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Abstract

Protein-drug interactions play important roles in many biological processes and thera-

peutics. Prediction of the active binding site of a protein helps discover and optimise

these interactions leading to the design of better ligand molecules. The tertiary struc-

ture of a protein determines the binding sites available to the drug molecule. A quick

and accurate prediction of the binding site from sequence alone without utilising the

three-dimensional structure is challenging. Deep Learning has been used in a variety

of biochemical tasks and has been hugely successful. In this paper, a Residual Neu-

ral Network (leveraging skip connections) is implemented to predict a protein's most

active binding site. An Annotated Database of Druggable Binding Sites from the Pro-

tein DataBank, sc-PDB, is used for training the network. Features extracted from

the Multiple Sequence Alignments (MSAs) of the protein generated using DeepMSA,

such as Position-Speci�c Scoring Matrix (PSSM), Secondary Structure (SS3), and Rel-

ative Solvent Accessibility (RSA), are provided as input to the network. A weighted

binary cross-entropy loss function is used to counter the substantial imbalance in the
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two classes of binding and non-binding residues. The network performs very well on

single-chain proteins, providing a pocket that has good interactions with a ligand.

Introduction

The rapid speed of sequencing attained with modern DNA sequencing technology has been

instrumental in sequencing complete DNA sequences, which leads to faster sequencing of pro-

teins. Although there have been improvements in the determination of the three-dimensional

protein structure by techniques such as X-ray Crystallography, NMR Spectroscopy and Cryo-

Electron Microscopy, the gap between the number of known protein sequences (214,406,399

UniProt sequences as of May 2021),1 and the number of known structures (177,910 PDBs

as of May 2021)2 3 is large. Proteins perform a vast array of functions within organisms, and

the tertiary structure of a protein can provide important clues about these functions.

In drug design, new drugs are designed based on a biological target such as a protein.

Identi�cation of the potential active binding site of a protein is an essential step in drug

design. Predicting the binding site of a protein, based on the amino acid sequence is a

challenging problem and is helpful to identify potential binding residues before the three-

dimensional structure becomes available. Ligand binding site prediction methods can be

classi�ed into four groups: 3D structure-based, template similarity-based, traditional ma-

chine learning-based and deep learning-based prediction methods.

Three-dimensional structure-based methods assume that most small ligand bindings oc-

cur in cavities on protein surfaces because large interfaces have a high a�nity. Hence, these

methods locate the binding site by searching for spatial geometry or energy features (by

placing probes) in protein structures. SITEHOUND4 uses a carbon and phosphate probe

inside a grid that covers the entire protein. The grid points with higher interaction energies

are clustered and determine the binding residues. CURPOCKET5 is a spatial geometric

measurement method that computes the curvature distribution of the protein surface and
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identi�es clusters of concave regions. Some other methods include CASTp,6 LIGSITE,7 VIS-

CANA,8 Fpocket,9 Patch-Surfer2.0.10 While 3D structure-based methods have been widely

used, they depend on various factors such as the resolution of the structure determination

method, the presence or absence of ligand groups, and external molecules.

Template similarity-based methods do not consider proteins as independent entities but

evolved from structurally, functionally or sequentially similar proteins. S-SITE and TM-

SITE11 employ the Needleman-Wunsch algorithm to align the query protein to each of the

proteins in the BioLip12 database and selects similar sequences according to the alignment.

The binding residues of the aligned proteins, which occur more frequently, are considered

the binding site. Methods such as ConSurf,13 FINDSITE,14 3DLigandSite,15 FunFOLD,16

COFACTOR,17 employ template-similarity.

Traditional machine learning-based methods build an analytical model based on pro-

tein data to identify patterns and structural similarities. 3D structure-based and template

similarity-based methods complement each other well. Machine learning is used to integrate

the information of both methods and apply mathematical functions to improve prediction

accuracy. P2RANK18 19 uses a random forest algorithm to predict ligandibility scores (the

ability of a ligand to bind to speci�c points on the protein) across the entire protein surface.

The points with high scores are then clustered into a single binding pocket. Many methods

have started using Machine Learning in the recent past. ConCavity,20 MetaPocket,21 RF-

Score,22 NsitePred,23 NNSCORE24,25 LigandRFs,26 COACH-D27 and Taba28 are some of

them.

Deep Learning is a sub�eld of machine learning based on arti�cial neural networks with

feature learning. When a deep learning network is fed large amounts of data, it can auto-

matically discover the representations needed for feature detection or classi�cation. Deep

learning has been hugely successful in the general areas of drug design such as binding a�nity

predictions,29,30 protein contact map predictions,31,32 and protein-structure predictions.33�35

Deep learning-based methods like DeepSite,36 and Kalasanty37 model binding site predic-
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tion as an image processing problem. They voxelize the protein 3D structure into small

grids and calculate the speci�c properties of each grid. These values are then used to train

a deep convolutional neural network that predicts whether a grid belongs to a binding site.

