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Scikit-Mol is a open-source toolkit that aims to bridge the gap between two well-established toolkits, RDKit and 
Scikit-Learn, in order to provide a simple interface for building cheminformatics models. By leveraging the 
strengths of both RDKit and Scikit-Learn, Scikit-Mol provides a powerful platform for creating predictive 
modeling in drug discovery and materials design. Unlike other toolkits that often integrate both chemistry and 
machine learning, Scikit-Mol rather aims to be a simple bridge between the two, reducing the maintenance effort
required to keep up with changes and new features in e.g. Scikit-Learn. A simple example of Scikit-Mol's 
functionality is provided, demonstrating its compatibility with Scikit-Learn pipelines. Overall, Scikit-Mol 
provides a useful and flexible package for building self-contained and self-documented cheminformatics models 
with minimal maintenance required.

Introduction

Building machine learning models from molecular datasets plays
a vital role in predictive modelling for drug discovery and
materials design.[1] It enables the estimation of molecule
properties at the design stage, which can aid in the prioritization
and filtering of virtual datasets. Recently, predictive models have
also been employed to guide de novo generative algorithms for
designing molecules with desirable properties.[2] Therefore, it is
not surprising that several toolkits and frameworks have been
proposed to facilitate this process. These toolkits have different
focuses, strengths, and levels of popularity, as evidenced in Table
1.

Two widely used projects are Scikit-Learn[3] and RDKit[4]. The
former aims to be a Python/Numpy-based machine learning
library, while the latter specializes in cheminformatics
calculations and processing, although it also offers some machine learning models. RDKit is a general-purpose toolkit 
for cheminformatics, with a well-supported interface in Python, and Scikit-Learn is a general-purpose machine-learning
framework for Python, with numerous machine learning models and utilities for dimensionality reduction, clustering, or
building predictive models.

The Open Drug Discovery Toolkit (ODDT) is a modular toolkit that combines existing open-source toolkits such as 
RDKit and Scikit-Learn, making it easier to calculate descriptors such as protein-ligand fingerprints and build scoring 

models of protein-ligand information.[5] Scikit-Chem
delivers a more pythonic interface to RDKit 
molecular objects and functionality, but it appears 
largely unmaintained, with the last code commit made
in 2020, and the majority from 2016.[6] DeepChem is
a framework that aims to provide a framework for 
doing deep learning in chemistry.[7] PySMILESUtils 
is a specialized package that augments, tokenizes, and
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Figure 1: The Scikit-Mol logo draws inspiration from 
the two prominent open-source projects that are 
integrated and linked.
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vectorizes SMILES strings[8] for use with deep learning models, with the purpose of building cheminformatics models.
[9] Although it does not appear to be widely used, it was recently featured and used in a paper by Jürgen Schmidhuber 
and colleagues.[10] OpenChem is a deep learning toolkit for Computational Chemistry with a PyTorch[11] backend.
[12] It handles various vectorizations and provides deep learning models. However, the latest commit was made two 
years ago, except for the License, which was updated last year.

A new project that seems ambitious is the Oloren Chemengine, which aims to provide tools for creating a state-of-the-
art molecular property prediction engine.[13] It supports various molecular formats, descriptor calculations, and deep 
learning embeddings and offers numerous models. The code currently appears to be rising in popularity and is 
developing fast.

Table 1: Example cheminformatics and machine learning projects, data collected March 2023

Project Year released (estimated) Google
Scholar

Citations

GitHub
Stars

GitHub Contributers

RDKit[4] 2006 N/A 2000 155

Scikit-Learn[3] 2007 70717 53400 2610

Open Drug Discovery 
Toolkit (ODDT)[5]

2015 129 316 10

Scikit-Chem[6] 2016 N/A 57 3

DeepChem[7] 2017 20 4200 152

PySMILESUtils[9] 2017 2 48 5

OpenChem[12] 2020 37 506 2

Scikit-Mol 2022 N/A 22 7

OlorenChemEngine[13] 2022 0 77 5

So why do we need another toolkit? Why Scikit-Mol? While some of the toolkits mentioned above, such as RDKit and 
Scikit-Learn, aim to be general-purpose with each focusing on their respective domains, they are highly successful in 
their own right. Other toolkits try to integrate both chemistry and machine/deep learning into a single framework, often 
tailored to the specific needs of the authors. However, this approach can lead to a lot of maintenance effort as the 
underlying toolkits evolve and develop. For example, when new models become available in Scikit-Learn, a new 
wrapper may need to be written to include them in the framework, or if PyTorch receives updates with potential API 
changes, a major update may be required. Consequently, some projects become unmaintained and stale, moreover as 
their main developers may move on to new positions after the project has served its purpose in a PhD or post-doc 
project.

