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Abstract 

In the face of low-resource reaction training samples, we construct a chemical platform 

for addressing small-scale reaction prediction problem. By using a self-supervised mo-

lecular pretraining strategy, the chemical information from 1 billion molecules can be 

delivered to small-scale reaction prediction. To demonstrate the broad applicability of 

our approach, we apply our model to three different name reaction prediction tasks. In 
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the Baeyer-Villiger, Heck and Sharpless asymmetric epoxidation reactions, the accura-

cies increase by 5.7%, 10.8%, 4.8% on average, respectively. 

1. Introduction 

Chemical synthesis is of great importance to the discovery of novel molecules for med-

icine and materials design, and one of the fundamental elements of this research is re-

action prediction. Traditionally, predicting accurate products when given reactants is a 

rather rigorous task relying on experiments and professional chemistry experience, 

which inevitably demands a great deal of time and investments. Thanks to the advance-

ments in computer science, the task of determining products of organic reactions can 

be aided by developing algorithms recently. 

The existing algorithms for predicting reactions typically fall into three categories 

including template-based, physical chemistry and template-free methods. Approaches 

based on the so-called templates make reaction prediction by applying chemical rules 

that are encoded by expert chemists or automatically extracted from reaction data-

bases.1-6 Due to the template-based nature, those methods are incapable of predicting 

precise reactions that beyond the scope of their knowledge bases. As for physical chem-

istry algorithms, those methods depend on the calculation of energy barriers, which 

computational cost are prohibitively expensive.7-9 Unlike template-based or physical 

chemistry algorithms, the template-free approaches are generally based on deep learn-

ing and bypass the need to require curated chemical reaction rules or laborious calcula-

tion of energy barriers.10-15 

Recent innovations in deep learning represent great opportunities for template-free 



approaches in reaction prediction. Nam and Kim first applied a data-driven approach to 

reaction prediction task and treated it as a neural machine translation (NMT) task in 

2016.10 The next year, the success of a fully attention-based transformer model in lan-

guage translation gathers interest from chemists and accelerates the development of 

computer-aided reaction prediction.16 In 2019, Schwaller et al innovatively leveraged 

this model to make reaction prediction and the predictive accuracy can increase remark-

ably in United States Patent and Trademark Office (USPTO) dataset.11 What's more, in 

a recent study by Tetko et al, authors reported an augmented transformer model, further 

showing the prominent capability of this model.12 Until now, the transformer architec-

ture remains a powerful approach for addressing the challenge of prediction reaction.  

Although showing outstanding performance on various reaction tasks, template-

free methods such transformer model meet their bottleneck in the face of low chemical 

data regimes, due to the data-driven feature. In order to solve such problem, many stud-

ies concentrate on transferring knowledge from a large-scale reaction dataset to a spe-

cific reaction prediction task.13-15 For instance, Schwaller et al transferred the general 

chemistry knowledge of a USPTO dataset to a carbohydrate reaction prediction task, 

and the accuracy in this task can increase by 30.0%.13 This reaction transferring learning 

strategy can be regarded as a practical workaround for some reaction prediction but the 

fundamental issue remains: it's difficult to construct or obtain such large-scale chemical 

reaction dataset like USPTO in reality. Even several chemical databases have been cre-

ated by the effort of chemists17,18, reactions are not easy to access in bulk, for commer-

cial or technical reasons. In addition, building an applicable large reaction dataset also 



calls for an enormous effort in a variety of complex preprocessing. As a result, the care-

fully designed large reaction dataset are still scare now, which prevents data-driven 

models from tackling with the problem of some particular reaction prediction, espe-

cially for small-scale reactions. 

Similar to this case in reaction prediction, language translation modeling also suf-

fers from the lack of training samples. In natural language domain, a common approach 

for dealing with this problem is self-supervised pretraining where a model pretrains on 

large numbers of monolingual data then finetunes on limited parallel data.19 As we men-

tioned, the reaction prediction can be regarded as an NMT task where the reactant is a 

language and the product is another language. That said, reactants and products of re-

actions constitute a bilingual corpus. Following this idea, molecules can be treated as a 

monolingual data. Inspired by the success of self-supervised training in natural lan-

guage processing (NLP), we cast our eyes to molecular data that is more accessible 

compared to reactions and utilize the corresponding chemical information about it to 

strengthen the predictive ability of our model when faced with limited reaction training 

examples. 