DeepCSeqSite38 is a template-based method that uses seven characteristics (position-speci�c

scoring matrix, relative solvent accessibility, secondary structure, dihedral angle, conserva-

tion scores, residue type and positional embeddings) of each residue to create a feature

map, which is then used as an input to a convolutional neural network. DeepPocket39 is

a structure-based method that uses 3D Convolutional Neural Networks to generate a list

of pocket probabilities and a segmentation model to elucidate shapes for the top-ranked

pockets.

In this paper, a deep residual neural network (ResNet)40 is trained to make the binary

prediction of whether an amino acid residue of the sequence belongs to the primary binding

site or not (BiRDS). The Multiple Sequence Alignment (MSA) of the protein sequence is

calculated, and the feature map is extracted from the MSAs. BiRDS is trained on the feature

map of all proteins in the training dataset, using a weighted binary cross-entropy loss. The

network outputs the �nal probabilities, which are converted to binary outputs. The network

does very well in recognising the binding sites of individual protein chains.

Methods

Dataset

For the training and validation of the model, the sc-PDB41 dataset (v. 2017) is used.

The database takes samples from the Protein Data bank2,42 and creates prepared protein

structures and the most ligandable binding site. Thus each sample in the dataset contains

the three-dimensional structure of one ligand, one protein, and one site, all stored in mol2

format.

4



Typically, the complete structure of a protein is unavailable due to missing residues, and

hence the entire sequence of the protein is obtained from RCSB3 website*. A one-to-one

mapping of the amino acids in the sequence to the amino acids in the protein mol2 �le is

required to know which amino acid belongs to a binding site. This mapping is done by

�rst extracting the protein sequence from the 3D structure. Next, the Needleman-Wunsch

dynamic programming algorithm43 is used to align the sequence extracted from the structure

�le to the downloaded RCSB sequence. This algorithm is implemented using a modi�ed

version of Zhanglab's NW-Align program.44 The protein structure �le is then reindexed,

based on this alignment, to match the indexing of the RCSB sequence. This way, the

speci�c binding residues can be labelled in the RCSB sequence.

The training set consists of 17,594 PDB structures with 28,959 sequences (9519 unique se-

quences), originating from 1240 organisms, with the most abundant being humans(28.26%).

The dataset was diverse and contained proteins from 1996 di�erent PFAM families and 856

PFAM clans.

Table 1: Summary of the dataset used for training and testing

Nprot Nbr Nnbr Pbr(%)
Train 15,860 589,329 8,725,043 6.33
Test 2,464 86,230 1,345,646 6.02

Nprot - Number of proteins Nbr - Total number of binding residues

Nnbr - Total number of non-binding residues Pbr(%) - Percentage of binding residues

This data is split into 10-folds (each containing 1586 structures), based on Uniprot ID,

precisely like how Stepniewska-Dziubinska et al. did in their study.37 This split ensures no

data leakage between the validation and training set by putting all structures of a single

protein in the same fold.

A separate test set, SC6K, is constructed using all PDBs from 2018 onwards, till 28th

February 2020. All PDBs having at least one ligand, during this period, are run through
*Some PDBs in the dataset were obsoleted, and hence the sequences were manually tracked on RCSB,

and the corresponding sequences were used. A list of obsoleted PDBs is provided in Supporting information
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pdbconv from the IChem Toolkit45 to generate a dataset with the same �lters and site

selection as sc-PDB.41 The test set consists of 2,274 PDB structures with 3,434 sequences

(1889 unique sequences), originating from 548 organisms, with the most abundant being

humans (23.76%). The test set contained proteins from 882 PFAM families and 452 PFAM

clans.

Features

There are 9519 unique protein sequences in the sc-PDB41 dataset and 1889 unique protein

sequences in the test set. The MSAs are generated for these sequences using the method

described below and stored in PSICOV46 .aln format. The features are similar to the ones

used by DeepCSeqSite38 and are commonly used in sequence-based predictions: One-hot

encoding and Positional embeddings are extracted from the sequence alone. Position Speci�c

Scoring Matrix, Information Content, Secondary Structure and Solvent Accessibility are

extracted from the generated high-quality MSAs.

Figure 1: Process used for generating the feature map of BiRDS framework. The MSAs of
the individual chains of a protein are generated using DeepMSA, which are used to generate
the features of the protein chains. These features are concatenated to form the feature map
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MSA Generation

Collections of multiple homologous sequences (called Multiple Sequence Alignments or

MSAs) can provide critical information for modelling the structure and function of unknown

proteins. DeepMSA47 is an open-source method for sensitive MSA construction, which has

homologous sequences and alignments created from multiple sources of databases through

complementary hidden Markov model algorithms.

