sets by DeepPocket peak around a value of 0.65. This

could be considered a good approximation of the shape of the pocket at a 0.5 Å resolution.

Kalasanty, on the other hand, returns lower DCC success rates at a 4 Å threshold.

However, the success rate improves at a good pace with increasing values of the distance

threshold. DVO distributions on all the three datasets for Kalasanty peak at values close to

0.35-0.4, indicating that DeepPocket performs better at shape prediction. These results lead

to the conclusion that while the Kalasanty method generates densities in the locality of the

binding site (Table 1), DeepPocket’s segmentation algorithm functions relatively better for

elucidating the entire binding pocket shapes.

Finally, we validate the segmentation model’s ability in identifying binding site residues

on the Refined test set. Zhao et. al.53 established a benchmark for the identification of

functional residues given a binding site. We test our model against this benchamrk, thereby

giving a better picture of the depth of coverage of our segmentation model predictions.

However, the segementation model is trained to predict a mask present in the void space of

a binding site. Therefore, in order to get predicted binding site residues we take all residues

within a distance threshold of the predicted mask.

We conduct further experiments to decide a distance threshold. Taking too large of a

distance threshold may result in detecting residues not involved in the binding site, whereas,

taking too small a distance threshold may result in insufficient coverage of the binding site.

Therefore, we take sets of binding site residues that are within different distance thresholds

of ligand atoms as well as different distance thresholds of the predicted mask. We then report

the intersection over union (IOU) for these sets to reach an ideal value of the mask distance

threshold. To get the predicted mask, the candidate Fpocket center closest to the ligand is

taken as input for the segmentation model. The average IOU values over the Refined set

are shown in Table 4. Ligand distance threshold is represented as ld and mask distance

threshold is represented as md.

From Table 4 it is clear that a mask distance threshold of 2.5 Å would give the best IOU
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Table 4: Intersection over Union of residues within ligand distance threshold (ld) and mask
distance threshold (md)

md
ld 1 Å 1.5 Å 2 Å 2.5 Å 3 Å 3.5 Å
3 Å 0.31 0.38 0.40 0.39 0.37 0.34
4 Å 0.34 0.42 0.47 0.47 0.45 0.42
5 Å 0.32 0.41 0.46 0.48 0.48 0.47

over it’s predictions of the binding site. However, at mask distance threshold of 3.5 Å the IOU

drops by only 0.01 at ligand distance threshold of 5 Å. Since 3.5 Å mask distance threshold

would also give the maximum coverage over the binding site, we benchmark DeepPocket

at both mask distance thresholds of 2.5 Å and 3.5 Å. The model success rates at different

ligand distance thresholds, mask distance thresholds and ratio cutoffs (Equation 3) across

the Refined test set are given in Table 5.

Table 5: Success rate at different ligand distance thresholds (ld), mask distance thresholds
of 2.5 Å and 3.5 Å and different ratio cutoffs (r)

r = 0.25 r = 0.5 r = 0.75
ld 2.5 Å 3.5 Å Zhao et. al. 2.5 Å 3.5 Å Zhao et. al. 2.5 Å 3.5 Å Zhao et. al.
3 Å 0.91 0.93 0.91 0.84 0.88 0.86 0.69 0.79 0.78
4 Å 0.91 0.93 0.91 0.83 0.88 0.86 0.63 0.76 0.76
5 Å 0.9 0.93 0.91 0.79 0.86 0.86 0.5 0.68 0.68

From Table 5, it is clear that DeepPocket with mask distance threshold of 3.5 Å slightly

outperforms the baseline. We believe the main reason for this to be that the model can

predict binding site residues on multiple chains as opposed to the baseline. It is important

to note, however, that while DeepPocket performs better than the baseline at identifying

the residues, it does not provide hierarchical information of the pocket substructure like the

baseline.

In Figure 7, we show examples (PDB IDs: 1K2C, 1SQN) of our predicted binding pockets,

where the correct center was top-ranked by the classification model. These visualizations

are generated by open source molecular visualization system, PyMOL.48
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Figure 7: Top-ranked and segmented pockets (shown in "light blue" volume) of proteins
HIV-1 Protease (PDB ID: 1K2C) and Progesterone ligand binding domain (PDB ID: 1SQN)
by DeepPocket. True pocket annotations are shown as "dark blue" points. Corresponding
proteins are show in "green"

Conclusion

In this work, we designed a method DeepPocket that follows a multi-step approach to identify

ligand binding sites on the 3D structures of proteins. This mainly involves three steps,

extracting candidate pocket centers, ranking them using a classification model, and finally

elucidating shapes for the top-ranked centers using a segmentation model. This modular

design enables both, the usage of any of these parts independently and their replacement

by other methods that may be developed in the future. The classification model uses 3D

CNNs on the candidate pockets generated by Fpocket and predicts accurate binding sites.

