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Quantum chemists have recorded a huge number of data points which standard quantum me-
chanics cannot interpret. Many-Worlds quantum mechanics can. Many-Worlds quantum mechanics
differs from standard quantum mechanics because in Many-Worlds, the wave function is a relative
density of universes in the multiverse amplitude rather than a probability amplitude. In Many-
Worlds, the Born frequencies are approached rather than given a priori. Thus in Many-Worlds, the
rate of approach to the final frequencies can be calculated and compared with observation. This is
a new type of reaction rate. I show how to use Many-Worlds to analyze the breakup of Br2. Such
analysis will experimentally test Many-Worlds fermionic and time-dependent quantum mechanics.

Quantum chemists are throwing away important data
([11], [8]) because standard quantum mechanics does not
allow their interpretation. Many-Worlds quantum me-
chanics ([3],[5]) can interpret this data. Standard quan-
tum mechanics and Many-Worlds quantum mechanics
are neither mathematically nor experimentally equivalent
because they differ on the meaning of the wave function
ψ. By analyzing the unused data, quantum chemists can
also make a major contribution to understanding basic
reality by confirming the existence of the Many-Worlds.
The last time chemistry made a central contribution to
physics was in 1925, when Pauli introduced the exclu-
sion principle in order to explain the periodic table [2],
and many physicists think that chemistry is merely ap-
plied quantum mechanics. It is time chemists once again
show physicists that chemistry can establish theories of
physics.

I shall use Many-Worlds quantum mechanics to ana-
lyze a completely new form of reaction rate, a reaction
rate whose existence has been hidden sy standard quan-
tum mechanical analysis.

I shall start by showing that the Schrödoger equation
is nothing but the mathematically consistent form of the
Hamilton-Jacobi equation of classical mechanics, which
is:
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where S is the action. The vector ~x refers all the coor-
dinates of all the particles, there being ni particles for
each mass mi. A particle with mass mi has a configura-

tion space trajectory tangent to ~∇iS/mi. There are an
uncountable infinity of such trajectories.

In standard H-J theory, only one such trajectory is
held to exist, but the equation, taken seriously [6], as-
serts the existence of all the trajectories. Taking the
equation seriously means that a relative number density
R2 of trajectories can be defined, squared to ensure num-
ber density is non-negative, and “relative” because un-
countability means if we label a countable number, we
can change the number labeled by any factor a without
changing the physics. Labeling a countable number al-

low measurements of relative density change, which is
what the experiments proposed here will do. It is well-
known in fluid mechanics [12] that such relative density
comparisons are possible only if the trajectories are con-
served. Also, if trajectories were to disappear, it would
mean that evolution past the disappearance point would
not be defined, a breakdown in determinism. For both
reasons, the density of trajectories must be conserved [9]:
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Note that (2) is invariant under R2 → aR2.
If the potential is attractive, the trajectories will bend

toward one another on each side of the potential cen-
ter, causing a breakdown in both (1) and (2). Maxwell
solved a similar equation breakdown by adding a term;
we should do the same. The derivative in (1) causes the
singularity, so try subtracting ∇2

iR (linear in R, other-
wise we get another nonlinearlty; subtract to cancel). We
must however enforce density relativity by dividing by R:
−∇2

iR/R. To make sure this cancels the problem in the

derivative, generalize to −
∑N
i=1(1/2mi)∇2

iR/R. Finally,
get the units consistent by multiplying by a constant, call
it ~2, with units of action-squared. The term to add to