The search is done in 2 stages. In stage 1, the query sequence is searched against the

UniClust3048 database using HHBlits from HH-suite49 (v2.0.16). If the number of e�ective

sequences is < 128, Stage 2 is performed where the query sequence is searched against the

Uniref5050 database using JackHMMER from HMMER51 (v3.1b2). Full-length sequences

are extracted from the JackHMMER raw hits and converted into a custom HHBlits format

database. HHBlits is applied to jump-start the search from Stage 1 sequence MSA against

this custom database.

One-Hot Encoding and Positional Embeddings

There are 21 amino acids in the vocabulary, 20 standard (labelled in alphabetical order

from 1 to 20), and X (labelled 0, representing non-standard amino acids). The one-hot

encoding (OHE) of an amino acid will be a vector of zeroes of length 21, where the position

of the amino acid in the vocabulary is marked with a one. OHE is used to help the model

di�erentiate between the di�erent types of amino acids. Positional Embeddings (PE) carry

information about the absolute position of the amino acids in the sequence. A simple method

of embedding is used where the position of the jth amino acid is represented by PEj =
j
li
,

where li is the length of the ith chain of the protein.
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Position Speci�c Scoring Matrix and Information Content

Position Speci�c Scoring Matrix (PSSM) is a commonly used representation of patterns

in biological sequences. PSSMs are derived from MSAs using Easel52 and Heiniko� position-

based weights so that similar sequences collectively contributed less to PSSM probabilities

than diverse sequences. The information content (IC) of a PSSM gives an idea about how

di�erent the PSSM is from a uniform distribution. IC is also derived using Easel.

Secondary Structure and Solvent Accessibility

The secondary structure is de�ned by the pattern of hydrogen bonds formed between

the amino hydrogen and carboxyl oxygen atoms in the peptide backbone. It gives an idea

of the three-dimensional structure of the protein. The secondary structural elements are

alpha helices, beta sheets and turns. PSIPRED (v4.0)53 is used to predict the probability

of each state of the 3-state secondary structure (SS3) for every amino acid in the sequence.

The solvent-accessible surface area is the surface area of a biomolecule that is accessible

to a solvent. SOLVPRED from MetaPSICOV 2.054 is used to predict the relative solvent

accessibility (RSA) of every amino acid in the sequence. RSA can be calculated as

RSA = ASA/MaxASA, where ASA is the solvent-accessible surface area, and MaxASA is

the maximum possible solvent accessible surface area for the amino acid residue.

Model

BiRDS Architecture

A Convolutional Neural Network (CNN) is a Deep Learning algorithm that can take an

image as input, assign importance (learnable weights and biases) to various aspects/objects

in the image, and di�erentiate one from the other. When multiple CNN layers are stacked

on top of each other, Deep Neural Networks (DNNs) are formed. DNNs are di�cult to train

because of the vanishing gradient problem where the gradients become so small that the
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network's weights do not change, preventing further training. With the introduction of skip

connections (shortcuts to jump over some layers) in CNNs, the vanishing gradient problem is

avoided. CNNs with skip connections are known as Residual Neural Networks or ResNets.40

ResNets use representation learning to extract the most important features for classi�cation.

They can also model long-range interactions very well and hence have been very successful in

the �eld of Computational Natural Sciences.33 The architecture of the deep Residual Neural

Network used here is shown in Figure 2.

Each sample protein in the dataset consists of one or more protein sequences. Let the

length of the sequences be l1, ..., ln. Features are generated for each sequence in the protein

(ordered by chain ID in PDB), leading to multiple vectors of shape [li, 47] for the ith sequence.

These generated features are combined through simple concatenation, giving a �nal feature

vector of shape [L, 47] as input to the model, where L = l1 + ...+ ln.

Figure 2: Architecture of the deep learning model, BiRDS

The feature vector is passed through the �rst level, consisting of a 1D convolutional layer

with 128 �lters, each �lter size being 7, a batch normalisation layer and the ReLU (Recti�ed

Linear Unit) activation function. The input is padded with zeroes to ensure that the length

of the output vector remains the same. The �lters of the convolution layer stride across
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the length of the protein, considering the features of the three amino acids before, the three

amino acids after and the current amino acid (totalling 7). This stride along the input allows

for the extraction of the required information of the current amino acid based on the features

of nearby amino acids.

The following few levels consist of 2 blocks called BasicBlocks. A BasicBlock consists of

a 1D convolutional layer, a batch normalisation layer, a ReLU activation function, a second

1D convolutional layer, a second batch normalisation layer, and a �nal ReLU activation.

The skip connection is made after the �nal ReLU activation, where the initial input to the

BasicBlock is added to the output of the �nal ReLU activation. Usually, the input and

output size of the �rst BasicBlock do not match, and hence there is an up/down-sampling

layer that ensures that the input has the same shape as that of the output. The output from

the previous level passes through the �rst BasicBlock, which has an up/down-sampling layer

and then goes through the second BasicBlock. In the proposed architecture, the number of

�lters used at each level goes from 128 → 256 → 128 → 64 → 32, with the �lter size being

5 for every convolution.