Scikit-Mol, on the other hand, aims to be a relatively simple bridge between two already successful and established 
open-source toolkits, RDKit and Scikit-Learn, both with proven continuous impact and support. It provides support for 
building simple and largely self-documented picklable models. By bridging these two successful open-source projects, 
the project becomes less dependent on updates in other projects that necessitate code maintenance. For instance, a new 
Scikit-Learn machine learning model is likely to be supported without any code changes in Scikit-Mol. Our hope is to 
create a relevant and helpful package that can remain useful, flexible, and relevant with a minimum of maintenance 
needed.

A simple Scikit-Mol example

Figure 2 provides a simple example that demonstrates the package's primary use case and objective. The fingerprint 
transformers are Scikit-Learn compatible and can be integrated into Scikit-Learn pipelines within the Scikit-Learn 
framework. Once the pipeline is created and trained on existing data, the predictor is self-contained, without the need 
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for external feature calculation. Instead, the input is in a standard molecular information format, specifically SMILES 
strings (assuming they are RDKit-parseable). The pipeline is serializable and easily pickled and unpickled, as well as 
self-documented with easily inspectable parameters. This approach avoids potential uncertainty or misunderstandings 
about the fingerprint size, radius, and type, should the model later be needed. If  imports, print statements, and in-
function call newlines are disregarded, a molecular predictive model that uses SMILES strings as input can be created 
and fitted in just two lines of Python code.

Installation

The tagged versions of the code from GitHub are automatically updated on the Python Package Index and can be easily 
installed in a Python environment via pip. To install Scikit-Mol, simply run the command: pip install scikit-

mol. You can use Conda or virtualenv environments.

Implementation

Scikit-Mol provides a range of classes that subclass the Scikit-Learn transformer mixin and adhere to the requirements 
and API of Scikit-Learn. Most notably, the transformer classes have a .transform method that takes an iterable (e.g.,

List, NumPy[14] array, or Pandas[15] series) and transforms the members into a new list or array of similar length. For 
example, the MorganFingerprintTransformer will transform a list of RDKit molecular objects into a dense NumPy array
that can be directly used in other transformers, scalers, or models from Scikit-Learn.

There are several requirements for a Scikit-Mol class:

• It must subclass BaseEstimator and TransformerMixin from Scikit-Learn.

• Parameters used in __init__() must be keywords with a default value and be set as equally named 

properties on the object.
• __init__() should only be used to set properties. The object must be reconfigurable by changing the 

properties directly or by using the set_params method. Thus, no logic, input sanitation, or other 
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Figure 2: A simple example of the tight integration between Scikit-Mol  and Scikit-Learn. Assuming
data is available as a list of RDKit parsable SMILES strings (smiles_list) and a list of properties 
(mol_property_list), a self-contained, serializable and self-documented predictor is easily created.
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manipulation should be done in the __init__ method, as this would interfere with the expectations of the

.set_params methods used by other classes of Scikit-Learn.

• The class must have a transform method that takes data and returns the transformed data. The transform
method must, for Scikit-Learn compatibility, accept a second optional argument for the y-data, even though it 
is not used or returned.

Full notes on subclass requirements are available in the Scikit-Learn documentation for developers (https://scikit-
learn.org/stable/developers/develop.html).

The classes are created around different available RDKit fingerprints and descriptors, but we have grouped the count 
and bit-based versions of the fingerprints, which can be configured at object instantiation. An overview of the 
implemented fingerprints and classes can be seen in Table 2.

We have strived to keep the keyword arguments close to the original RDKit options for the fingerprint functions. 
Conflicts have been resolved via properties. For example, for the RDKit fingerprint, the size of the dense arrays in the 
hashed fingerprints is determined via the fpSize keyword, whereas for the Morgan, atompair, and topological torsion 

fingerprints, they are set via the nBits keyword. Thus, the RDKitFingerprint class uses a property setter for the 

fpSize property to instead set the nBits property on the object, which is then used by the abstract class for 

preparation of the dense array.

Table 2: Currently available transformers

Fingerprints Module

AtomPair scikit_mol.fingerprints.AtomPairFingerprintTransformer

AvalonFP scikit_mol.fingerprints.AvalonFingerprintTransformer

MACCSKeys scikit_mol.fingerprints.MACCSKeysFingerprintTransformer

MHFPFingerprint scikit_mol.fingerprints.MHFingerprintTransformer

Morgan scikit_mol.fingerprints.MorganFingerprintTransformer

RDKitFP scikit_mol.fingerprints.RDKitFingerprintTransformer

SECFPMol scikit_mol.fingerprints.SECFingerprintTransformer

TopologicalTorsion scikit_mol.fingerprints.TopologicalTorsionFingerprintTransformer