To valid the effectiveness of our work, we adopt the popular encoder-decoder trans-

former framework and a self-supervised pretraining method called MAsked Sequence 

to Sequence (MASS)20 for delivering molecular information to the prediction of prod-

ucts. The MASS method originally was proposed by Microsoft in 2017 and achieves 

outstanding improvements in NLP. Inspired by BERT21 but unlike it, this self-super-

vised pretraining method is introduced to pretrain encoder and decoder jointly rather 



than only pay attention to the encoder. The pretraining procedure is consist of two steps. 

Firstly, the encoder is forced to understand the meaning of the unmasked tokens. Sec-

ond, MASS drives the decoder paying more attention to the source presentation by 

masking the input token of the decoder side that are not masked in the encoder. With 

the process of the self-supervised pretraining, the feature of molecules can be learned 

by transformer and then transferred to downstream reaction prediction tasks.  

Furthermore, we organize a large-scale molecular dataset to pretrain the trans-

former and apply this pretrained model to a variety of small-scale reaction prediction 

tasks. This molecular dataset contains 1 billion compounds that are derived from two 

popular open-source compound databases called ZINC22, ChEMBL23(some examples 

are displayed in Fig. S1). In the term of downstream reaction prediction tasks, the Bae-  

Figure 1. Schematic diagram of the method for addressing small-scale prediction. The chemical molec-

ular information (a) is absorbed by transformer architecture in self-supervised molecular pretraining pro-

cedure(b). Then, the pretrained model finetunes on a variety of downstream small-scale reaction predic-

tion tasks (c).  

 



yer–Villiger15 and Heck reaction datasets14, two classic small-size reactions, are utilized 

to our experiments. In addition, we construct a new name reaction dataset involving 

chiral challenge for further demonstrating the universal applicability of our method. 

The schematic of our work can be founded in the Fig. 1. 

To sum up, we innovatively combine the self-supervised molecular pretraining 

with transformer architecture to build a chemistry platform for addressing the problem 

of small-scale reaction prediction. Compare to studies that rely only on reaction dataset, 

our contribution is to demonstrate that it is possible to combine chemical molecular 

information with small-scale reaction prediction task. To the best of our knowledge, 

this is the first attempt to leverage a self-supervised pretraining with billions of mole-

cules to provide a boost in the predictive ability of transformer model on determining 

the products of reactions.  

Figure 2. Presentative examples of reactions in three datasets. (a) is a Baeyer–Villiger reaction where 

reactant is an aldehyde and (b) is a Baeyer–Villiger reaction where reactant is a ketone. (c) is a Heck 

reaction that occurs between molecules and (d) is a Heck reaction that occurs in a reactant. (e) is a Sharp-

less asymmetric epoxidation reaction involving L-(+)- diethyl tartrate and (f) is a Sharpless asymmetric 

epoxidation reaction involving D-(-)- diethyl tartrate.  



2. Method 

2.1 Dataset 

In our work, we apply three different datasets to valid the universal ability of our 

method in small-scale reaction prediction. The representative examples of those reac-

tions can be found in Fig. 2. 

2.1.1 Baeyer-Villiger reaction dataset 

Baeyer–Villiger reaction is a typical example of small-scale reaction.24 With a peroxy-

acid or peroxide, an ester can be formed from a ketone or an aldehyde. Fig. 2 shows 

some presentative examples of this reaction type. As a rearrangement reaction, the key 

feature of this reaction is that the regiochemistry relies on the migratory capacity of 

group. Usually, the migratory aptitude of group is ranked as followed: tertiary alkyl > 

secondary alkyl > aryl > methyl. Take Figure 2(b) as example, the methyl group of the 

1-( bicyclo [3.3.1] nonan-1-yl) ethan-1-one is more reluctant to undergo migration, and 

the bicyclo [3.3.1] nonan-1-yl acetate is formed as the product.  