The last two levels contain a simple, linear, fully connected arti�cial neural network. The

last but one level has a LeakyReLU activation function along with a dropout as well. The

last level has a Sigmoid function to ensure that the model's output is between [0, 1]. The �nal

output of the model is a vector of size L (length of the protein), denoting the probabilities

of a residue being a part of the binding site.

Loss Function

For model training, the loss function is a weighted binary cross-entropy and is given by

L(ŷ, y) = −(αŷ log(y) + (1 − ŷ) log(1 − y)), where ŷ is the vector of true labels of whether

an amino acid belongs to the binding site or not, y is the model output of probabilities of a

residue belonging to a binding site, α is the weight that is assigned to the rare class.
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The main problem in this classi�cation task is the substantial imbalance in the two

classes of binding and non-binding residues. As shown in Table 1, the percentage of binding

residues is only around 6%. Hence, α is used to penalise the model more heavily if it

incorrectly predicts binding residues. α is calculated on the �y for every batch of inputs as

α = nnbr

nbr
, where nnbr is the total number of non-binding residues in the batch and nbr is the

total number of binding residues in the batch.

Evaluation Metrics

Confusion Matrix

A confusion matrix is a table that allows for the visualisation of the performance of a super-

vised learning algorithm. The following terminologies can be de�ned in the binary classi�-

cation of a residue as a binding residue (BR) or non-binding residue (NBR).

� True Positive (TP): Number of BRs predicted correctly as BRs.

� True Negative (TN): Number of NBRs predicted correctly as NBRs.

� False Positive (FP): Number of NBRs predicted incorrectly as BRs.

� False Negative (FN): Number of BRs predicted incorrectly as NBRs.

The following metrics can be derived from the confusion matrix

Accuracy: ACC = TP+TN
TP+TN+FP+FN

Precision: PPV = TP
TP+FP

Recall: TPR = TP
TP+FN

F1 score: F1 =
2TP

2TP+FP+FN

Matthews Correlation Coe�cient: MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)
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MCC

The Matthew's Correlation varies from [−1,+1], with +1 representing a perfect prediction,

0 representing no better than a random prediction and -1 representing total disagreement

between the prediction and the observation.

DCC

DCC is the distance between the centre of the predicted binding pocket and the centre of

the actual binding pocket. It is commonly used for evaluating 3D-structure based models.

The success rate of DCC is de�ned as the fraction of predictions below a given threshold.

Predicted pockets with DCC below 4Å are considered to be correctly located.

Implementation

The model is implemented using PyTorch Lightning,55 which is a wrapper on the popular

open-source deep-learning library, PyTorch.56 The model is trained in batches using an

Adam Optimizer with the ReduceLROnPlateau scheduler, maximising the MCC on the

validation set. A learning rate warm-up is used, where the learning rate is gradually increased

to the actual learning rate during the �rst epoch. The implementation can be found at

https://github.com/devalab/BiRDS.

Results and Discussion

The sc-PDB41 dataset was split into ten folds, and ten models with the same architecture

were trained. One fold formed the validation set, and the remaining folds formed the training

set for each of the models. The validation results are provided in Table 2, along with the

confusion matrix in Figure 3
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Table 2: Validation results of all 10 trained models and test results

Dataset ACC(%) PPV(%) TPR(%) F1(%) MCC(%)
Fold 1 92.58 48.64 70.65 57.62 54.83
Fold 2 92.18 46.80 67.29 55.20 52.08
Fold 3 92.94 44.85 69.37 54.48 52.27
Fold 4 91.28 39.62 65.73 49.44 46.72
Fold 5 91.74 46.33 73.11 56.72 54.07
Fold 6 92.19 47.16 69.70 56.25 53.34
Fold 7 91.90 45.45 69.55 54.98 52.13
Fold 8 92.52 47.58 68.16 56.04 53.10
Fold 9 92.06 41.86 69.69 52.31 50.14
Fold 10 92.08 44.54 68.88 54.10 51.41
Test 94.05 50.46 67.45 57.73 55.27

Figure 3: Sum of confusion matrices of the 10 models on their corresponding validation set
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For testing, the ten trained models are run on the test set. An amino acid belongs to the

binding site for the consensus algorithm if �ve or more models predict the same. The test

results are also provided in Table 2, along with the confusion matrix in Figure 4

Figure 4: Confusion matrix on the test set after averaging the predictions of the 10 models