Descriptors

Molecular Descriptors scikit_mol.descriptors.MolecularDescriptorTransformer

Standardization

Based on 
rdMolStandardize

scikit_mol.standardizer.Standardizer

Conversions

Smiles to RDKit Mol scikit_mol.conversions.SmilesToMol

The MolecularDescriptorTransformer is a re-packaging of the MolecularDescriptorCalculator from RDKit which can be
configured with a list of the desired descriptors. Additionally, for input standardization purposes, there is a class which 
implements a basic standardization routine based on RDKit's rdMolStandardize module. This transforms the provided 
RDKit mol objects into uncharged parent molecules. 
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One possible weakness of the Scikit-Learn pipelines and transformers is that they expect valid input. As a transformer 
class cannot manipulate both the input features, X, and the target values, y, at the same time, a transformer class for 
preprocessing or filtering away, e.g., unsanitizable and unparsable SMILES on-the-fly cannot be created. This could 
lead to unwanted effects and hidden errors in both model-building and prediction. Instead, a pre-sanitization class is 
provided in the utilities module, which can help filter dataframes or SMILES lists into sanitizable and unsanitizable 
groups for inspection.

Parallel transformation
Many modern computers have multiple processors, allowing for parallel execution of the Scikit-Mol transformers. The 
communication of the objects with child threads is implemented by recreating the transformer object in the child 
process. Instead of pickling the object itself to be sent to the child process, information on the transformer class and the 
parameter settings of the object is sent and used to recreate a clone of the object in the child process. Some of the 
fingerprints and descriptors use instantiated RDKit objects that interface with C++ backends to transform molecule 
objects. In this case, it was deemed safer to recreate these objects from scratch rather than serialize an object that may 
contain pointers to C++ objects in memory.

However, the creation of child processes differs on various platforms. By default, Linux systems use the fork method, 
while Windows and Mac use the spawn method. Mac can be set to use fork, but this is not available on Windows 
systems. The fork method uses copy-on-change, which allows child processes to directly access objects in the parent 
process's scope without copying them. This reduces both the computational and memory overhead of large read-only 
datasets. In contrast, the spawn process requires the main thread to be rerun in the child processes, which unfortunately 
prevents direct usage of the transformers in parallel mode in Jupyter notebooks on Windows platforms and on Mac in 
the default configurations.

Figure 3 illustrates the speedups that can be achieved for descriptor calculation using the Desc2DTransformer on a 
workstation with 32 cores (16 physical) using a dataset of 7228 small molecule binders to the serotonin transporter 
(Genesymbol SLC6A4).[16] As the dataset size and the number of cores used increase, the calculation becomes faster 
compared to single-threaded performance. When using 16 cores with the full dataset, the calculation only takes 7% of 
the time taken by a single thread, which is equivalent to a 14-fold speedup. However, for other fingerprint calculations 
with parallel execution, the time taken may be longer. Figure 4 shows an example with the 
MorganFingerprintTransformer, where only the largest datasets show a moderate increase in calculation performance.

Generally, the faster the fingerprint calculation itself, the larger the dataset needs to be for parallelism to be worthwhile, 
as illustrated in the plot in Figure 5. Only the largest datasets (>10,000 samples) would make it worthwhile to 
parallelize Morgan, Atompairs, and Topological Torsions. SECfingerprint, MACCS keys, and RDKitFP are intermediate
and would benefit from parallelism when the dataset size is larger, say >500. Descriptors, on the other hand, benefit 
almost immediately, even for the smallest datasets (>100 samples).
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Figure 3: Speedup of descriptor calculation using parallel calculation on different dataset sizes of 
a dataset of 7228 small molecule binders to the serotonin transporter (Genesymbol SLC6A4) using 
a workstation with 32 CPUs (16 physical cores)

Figure 4: Speedup of Morgan fingerprint calculation using parallel calculation on different dataset
sizes of a dataset of 7228 small molecule binders to the serotonin transporter (Genesymbol 
SLC6A4) using a workstation with 32 CPUs (16 physical cores) 
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Documentation

The Scikit-Mol package offers extensive documentation, including several notebooks that illustrate various use-cases of
the transformers, such as integration in pipelines, hyperparameter optimization, and standardization. These notebooks 
are available at the repository (https://github.com/EBjerrum/scikit-mol/tree/main/notebooks). Additionally, the classes 
themselves are well-documented via docstrings that can be accessed in interactive Python through the help() function.

Conclusion

In conclusion, Scikit-Mol is a powerful software package that seamlessly integrates RDKit molecular featurization with 
Scikit-Learn. By leveraging the strengths of these open-source projects, Scikit-Mol provides a simple, yet 
comprehensive solution for the development of molecular predictors. We believe that by avoiding the creation of a 
standalone package and instead building on top of well-established resources, Scikit-Mol will remain useful, flexible, 
and relevant for years to come.
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Figure 5: Relationship between parallel performance and the calculation of features of a single 
molecule.
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