The Baeyer-Villiger reaction dataset is originally from the work of Zhang et al.15 

Those reactions are extracted from a commercial database called Reaxys17 by using the 

name of this reaction types and reaction templates. Then, the incomplete, repeated and 

other error reaction samples are further eliminated from this raw dataset. The filtered 

data is further processed for only obtaining reactants and products. Finally, there are 

2254 Baeyer-Villiger reactions samples in the dataset. 

2.1.2 Heck reaction dataset 

The palladium-catalysed reaction where a new alkene is formed by coupling an alkene 



with an organic halide or triflate, is referred to as the Heck reaction.25 As an effective 

tool, the reaction gives great boost in constructing carbon-carbon bonds. According to 

the reactant types, the heck reaction can be divided into two classes: intermolecular and 

intramolecular Heck reactions (Fig. 2(c) and (d)). In general, the more substituted 

groups alkene of reactant obtains, the slower the reaction occurs. Therefore, in the Heck 

reaction, the order of reaction rates roughly follows CH2=CH2 > CH2=CHOAc > 

CH2=CHMe > CH2=CHPh > CH2=C(Me)Ph.  

The heck dataset is constructed in Wang et al 's study.14 Similar to the procedure of 

preparing Baeyer-Villiger reaction dataset, this reaction dataset is derived from the Re-

axys and processed by expurgating duplicated and wrong reactions. In order to gain 

reactions that only involves reactants and products, the contextual information such as 

temperature and time are removed from the filter Heck dataset. Ultimately, a dataset 

containing 9405 intermolecular and 554 intramolecular Heck reaction is organized. 

2.1.3 Sharpless asymmetric epoxidation reaction dataset 

In the presence of a chiral tartrate ester, prochiral or chiral allylic alcohols can be oxi-

dated to an enantiopure 2,3-epoxy alcohols, which is called Sharpless asymmetric epox-

idation reaction.26 This reaction is reagent controlled: the optical property of tartrate 

ester affects the enantiomer of the product 2,3-epoxy alcohol. Here are some examples 

shown in the Figure 4(e) and (f). Under different chiral tartrate esters, the configuration 

of products is corresponding different. As an enantioselective reaction, the Sharpless 

asymmetric epoxidation reaction involves chirality changes, adding additional chal-

lenge for prediction model. 



The preprocessing steps of Sharpless asymmetric epoxidation reaction dataset fol-

lows the procedure that Zhang and Wang et al did14,15. The raw Sharpless asymmetric 

epoxidation reaction dataset is come from Reaxys and throughs a cleaning procedure. 

Because of the reagent-controlled trait of this reaction type, the reagent information is 

preserved in our dataset. In total, 3060 Sharpless asymmetric epoxidation reactions are 

applied to our work. 

In our work, all data are presented by simplified molecular-input line-entry sys-

tem27 (SMILES) text representation. What's more, the reaction datasets are all split for 

testing, validation, training respectively, at a ratio of 1:1:8. It's worth mentioned that we 

adopt 10-fold cross validation to split reaction datasets. This strategy ensures that the 

overfitting problem can be avoided and a particularly favorable or unfavorable splitting 

not make influence on the prediction. In addition, the accuracy is used as a key metric 

for quantitatively measuring performance of our approach. The accuracy means the 

percentage of right predictions found within the results given by model. 

2.2 Model 

We employ the powerful transformer architecture for learning knowledge about mole-

cules and reaction in our work. This model is based solely on an attention mechanism 

and eschews recurrence most commonly used in encoder-decoder architectures.16 At 

present, the transformer remains a popular architecture for wide variety of problems, 

including NLP, computer vision (CV) and reaction prediction. 

The key component of Transformer is Multi-Head Attention (MHA). For each head, 

the equation is defined as 



𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(Q, K, V) = softmax (𝑄
𝑇𝐾

√𝑑𝑘
)V 

where Q, K, V are input embedding matrices and dk is the embedding dimension. With 

the MAH, the information can be handled parallelly on different subspaces. 

2.3 MASS pretraining method 

MASS is a self-supervised pretraining method proposed for sequence-to-sequence 

learning framework. Unlike BERT and other pretraining model, this approach focuses 

on both the encoder and decoder, which is perfectly suitable to our reaction prediction 

task. With this self-supervised pretraining method, the transformer model can study on 

a large-size molecular dataset, then transmits that chemical molecular knowledge to 

different downstream reaction prediction task. 

The detail mechanism of this self-supervised pretraining method is shown in Fig. 

1. A fragment of input sequence will be masked, and the task of decoder is to predict 

corresponding masked information. The objective function can be described as follows 

𝐿(𝜒) =
1

|𝜒|
∑ logP(𝑥𝑢:𝑣|𝑥\𝑢:𝑣)

𝑥∈𝜒

 

where 𝑥\𝑢:𝑣 is denoted as fragment sequence x that are masked from position u to v. 