The model predictions were mapped back to the available 3D structures of proteins for

the calculation of DCC. Figure 5 denotes the cross-validation results. The deep learning

model is the same across all ten splits of training and validation datasets. The success rate

of the models varies based on the fold that is used for validation. It ranges from 33% to 49%

success rate when the DCC threshold is less than 4Å. Figure 6 denotes the test result. The

predictions have a 40% success rate when the DCC threshold is less than 4Å, meaning that

for 40% of the test data, the model has predicted the binding site such that the centre of the

predicted binding site is within 4Å of the centre of the true binding site. As the threshold

of DCC increases, the success rate also naturally increases. One should note that even if the

model predicts the whole binding site correctly and misses out on a couple of residues or

predicts more residues, the centre of the predicted binding site will change signi�cantly.
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Figure 5: Success rate plot for various DCC thresholds of the 10 models on their
corresponding validation set

Figure 6: Success rate plot for various DCC thresholds on the test set after averaging the
predictions of the 10 models

15



On their test set, DeepSite, a 3D structure-based deep learning model36 achieved around

40% success rate. Given that our model uses only the amino acid sequence information, its

performance is commendable. Even though the test sets are not the same, it still gives an

idea of how well the current model performs.

All the currently available methods for predicting the binding site of a protein, based

on sequence, predict the site only for a speci�c set of ligands, while our model predicts the

most ligandable binding site irrespective of the ligand. Hence, there is no available method

of comparison with our model for the sequence-based prediction of binding residues on the

sc-PDB41 dataset.

As a simple way to test the e�ectiveness of our model against DeepCSeqSite's model, we

followed two approaches:

1. Run the trained DeepCSeqSite model on our test set

2. Reimplement DeepCSeqSite model architecture, train on our dataset, and then test

Both approaches failed to provide good results, with approach one providing an MCC

score of 0.05 and approach two providing an MCC score of 0.1. The failure in approach one

could be due to the di�erence in the method for generating the MSAs.

A variety of deep learning models such as Complementary GANs, stacked BiLSTMs, and

TAPE protein embeddings were used for training as a means to improve the predictions.

Features, such as backbone angles, secondary structure, solvent accessibility and contact

number, generated using SPOT-1D31 were also tried as features. None of them provided

any signi�cant improvement over vanilla ResNets and simple features. Instead, they added

unnecessary, additional computational costs.

Some case studies were undertaken to show that the model performs as expected, but

the metrics do not rate it well due to limitations of the dataset. The aggregated predic-

tions of the models on the test set were mapped back to the three-dimensional structure of

the protein-ligand complex to see how good the predictions are. The 3-D structures were
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generated using 3Dmol.js.57 In the following examples, the colour red indicates an incorrect

prediction of the amino acid as a binding residue. Blue indicates an amino acid that is a

binding residue but was not predicted as binding by the model. Green indicates an amino

acid that was correctly predicted as binding.

In Figure 7, it looks like the model is mispredicting everything for 5YMX,58 but it is

predicting another binding site of the protein. The sc-PDB41 dataset was generated through

a series of �lters, and the residues surrounding the most buried ligand was selected to be the

most ligandable binding site. This selection, unfortunately, is a �aw of the dataset and the

method used for predictions. There is no right way to cover cases like these where the model

needs to be penalised less when it predicts a binding site that is not the most ligandable

binding site. Hence, the evaluation metrics used will generally give an abysmal score for

such cases.

Figure 7: 5YMX - The model seems to be mispredicting the actual binding site (in blue),
but is in fact, predicting another binding site of the protein (in red)

Figure 8 shows 6HU9,59 where the model predicts individual binding sites of two proteins

with the same sequence, but it �nds it di�cult to predict the binding site created due to the

interaction between the two proteins. This may be due to the way the features are generated.

It is not easy to generate features of the protein since the MSAs are generated for individual

chains of a protein, not providing any information about the interaction between the chains.
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Due to the fewer samples containing a binding site between the interaction of protein chains,

the model �nds it di�cult to learn the same.

Figure 8: 6HU9 - The model is able to predict the individual binding site of the protein (in
red), but not the interaction binding site (in blue)

Figure 9 shows 6PF6,60 where the model predicts the binding site with good accuracy.

It can be seen that it predicts most of the residues around the binding site and also a

couple more just outside the binding site. Since the two chains of the protein have the same

sequence, the model predicts identical binding residues for both chains. sc-PDB selects only

one binding site as the most active binding site, and therefore, only that site is used for

calculating the metrics. The metrics do not do justice to these types of predictions and score

the model very poorly, even though it is doing very well.
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Figure 9: 6PF6 - The model predicts the binding site correctly, but due to the presence of
the same chains in the protein, it predicts both the binding sites (in green and red)

Conclusion

In this study, a ResNet was used to predict the most active binding site of a protein. The

sc-PDB41 dataset contained data of the most ligandable binding site of a protein. MSAs were

generated for all protein chains in the dataset using DeepMSA, and features such as Position-

Speci�c Scoring Matrix, Secondary Structure and Solvent Accessibility were calculated. A

new test set, SC6K, considering proteins in the last three years, was made using the same

�lters used to create the sc-PDB dataset. The individual features of the protein chains were

concatenated, and BiRDS was trained using 10-fold cross-validation. BiRDS can predict the

binding site of a protein fairly accurately using only the sequence information, although it

fails to predict the binding site formed between protein chains due to limited data. In drug

design, it becomes crucial to determine the pocket where the drug molecule binds with the

protein. BiRDS (our method) can be used for early and quick determination of the binding

site before the availability of the protein structure.