The segmentation model again uses 3D CNNs in a U-net like architecture to elucidate pocket

shapes of the predicted binding sites. We made the design choice of working at a fine-grained

resolution of 0.5 Å to ensure better performance as evidenced by the DCA, DCC, DVO and

Zhao at. al. benchmark results. DeepPocket also has the added advantage of not failing

on any of the provided protein structures. Therefore, we believe it would be advantageous

to incorporate DeepPocket into structural bioinformatics and drug design pipelines where

identification of binding cavities is required. We believe this would especially be useful in
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cases where template methods fail to provide the required binding site.

Data and Software Availability

The source code of the method, data and pretrained models are available at https://

github.com/devalab/DeepPocket

Acknowledgement

The authors thank Manasa Kondamadugu, Bhuvanesh Sridharan and Manan Goel for their

comments during the preparation of the manuscript. We thank IHub-Data, International

Institute of Information and Technology, Hyderabad for financial support.

Supporting Information Available

Supporting Information contains training results and model architectures of the classification

and segmentation models. Furthermore, atom types channels of CNN models and represen-

tative figures of segmentation input and ground truth are also provided.

References

(1) Anderson, A. C. The process of structure-based drug design. Cell Chem. Biol. 2003,

10, 787–797.

(2) Zhao, J.; Cao, Y.; Zhang, L. Exploring the computational methods for protein-ligand

binding site prediction. Comput. Struct. Biotechnol. J. 2020, 18, 417 – 426.

(3) Hassan, N. M.; Alhossary, A. A.; Mu, Y.; Kwoh, C.-K. Protein-ligand blind docking

using QuickVina-W with inter-process spatio-temporal integration. Sci. Rep. 2017, 7,

1–13.

23

https://github.com/devalab/DeepPocket
https://github.com/devalab/DeepPocket


(4) Huang, B.; Schroeder, M. LIGSITEcsc: predicting ligand binding sites using the Con-

nolly surface and degree of conservation. BMC Struct. Biol. 2006, 6, 19.

(5) Le Guilloux, V.; Schmidtke, P.; Tuffery, P. Fpocket: An open source platform for ligand

pocket detection. BMC Bioinf. 2009, 10, 168.

(6) Laskowski, R. A. SURFNET: A program for visualizing molecular surfaces, cavities,

and intermolecular interactions. J. Mol. Graphics 1995, 13, 323 – 330.

(7) Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: automatic and efficient detection

of potential small molecule-binding sites in proteins. J. Mol. Graphics Modell. 1997,

15, 359 – 363.

(8) Xie, Z.-R.; Hwang, M. Ligand-binding site prediction using ligand-interacting and bind-

ing site-enriched protein triangles. Bioinformatics 2012, 28, 1579–1585.

(9) Zhu, X.; Xiong, Y.; Kihara, D. Large-scale binding ligand prediction by improved patch-

based method Patch-Surfer2.0. Bioinformatics 2015, 31, 707–713, 25359888[pmid].

(10) Sael, L.; Kihara, D. Binding ligand prediction for proteins using partial matching of

local surface patches. Int. J. Mol. Sci. 2010, 11, 5009–5026, 21614188[pmid].

(11) Sael, L.; Kihara, D. Detecting local ligand-binding site similarity in nonhomologous

proteins by surface patch comparison. Proteins: Struct., Funct., Bioinf. 2012, 80,

1177–1195, 22275074[pmid].

(12) Liu, Y.; Grimm, M.; Dai, W.-t.; Hou, M.-c.; Xiao, Z.-X.; Cao, Y. CB-Dock: a web

server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin.

2020, 41, 138–144.

(13) Laurie, A. T. R.; Jackson, R. M. Q-SiteFinder: an energy-based method for the pre-

diction of protein–ligand binding sites. Bioinformatics 2005, 21, 1908–1916.

24



(14) Amari, S.; Aizawa, M.; Zhang, J.; Fukuzawa, K.; Mochizuki, Y.; Iwasawa, Y.;

Nakata, K.; Chuman, H.; Nakano, T. VISCANA: Visualized Cluster Analysis of Pro-

tein Ligand Interaction Based on the ab Initio Fragment Molecular Orbital Method for

Virtual Ligand Screening. J. Chem. Inf. Model. 2006, 46, 221–230.