The values u and v are randomly chosen and restrict to 0 < u < v < N and N is number 

of tokens of sequence x. 

2.4 TMAP 

TMAP is a data visualization method which can capable of dealing with data points and 

reduce arbitrary high dimensionality to a two-dimensional tree.28 Due to the tree-like 

nature, this method is more suitable in the exploration and interpretation of dataset com-

pared to other dimensionality reduction algorithms. This method relying on a 



combination of locality sensitive hashing, graph theory and modern web technology, 

consists of four main components: a) LSH forest indexing, b) the generation of a 𝑑-

approximate 𝑙-nearest neighbor graph, c) of a minimum spanning tree (MST) of the 𝑑-

approximate 𝑙-nearest neighbor graph d) construction of a layout for the resulting MST. 

However, the TMAP is originally designed for the visualization of molecular da-

taset. Thanks to the efforts of Schwaller et al, this method is extended for displaying 

chemical reactions.29 

3. Results 

Table 1 The results of the molecule-pretrained-Mass model in 10 subsets of different reactions.  

Table 2 The results of the baseline model in 10 subsets of different reactions.  

 

Entry 

Reaction classes 

Baeyer-Villiger reaction Heck reaction 
Sharpless asymmetric 

epoxidation reaction 

1 74.3% 80.7% 61.8%  

2 75.7% 81.4% 61.2%  

3 75.7% 82.9% 65.4%  

4 73.0% 81.9% 65.4%  

5 67.7% 81.3% 61.8%  

6 74.3% 79.4% 61.2%  

7 77.0% 79.6% 63.0%  

8 76.5% 81.6% 59.5%  

9 74.3% 80.7% 63.0%  

10 83.6% 82.7% 63.3%  

Entry 

Reaction classes 

Baeyer-Villiger reaction Heck reaction 
Sharpless asymmetric 

epoxidation reaction 

1 70.4% 71.0% 55.6%  

2 66.8% 70.3% 57.7%  

3 72.1% 72.7% 60.7%  

4 69.0% 73.5 % 62.1%  

5 62.8% 73.2% 55.9%  

6 69.5% 69.0% 56.2%  

7 72.6% 65.7% 60.1%  

8 71.7% 68.5% 56.2%  

9 67.3% 71.3% 55.9%  

10 73.0% 69.4% 57.1%  



In our work, we implement three small-scale reaction prediction tasks to demonstrate  

the abroad applicability of our method. The table1, 2 show the performances of mole-

cule-pretrained-Mass model (pretrained on molecular dataset and finetune on down-

stream small-scale reactions) and baseline model (only train on small-scale reactions) 

respectively, in the face of various small-scale reaction datasets with different splitting. 

Definitely, the knowledge of 1 billion molecules lays a strong foundation for guiding 

transformer model to make it more competitive to small-size reaction prediction. Within 

each task, the molecule-pretrained-Mass model outperforms baseline model. In the ex-

periment 1of Heck reaction, this model gains an 80.7% accuracy, which is 9.7% higher 

than baseline model (71.0%). What's more, the performance difference between the two 

models becomes hard to ignore in Sharpless asymmetric epoxidation reaction. The 

model's accuracies most over 60% while the results of baseline model most below it. 

The improvements of our model are represented in the Fig. 3. The accuracy can in-  

Figure 3. The improvement in accuracy in different experiment of different reaction prediction. 



Figure 4. The increases in average accuracies of different reaction prediction tasks. 

crease by 13.9% at best in the heck reaction prediction. Furthermore, the accuracy im-

provement in experiment 9 of Sharpless asymmetric epoxidation reaction can reach 

7.10%, showing the benefit of molecular self-supervised pretraining. 

To illustrate clearly the accuracy gap between molecule-pretrained-Mass and base-

line models, the average accuracies in different tasks are displayed in Fig. 4. In the task 

of predicting Baeyer-Villiger, Heck and Sharpless asymmetric epoxidation reactions 

respectively, the average accuracies of molecule-pretrained-Mass model are 5.7%, 

10.8%, 4.8% higher than baseline model, which reveals that our method is suitable for 

most small-scale reaction prediction. On the other hand, the significant increase in ac-

curacy indicates that chemical molecular information indeed can help improve the mod-

el's understanding on reactions, even though there retain some differences between 

them. 