19



Acknowledgement

The authors thank Yashaswi Pathak for being a fruitful part of the project discussions and

Rishal Aggarwal and Akash Gupta for reviewing the manuscript. We acknowledge IHub-

Data, IIIT Hyderabad, for �nancial support.

Supporting Information Available

Supporting Information contains the resolved PDB IDs of the obsoleted PDBs of the train

set and PDB IDs removed from the test set, SC6K, due to preprocessing errors.

References

(1) UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research 2021,

49, D480�D489.

(2) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;

Shindyalov, I. N.; Bourne, P. E. The protein data bank. Nucleic acids research 2000,

28, 235�242.

(3) Burley, S. K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G. V.;

Christie, C. H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J. M., et al. RCSB Protein Data

Bank: powerful new tools for exploring 3D structures of biological macromolecules for

basic and applied research and education in fundamental biology, biomedicine, biotech-

nology, bioengineering and energy sciences. Nucleic acids research 2021, 49, D437�

D451.

(4) Hernandez, M.; Ghersi, D.; Sanchez, R. SITEHOUND-web: a server for ligand binding

site identi�cation in protein structures. Nucleic acids research 2009, 37, W413�W416.

20



(5) Liu, Y.; Grimm, M.; Dai, W.-t.; Hou, M.-c.; Xiao, Z.-X.; Cao, Y. CB-Dock: a web

server for cavity detection-guided protein�ligand blind docking. Acta Pharmacologica

Sinica 2020, 41, 138�144.

(6) Dundas, J.; Ouyang, Z.; Tseng, J.; Binkowski, A.; Turpaz, Y.; Liang, J. CASTp: com-

puted atlas of surface topography of proteins with structural and topographical map-

ping of functionally annotated residues. Nucleic acids research 2006, 34, W116�W118.

(7) Hendlich, M.; Rippmann, F.; Barnickel, G. LIGSITE: automatic and e�cient detection

of potential small molecule-binding sites in proteins. Journal of Molecular Graphics and

Modelling 1997, 15, 359�363.

(8) Amari, S.; Aizawa, M.; Zhang, J.; Fukuzawa, K.; Mochizuki, Y.; Iwasawa, Y.;

Nakata, K.; Chuman, H.; Nakano, T. VISCANA: visualized cluster analysis of protein-

ligand interaction based on the ab initio fragment molecular orbital method for virtual

ligand screening. Journal of Chemical Information and modeling 2006, 46, 221�230.

(9) Le Guilloux, V.; Schmidtke, P.; Tu�ery, P. Fpocket: an open source platform for ligand

pocket detection. BMC bioinformatics 2009, 10, 1�11.

(10) Zhu, X.; Xiong, Y.; Kihara, D. Large-scale binding ligand prediction by improved patch-

based method Patch-Surfer2. 0. Bioinformatics 2015, 31, 707�713.

(11) Yang, J.; Roy, A.; Zhang, Y. Protein�ligand binding site recognition using complemen-

tary binding-speci�c substructure comparison and sequence pro�le alignment. Bioin-

formatics 2013, 29, 2588�2595.

(12) Yang, J.; Roy, A.; Zhang, Y. BioLiP: a semi-manually curated database for biologically

relevant ligand�protein interactions. Nucleic acids research 2012, 41, D1096�D1103.

(13) Glaser, F.; Pupko, T.; Paz, I.; Bell, R. E.; Bechor-Shental, D.; Martz, E.; Ben-Tal, N.

21



ConSurf: identi�cation of functional regions in proteins by surface-mapping of phylo-

genetic information. Bioinformatics 2003, 19, 163�164.

(14) Brylinski, M.; Skolnick, J. A threading-based method (FINDSITE) for ligand-binding

site prediction and functional annotation. Proceedings of the National Academy of sci-

ences 2008, 105, 129�134.

(15) Wass, M. N.; Kelley, L. A.; Sternberg, M. J. 3DLigandSite: predicting ligand-binding

sites using similar structures. Nucleic acids research 2010, 38, W469�W473.

(16) Roche, D. B.; Tetchner, S. J.; McGu�n, L. J. FunFOLD: an improved automated

method for the prediction of ligand binding residues using 3D models of proteins. BMC

bioinformatics 2011, 12, 1�20.