(15) Lin, Y.; Yoo, S.; Sanchez, R. SiteComp: a server for ligand binding site analysis in

protein structures. Bioinformatics 2012, 28, 1172–1173.

(16) Ghersi, D.; Sanchez, R. Improving accuracy and efficiency of blind protein-ligand dock-

ing by focusing on predicted binding sites. Proteins: Struct., Funct., Bioinf. 2009, 74,

417–424, 18636505[pmid].

(17) Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-web: a server for ligand binding

site identification in protein structures. Nucleic Acids Res. 2009, 37, W413–W416.

(18) Ngan, C.-H.; Hall, D. R.; Zerbe, B.; Grove, L. E.; Kozakov, D.; Vajda, S. FTSite: high

accuracy detection of ligand binding sites on unbound protein structures. Bioinformat-

ics 2011, 28, 286–287.

(19) Laurie, A. T.; Jackson, R. M. Q-SiteFinder: an energy-based method for the prediction

of protein–ligand binding sites. Bioinformatics 2005, 21, 1908–1916.

(20) Faller, C. E.; Raman, E. P.; MacKerell, A. D.; Guvench, O. Fragment-Based Methods

in Drug Discovery ; Springer, 2015; pp 75–87.

(21) Tsujikawa, H.; Sato, K.; Wei, C.; Saad, G.; Sumikoshi, K.; Nakamura, S.; Terada, T.;

Shimizu, K. Development of a protein–ligand-binding site prediction method based on

interaction energy and sequence conservation. J. Struct. Funct. Genomics 2016, 17,

39–49.

(22) Xie, Z.-R.; Hwang, M.-J. Ligand-binding site prediction using ligand-interacting and

binding site-enriched protein triangles. Bioinformatics 2012, 28, 1579–1585.

25



(23) Wass, M. N.; Kelley, L. A.; Sternberg, M. J. E. 3DLigandSite: predicting ligand-binding

sites using similar structures. Nucleic Acids Res. 2010, 38, W469–W473.

(24) Yang, J.; Roy, A.; Zhang, Y. Protein–ligand binding site recognition using complemen-

tary binding-specific substructure comparison and sequence profile alignment. Bioin-

formatics 2013, 29, 2588–2595.

(25) Skolnick, J.; Kihara, D.; Zhang, Y. Development and large scale benchmark testing of

the PROSPECTOR_3 threading algorithm. Proteins: Struct., Funct., Bioinf. 2004,

56, 502–518.

(26) Brylinski, M.; Skolnick, J. A threading-based method (FINDSITE) for ligand-binding

site prediction and functional annotation. Proc. Natl. Acad. Sci. U. S. A. 2008, 105,

129–134.

(27) Mater, A. C.; Coote, M. L. Deep Learning in Chemistry. J. Chem. Inf. Model. 2019,

59, 2545–2559.

(28) Pathak, Y.; Mehta, S.; Priyakumar, U. D. Learning Atomic Interactions through Solva-

tion Free Energy Prediction Using Graph Neural Networks. J. Chem. Inf. Model. 2021,

61, 689–698, PMID: 33546556.

(29) Pattnaik, P.; Raghunathan, S.; Kalluri, T.; Bhimalapuram, P.; Jawahar, C. V.; Priyaku-

mar, U. D. Machine Learning for Accurate Force Calculations in Molecular Dynamics

Simulations. J. Phys. Chem. A 2020, 124, 6954–6967, PMID: 32786995.

(30) Chauhan, J. S.; Mishra, N. K.; Raghava, G. P. Identification of ATP binding residues

of a protein from its primary sequence. BMC Bioinf. 2009, 10, 434.

(31) Chen, K.; Mizianty, M. J.; Kurgan, L. Prediction and analysis of nucleotide-binding

residues using sequence and sequence-derived structural descriptors. Bioinformatics

2011, 28, 331–341.

26



(32) Cui, Y.; Dong, Q.; Hong, D.; Wang, X. Predicting protein-ligand binding residues with

deep convolutional neural networks. BMC Bioinf. 2019, 20, 93.

(33) Krivák, R.; Hoksza, D. Improving protein-ligand binding site prediction accuracy by

classification of inner pocket points using local features. J. Cheminf. 2015, 7, 12.

(34) Krivák, R.; Hoksza, D. P2Rank: machine learning based tool for rapid and accurate

prediction of ligand binding sites from protein structure. J. Cheminf. 2018, 10, 39.