4. Discussion 

We chose experiment 1 to future analyze the improvement of model's performance 

in Baeyer-Villiger, Heck and Sharpless asymmetric epoxidation reactions after applying 

the self-supervised molecular pretraining strategy. 

4.1 The improvement in general errors 

Compared to the baseline model, the molecule-pretrained-Mass model have a better 

understanding of general knowledge such as SMILES presentation, the count of carbon 

number and chirality. In the following, we make deep analysis of the predictive ability 

of our model in those three aspects. 

SMILES invalidation is common in the text-based predictive model. Due to the 

fragile nature of SMILES text presentation, a change of a single character may lead to 

a grammatically invalid SMILES that is not able to be translated into a plausible chem-

ical structure. Such problem can be reduced by forcing models to learn meaningful 

SMILES text presentation from a mass of molecular training samples. In Baeyer-Vil-

liger, Heck and Sharpless asymmetric epoxidation reactions, the progress of SMILES 

presentation can account for 41.7%, 33.7% and 12.8% of the total enhanced accuracy 

respectively. In the Baeyer-Villiger reaction, nearly half of the increased accuracy is 

attributed to the progress in the SMILES representation. Fig. 5 shows some presentive 

SMILES mistakes that predicted by baseline model but not present in molecule-pre-

trained-Mass model. Take Fig. 5(a) as an example, the two SMILES strings are pretty 

similar, but if you look closely, you'll see that the SMILES in the bottom has an extra 



 

Figure 5. SMILES errors that occur in baseline model but not in molecule-pretrained-Mass model. (a) is 

a Baeyer-Villiger reaction, (b) is a Heck reaction and (c) is a Sharpless asymmetric epoxidation reaction. 

'3)' more than that in the top. And that subtle change of alphabets causes the failure of 

baseline model in the predicting the product of the reactant 2-phenylchroman-4-one. 

Similarly, the 'C=C(/C=C/C(=O)OCC)' in the product SMILES of Fig. 5(b) is replaced 

by 'CCOC(=O)/C(=C/' strings, leading the baseline model's prediction grammatically 

incorrect. 

Furthermore, we observe a phenomenon that the more complex the structure of 



compound, more likely the SMILES error occurs. Fig. 5(c) is a reaction that contains 

rings and chirality. In the form of text presentation, the length of its SMILES sequence 

is longer than that of other reactions (Fig. 5(a) and (b)). With such long SMILES, the 

model become more possible to be confused, allowing the improper characters to ap-

pear in its prediction. Notwithstanding such complex SMILES sequence, the molecule-

pretrained-Mass model captures the feature of it and produces a correct product 

SMILES, with the aid of knowledge of 1 billion various molecular SMILES strings. 

The second significant improvement is in the chirality which is ordinary in the re-

action prediction. As one of important components of organic chemistry, the chirality 

adds additional stress and difficulties in the reaction prediction process. Especially in 

the small-scale reaction, the lack of corresponding knowledge makes data-driven model 

more prone to chirality error. What's more, the complex transformation between reac-

tant and product SMILES may increase the risk of chirality mistake. However, this 

problem can be alleviated by introducing mass molecular chiral knowledge.  

In the Fig. 6(a), both predictions follow the migratory rule of Baeyer-Villiger reac-

tion. However, the baseline model mistakes a configuration of a carbon (marked with 

orange) in the product and gives (1S,3S,3aS,3a1R,6aR,11bR)-1-hydroxy-10-methoxy-

3,3a1-dimethyl-2,3,3a,3a1,4,6a,7,11b-octahydrodibenzo[de,g]chromen-5(1H)-one as 

product. In contrast, the molecule-pretrained-Mass model successfully predicts the con-

figuration of this carbon atom. 

To intuitively demonstrate the power of chirality compounds to the small-scale re-

action prediction, we further calculate the percentage of this type improvement in the  



Figure 6. Chirality errors that occur in baseline 

model but not in molecule-pretrained-Mass 

model. (a) is a Baeyer-Villiger reaction, (b) is a 

Heck reaction and (c) is a Sharpless asymmetric 

epoxidation reaction.  