(17) Roy, A.; Zhang, Y. Recognizing protein-ligand binding sites by global structural align-

ment and local geometry re�nement. Structure 2012, 20, 987�997.

(18) Krivák, R.; Hoksza, D. Improving protein-ligand binding site prediction accuracy by

classi�cation of inner pocket points using local features. Journal of cheminformatics

2015, 7, 1�13.

(19) Krivák, R.; Hoksza, D. P2Rank: machine learning based tool for rapid and accurate

prediction of ligand binding sites from protein structure. Journal of cheminformatics

2018, 10, 39.

(20) Capra, J. A.; Laskowski, R. A.; Thornton, J. M.; Singh, M.; Funkhouser, T. A. Pre-

dicting protein ligand binding sites by combining evolutionary sequence conservation

and 3D structure. PLoS Computational Biology 2009, 5, e1000585.

(21) Huang, B. MetaPocket: a meta approach to improve protein ligand binding site pre-

diction. OMICS A Journal of Integrative Biology 2009, 13, 325�330.

22



(22) Ballester, P. J.; Mitchell, J. B. A machine learning approach to predicting protein�

ligand binding a�nity with applications to molecular docking. Bioinformatics 2010,

26, 1169�1175.

(23) Chen, K.; Mizianty, M. J.; Kurgan, L. Prediction and analysis of nucleotide-binding

residues using sequence and sequence-derived structural descriptors. Bioinformatics

2012, 28, 331�341.

(24) Durrant, J. D.; McCammon, J. A. NNScore: a neural-network-based scoring function

for the characterization of protein- ligand complexes. Journal of chemical information

and modeling 2010, 50, 1865�1871.

(25) Durrant, J. D.; McCammon, J. A. NNScore 2.0: a neural-network receptor�ligand

scoring function. Journal of chemical information and modeling 2011, 51, 2897�2903.

(26) Chen, P.; Huang, J. Z.; Gao, X. LigandRFs: random forest ensemble to identify ligand-

binding residues from sequence information alone. BMC bioinformatics. 2014; pp 1�12.

(27) Wu, Q.; Peng, Z.; Zhang, Y.; Yang, J. COACH-D: improved protein�ligand binding

sites prediction with re�ned ligand-binding poses through molecular docking. Nucleic

acids research 2018, 46, W438�W442.

(28) da Silva, A. D.; Bitencourt-Ferreira, G.; de Azevedo Jr, W. F. Taba: A tool to analyze

the binding a�nity. Journal of computational chemistry 2020, 41, 69�73.

(29) Jiménez, J.; Skalic, M.; Martinez-Rosell, G.; De Fabritiis, G. K deep: protein�ligand

absolute binding a�nity prediction via 3d-convolutional neural networks. Journal of

chemical information and modeling 2018, 58, 287�296.

(30) Öztürk, H.; Özgür, A.; Ozkirimli, E. DeepDTA: deep drug�target binding a�nity pre-

diction. Bioinformatics 2018, 34, i821�i829.

23



(31) Hanson, J.; Paliwal, K.; Lit�n, T.; Yang, Y.; Zhou, Y. Accurate prediction of pro-

tein contact maps by coupling residual two-dimensional bidirectional long short-term

memory with convolutional neural networks. Bioinformatics 2018, 34, 4039�4045.

(32) Wang, S.; Sun, S.; Li, Z.; Zhang, R.; Xu, J. Accurate de novo prediction of protein con-

tact map by ultra-deep learning model. PLoS computational biology 2017, 13, e1005324.

(33) Senior, A. W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.;

�ídek, A.; Nelson, A. W.; Bridgland, A., et al. Improved protein structure prediction

using potentials from deep learning. Nature 2020, 577, 706�710.

(34) Li, Y.; Zhang, C.; Bell, E. W.; Yu, D.-J.; Zhang, Y. Ensembling multiple raw coevo-

lutionary features with deep residual neural networks for contact-map prediction in

CASP13. Proteins: Structure, Function, and Bioinformatics 2019, 87, 1082�1091.

(35) Tiwari, A.; Parekh, N. Network-based Machine Learning Approach for Structural Do-

main Identi�cation in Proteins. bioRxiv 2020,

(36) Jiménez, J.; Doerr, S.; Martínez-Rosell, G.; Rose, A. S.; De Fabritiis, G. DeepSite:

protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics

2017, 33, 3036�3042.

(37) Stepniewska-Dziubinska, M. M.; Zielenkiewicz, P.; Siedlecki, P. Improving detection of

protein-ligand binding sites with 3D segmentation. Scienti�c reports 2020, 10, 1�9.

(38) Cui, Y.; Dong, Q.; Hong, D.; Wang, X. Predicting protein-ligand binding residues with

deep convolutional neural networks. BMC bioinformatics 2019, 20, 93.