the potential in (1) is thus −
∑N
i=1(~2/2mi)∇2

iR/R

Defining ψ ≡ ReiS/~, the two equations (1) with the
new term and (2) can be written as a single equation:
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which, because it is linear, has no singularities. Equa-
tion (3) thus is the mathematically consistent form of the
Hamilton-Jacobi equation. It is of course the Schrödinger
equation. Notice however that the above derivation
leaves us no choice in choosing the meaning of ψ: it is
necessarily a relative density of trajectories (worlds or
universes) amplitude, not a probability amplitude. Sim-
ilarly, the derivation tells us what ~ is: the strength of
interaction between the worlds. It also tells us what a
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“classical” world is: a trajectory along which the other
worlds can be ignored. This can occur only if ∇2R = 0,
which has R = constant as the only bounded regular
solution. In particular, if V (~x, t) = 0, the classical tra-
jectories are the plane waves, not minimal uncertainty
wave packets. Many-Worlds quantum mechanics is thus
more general that standard quantum mechanics, because
the wave function need not be an element in a Hilbert
space, which a plane wave is not. Finally, the derivation
tells us why the equations of physics are quantized: to
prevent singularities from arising in the laboratory.

The Many-Worlds meaning of ψ entails that the Born
frequencies are approached in the limit of an infinite num-
ber of experiments [9], [10].

The rate of convergence to the final Born frequency
pattern is given by the Berry-Esseen Theorem [4] which
applied to QM is

∣∣∣∣∣
[∑l(∆V )

k=1 Nk
N

]
−
[∫

∆V
|ψ(~x)|2 d~x∫

V
|ψ(~x)|2 d~x

]∣∣∣∣∣
≤ 1√

N

(
3 +
√

10

6
√

2π

)
×

∑i,j

(∫
V
|xij − µij |3|ψ(~x)|2 d~x

) (∫
V
|ψ(~x)|2 d~x

)1/2(∑
i,j

∫
V

(xij − µij)2|ψ(~x)|2 d~x
)3/2


(4)

First divide the total three-dimensional region V into
k bins. When there are N total electrons detected, there
will be Nk electrons in the kth bin. If we add the num-
ber of electrons in all the bins up to l(∆V ), there will

be
∑l(∆V )
k=1 Nk in these bins, and the three-dimensional

volume occupied by these bins will be ∆V . If there are
m electrons generating the observed pattern, there will
be 3m coordinates for the electrons, three spatial coordi-
nates for each of the electrons. The vector ~x thus denotes
~x = (x1, x2, . . . , x3m). Thus in the last line of (4), the
index i labels the electrons, and j labels the spatial po-
sition in rectangular coordinates x, y, z of the electrons,
The mean µij of the density ψ(~x) is given by

µij =

∫
V

xij |ψ(x1, x2, . . . , x3m)|2d3mx = µj (5)

where the integration is once again over the entire volume
where an electron might be, in general all space R3. (In
formula (4), d3mx is written d~x.) The jth spatial coordi-
nate of the ith electron is written xij . The last equality

in (5) follows from the total antisymmetry of ψ under
the interchange of particles: the electrons are identical.
(Thus formula (4) can be simplified, but I have expressed
it as above to make clear the physical basis.) The count-
ing of the bins must begin at bin most distance from the

FIG. 1: Double Slit Diffraction Pattern by Electrons. The
four photographs show the build-up of a double slit electron
interference pattern. There are 7, 209, 1004, and 6235 elec-
trons detected on the screen in (b)-(e) respectively. (Figure
taken from [1].)
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data is not available in three dimensions, but only in 2-D
projection (as suggested in Figure 2), then the 2-D l(∆V )
bin should be constructed of the entire ∆V along the line

of sight. The Berry-Esseen constant
(
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)
≈ 0.40973

is the known lower bound [13], but the actual constant
may be larger, up to 0.5606, 37% larger [7] (it is conjec-
tured that the constant is as given in (4), but this has not
been proven to date). Based on the double slit analysis
[10], I do not expect this uncertainty to matter. Note
that the uncertainty is less in the one-dimensional case.
The double slit inequality in [10] is simpler than inequal-
ity (4), which generalizes the single particle inequality in
[10] to m fermions. In Figure 2, I describe how the two
inequalities can be applied to test the Many-Worlds time
dependent Schrödinger equation.

I hope quantum chemists will test inequality (4).
Chemistry should once again be establishing fundamen-
tal physical law.
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