Figure 7. Carbon number errors that occur in 

baseline model but not in molecule-pretrained-

Mass model. (a) is a Baeyer-Villiger reaction, (b) 

is a Heck reaction and (c) is a Sharpless asym-

metric epoxidation reaction.

 

total enhancement in accuracy. Interestingly, this type of improvement can account for 

66.7% in the improved accuracy of the Sharpless asymmetric epoxidation reaction. This 

case can be attributed to its unique characteristic of this reaction: chirality changes. In 

the Sharpless asymmetric epoxidation reaction, the enantiomer of the product 2,3- 
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epoxy alcohol is determined by the optical property of tartrate ester. Therefore, predict-

ing a correct product of this reaction demands models to obtain a deep insight into ste-

reochemistry. Thanks to the support of chirality compounds from the tremendous mo-

lecular dataset, the molecule-pretrained-Mass model achieves a better performance, 

which is different the baseline model that trapped in the lack of chirality information. 

Take the Fig. 6(c) as an example, the molecule-pretrained-Mass model successful pre-

dict the product of (E)-3-methyl-5-(3,4,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-

2-yl) pent-2-en-1-ol in the in the presence of L-(+)-diethyl tartrate. However, the base-

line model doesn't recognize the decisive effect of this reagent and give a prediction 

with incorrect chemical configuration 

The last is an illustration of the improvement in counting carbon number of com-

pounds. This error often occurs in a reaction containing complex or large structures. 

The multiple carbon atoms are included in such structure, causing models become la-

bored in keeping the numbers of those atoms in mind. In our work, the molecule-pre-

trained-Mass model is more sensitive to the numbers of carbon atoms in a compound. 

Since the molecule-pretrained-Mass model have trained vast diverse compound struc-

tures, this model gains a better mathematical ability for counting the carbon number in 

a reaction. 

The Fig. 7 shows examples of different reactions that the baseline model counts 

carbon number wrong but the molecule-pretrained-Mass model predicts right. Take the 

Fig. 7 (a) as an example, a hexatomic ring of reactant (3S,7S,9S,9aR)-5-(benzyloxy)-

7-(((tert-butyldiphenylsilyl) oxy) methyl)-3,6,9-trimethyl-2,3,7,8,9,9a-hexahydro-1H-
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phenalene-4-carbaldehyde is incorrectly predicted to a five ring by the baseline model. 

In addition, this model adds a carbon atom in the reactant (E)-7-((tert-butyldiphenylsilyl) 

oxy)-9-(trimethylsilyl) non-2-en-8-yn-1-ol (Fig. 7(c)). Conversely, the molecule-pre-

trained-Mass model can remember the carbon numbers of those complex structure and 

accurately predicts corresponding products. 

Furthermore, the improvement of counting carbon number is very remarkable in 

the task of predicting heck reaction. This improvement can account for 21.8% of the 

overall growth in accuracy. The reactants of this reaction type commonly contain mul-

tiple or large ring structure, which means that models need to have a good memory on 

the constituents of those reactants. The structure knowledge from our molecular dataset, 

can assists the molecule-pretrained-Mass model in remembering the carbon atoms of a 

Heck reaction. An example of how the molecular structure knowledge benefits our 

model is shown in the Fig. 7(b). The molecule-pretrained-Mass model accurately pre-

dicts the product methyl (E)-3-(4,6-dimethyl-3-oxo-2,3-dihydro-1H-inden-5-yl) acry-

late, when given the reactants methyl acrylate and 6-bromo-5,7-dimethyl-2,3-dihydro-

1H-inden-1-one. 

4.2 The improvement in specific chemical challenges 

Having analyze the improvement of the molecule-pretrained-Mass model in gen-

eral errors, we next to shows the advantage of molecular information in some specific 

chemical challenges of different reactions. 

The first chemical challenge is the group migration in the Baeyer-Villiger reaction. 