(35) Chen, K.; Mizianty, M.; Gao, J.; Kurgan, L. A Critical Comparative Assessment of

Predictions of Protein-Binding Sites for Biologically Relevant Organic Compounds.

Structure 2011, 19, 613–621.

(36) Krivák, R.; Hoksza, D. P2Rank: machine learning based tool for rapid and accurate

prediction of ligand binding sites from protein structure. J. Cheminf. 2018, 10, 1–12.

(37) Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning ; MIT Press, 2016; http://

www.deeplearningbook.org.

(38) He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. 2016; pp

770–778.

(39) Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.;

Courville, A.; Bengio, Y. Generative adversarial nets. Advances in neural information

processing systems 2014, 27 .

(40) Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A. N.; Kaiser, Ł.;

Polosukhin, I. Attention is all you need. Advances in neural information processing

systems. 2017; pp 5998–6008.

27

http://www.deeplearningbook.org
http://www.deeplearningbook.org


(41) Krizhevsky, A.; Sutskever, I.; Hinton, G. E. ImageNet Classification with Deep Convo-

lutional Neural Networks. Advances in Neural Information Processing Systems. 2012;

pp 1097–1105.

(42) Simonovsky, M.; Meyers, J. DeeplyTough: learning structural comparison of protein

binding sites. J. Chem. Inf. Model. 2020, 60, 2356–2366.

(43) Koch, G. R. Siamese Neural Networks for One-Shot Image Recognition. 2015.

(44) Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A. S.; De Fabritiis, G. DeepSite:

protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics

2017, 33, 3036–3042.

(45) Stepniewska-Dziubinska, M. M.; Zielenkiewicz, P.; Siedlecki, P. Improving detection of

protein-ligand binding sites with 3D segmentation. Sci. Rep. 2020, 10, 1–9.

(46) Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical

Image Segmentation. Medical Image Computing and Computer-Assisted Intervention

– MICCAI 2015. Cham, 2015; pp 234–241.

(47) Cock, P. J.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, A.; Fried-

berg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; Hoon, M. J. L. d. Biopython: freely

available Python tools for computational molecular biology and bioinformatics. Bioin-

formatics 2009, 25, 1422–1423.

(48) DeLano, W. L. Pymol: An open-source molecular graphics tool. CCP4 Newsletter on

protein crystallography 2002, 40, 82–92.

(49) Desaphy, J.; Bret, G.; Rognan, D.; Kellenberger, E. sc-PDB: a 3D-database of ligand-

able binding sites—10 years on. Nucleic Acids Res. 2015, 43, D399–D404.

28



(50) Desaphy, J.; Azdimousa, K.; Kellenberger, E.; Rognan, D. Comparison and Druggabil-

ity Prediction of Protein–Ligand Binding Sites from Pharmacophore-Annotated Cavity

Shapes. J. Chem. Inf. Model. 2012, 52, 2287–2299.

(51) Da Silva, F.; Desaphy, J.; Rognan, D. IChem: A Versatile Toolkit for Detecting, Com-

paring, and Predicting Protein–Ligand Interactions. ChemMedChem 2018, 13, 507–

510.

(52) Bernstein, F. C.; Koetzle, T. F.; Williams, G. J.; Meyer Jr, E. F.; Brice, M. D.;

Rodgers, J. R.; Kennard, O.; Shimanouchi, T.; Tasumi, M. The Protein Data Bank:

a computer-based archival file for macromolecular structures. J Mol Biol. 1977, 112,

535–542.

(53) Zhao, R.; Cang, Z.; Tong, Y.; Wei, G.-W. Protein pocket detection via convex hull

surface evolution and associated Reeb graph. Bioinformatics 2018, 34, i830–i837.

(54) Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind database: method-

ologies and updates. J. Med. Chem. 2005, 48, 4111–4119.

(55) O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchi-

son, G. R. Open Babel: An open chemical toolbox. J. Cheminf. 2011, 3, 1–14.

(56) Landrum, G. RDKit: A software suite for cheminformatics, computational chemistry,

and predictive modeling. 2013.

(57) Raschka, S. BioPandas: Working with molecular structures in pandas DataFrames.

Journal of Open Source Software 2017, 2, 279.

(58) Sunseri, J.; Koes, D. R. libmolgrid: Graphics Processing Unit Accelerated Molecular

Gridding for Deep Learning Applications. J. Chem. Inf. Model. 2020, 60, 1079–1084.

29



Graphical TOC Entry

30