In this rearrangement reaction, the migratory capacity of group can impact the 
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Figure 8. The group migration errors that occur in baseline model but not in molecule-pretrained-Mass 

model.  

regiochemistry. By means of delivering the functional group information of compounds 

to downstream reaction prediction, the molecule-pretrained-Mass model is superior to 

the baseline model. The first example (Fig. 8(a)) is a transformation from (R)-2-(1,1-

difluoro-2-oxo-2-phenylethyl)-2-(4-methoxy-phenyl) indolin-3-one to phenyl (R)-2,2-

difluoro-2-(2-(4-methoxyphenyl)-3-oxoindolin-2-yl)-acetate. However, the baseline 

model seems to not have a fully understanding of the characteristic of Baeyer–Villiger 

reaction and mistakes that (R)-difluoro(2-(4-methoxyphenyl)-3-oxoindolin-2-yl) me-

thyl benzoate is the product of this reaction. In contrast, the molecule-pretrained-Mass 

model successfully recognizes the correct migration group of a reactant containing 

complex ring constructure in Fig. 8(b) and gives correct product 

(5aR,5bS,7aS,8S,10aS,10bR,12aR)-8-hydroxy-5a,7a-dimethylhexadecahydro-3H-cy-

clopenta [5,6] naphtho [2,1-c] oxepin-3-one. 

Furthermore, we calculate the ratio of migration group improvement in the total 

growth for further showing the advantage of introducing molecules that stores various 

functional groups. The 25.0% improvement reveals that the chemical group information  



21 

 

 

Figure 9. The stereochemistry error that occurs in baseline model but not in molecule-pretrained-Mass 

model.  

is beneficial to recognize the migratory aptitude of groups. 

We next to discuss the improvement in the Heck reaction after bringing in a large 

amount of molecular information. The stereoselectivity is one of chemical traits of this 

reaction. In general, the product of heck reaction prefers to be E- isomerism that is more 

thermodynamic stable. However, the lack of relevant information hampers data-driven 

models to predict an appropriate isomerism of products.  

An example is displayed in Fig. 9. Because of the large ring structure of 4-iodo-

1,1'-biphenyl, the product of this reaction tends to be tert-butyl (E)-3-([1,1'-biphenyl]-

4-yl) acrylate. The baseline model not take the effect of [1,1'-biphenyl]-4-yl group into 

the consideration and the wrong product called tert-butyl (Z)-3-([1,1'-biphenyl]-4-yl) 

acrylate is given by this model. 

It's inevitable that those errors we mentioned appear in the reaction prediction. 

Nevertheless, the application of self-supervised pretraining with plentiful molecules 

can significantly minimize the occurrence of these general mistakes. The molecular in-

formation can not only reduce the frequency of general errors such SMILES 



22 

 

invalidation, but also be helpful to address some specific chemical challenges of differ-

ent reactions. By making comparisons between the molecule-pretrained-Mass and base-

line model in different downstream tasks, the universal applicability of our method in 

small-scale reaction prediction is fully demonstrated. 

4.3 The Visualization of TMAP in different reactions 

Each of these reactions has its own characteristics and we adopt a dimensionality re-

duction algorithm called TMAP for further proving the difference between them. Be-

longing to same type form a cluster of reaction which is separate from other types. The 

approach highlights different reaction clusters by color encoding. For example, the clus-  

Figure 10. TMAP of reactions. The Heck reactions are color coded by yellow, the Sharpless asymmetric 

epoxidation reactions are color coded by orange, the Baeyer-Villiger reactions are color coded by purple. 
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ter is labeled with yellow in the bottom of the picture, showing that those reactions are 

Sharpless asymmetric epoxidation reactions. However, the cluster of Baeyer-Villiger  

marked with purple is in the upper left of this picture. Obviously, those two reaction 

types are successfully distinguished by TMAP. With the visualization of TMAP, the 

different reactions applied in our work can be classified, showing that our model is not 

merely used for dealing with a specific small-scale reaction prediction problem. 

5 Conclusion 

In our work, we adopt the self-supervised molecular pretraining to absorb correspond-

ing knowledge from 1 billion molecules and deliver this information to three small-

scale reactions prediction. With the aid of the self-supervised molecular pretraining, our 

model's performance increased by 5.7%, 10.8%, 4.8% on average in Baeyer-Villiger, 

Heck and Sharpless asymmetric epoxidation reactions, respectively. More importantly, 

the molecule-pretrained-Mass model not only has a better under-standing on general 

prediction challenge such as SMILES and chirality, but also gains more comprehension 

about some specific chemical feature of different small-scale reaction prediction. It 

should be clearly mentioned that our method can combine with other strategies such 

data augmentation for addressing the small-scale reaction prediction. In other words, 

our method is a complement rather than an alternative, and the synergy between our 

method and other applications may offer a strong boost to deal with small-scale reaction. 
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