(39) Aggarwal, R.; Gupta, A.; Chelur, V.; Jawahar, C.; Priyakumar, U. D. DeepPocket:

Ligand Binding Site Detection and Segmentation using 3D Convolutional Neural Net-

works. 2021,

24



(40) He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. Pro-

ceedings of the IEEE conference on computer vision and pattern recognition. 2016; pp

770�778.

(41) Desaphy, J.; Bret, G.; Rognan, D.; Kellenberger, E. sc-PDB: a 3D-database of ligand-

able binding sites�10 years on. Nucleic acids research 2015, 43, D399�D404.

(42) Berman, H.; Henrick, K.; Nakamura, H. Announcing the worldwide protein data bank.

Nature Structural & Molecular Biology 2003, 10, 980�980.

(43) Needleman, S. B.; Wunsch, C. D. A general method applicable to the search for simi-

larities in the amino acid sequence of two proteins. Journal of molecular biology 1970,

48, 443�453.

(44) Zhang, Y. http://zhanglab.ccmb.med.umich.edu/NW-align.

(45) Da Silva, F.; Desaphy, J.; Rognan, D. IChem: A Versatile Toolkit for Detecting, Com-

paring, and Predicting Protein�Ligand Interactions. ChemMedChem 2018, 13, 507�

510.

(46) Jones, D. T.; Buchan, D. W.; Cozzetto, D.; Pontil, M. PSICOV: precise structural

contact prediction using sparse inverse covariance estimation on large multiple sequence

alignments. Bioinformatics 2012, 28, 184�190.

(47) Zhang, C.; Zheng, W.; Mortuza, S.; Li, Y.; Zhang, Y. DeepMSA: constructing deep

multiple sequence alignment to improve contact prediction and fold-recognition for

distant-homology proteins. Bioinformatics 2020, 36, 2105�2112.

(48) Mirdita, M.; von den Driesch, L.; Galiez, C.; Martin, M. J.; Söding, J.; Steinegger, M.

Uniclust databases of clustered and deeply annotated protein sequences and alignments.

Nucleic acids research 2017, 45, D170�D176.

25

http://zhanglab.ccmb.med.umich.edu/NW-align


(49) Remmert, M.; Biegert, A.; Hauser, A.; Söding, J. HHblits: lightning-fast iterative

protein sequence searching by HMM-HMM alignment. Nature methods 2012, 9, 173�

175.

(50) Suzek, B. E.; Wang, Y.; Huang, H.; McGarvey, P. B.; Wu, C. H.; Consortium, U. UniRef

clusters: a comprehensive and scalable alternative for improving sequence similarity

searches. Bioinformatics 2015, 31, 926�932.

(51) Johnson, L. S.; Eddy, S. R.; Portugaly, E. Hidden Markov model speed heuristic and

iterative HMM search procedure. BMC bioinformatics 2010, 11, 431.

(52) Potter, S. C.; Luciani, A.; Eddy, S. R.; Park, Y.; Lopez, R.; Finn, R. D. HMMER web

server: 2018 update. Nucleic acids research 2018, 46, W200�W204.

(53) Jones, D. T. Protein secondary structure prediction based on position-speci�c scoring

matrices. Journal of molecular biology 1999, 292, 195�202.

(54) Jones, D. T.; Singh, T.; Kosciolek, T.; Tetchner, S. MetaPSICOV: combining coevolu-

tion methods for accurate prediction of contacts and long range hydrogen bonding in

proteins. Bioinformatics 2015, 31, 999�1006.

(55) Falcon, W. PyTorch Lightning.GitHub. Note: https://github.com/PyTorchLightning/pytorch-

lightning Cited by 2019, 3 .

(56) Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.;

Lin, Z.; Gimelshein, N.; Antiga, L., et al. Pytorch: An imperative style, high-

performance deep learning library. arXiv preprint arXiv:1912.01703 2019,

(57) Rego, N.; Koes, D. 3Dmol. js: molecular visualization with WebGL. Bioinformatics

2015, 31, 1322�1324.

(58) Galicia, C.; Lhospice, S.; Varela, P. F.; Trapani, S.; Zhang, W.; Navaza, J.; Herrou, J.;

26



Mignot, T.; Cher�ls, J. MglA functions as a three-state GTPase to control movement

reversals of Myxococcus xanthus. Nature communications 2019, 10, 1�12.

(59) Maldonado, M.; Guo, F.; Letts, J. A. Atomic structures of respiratory complex III2,

complex IV, and supercomplex III2-IV from vascular plants. Elife 2021, 10, e62047.

(60) Czyzyk, D.; Valhondo, M.; Deiana, L.; Tirado-Rives, J.; Jorgensen, W.; Anderson, K.

Structure activity relationship towards design of cryptosporidium speci�c thymidylate

synthase inhibitors. European journal of medicinal chemistry 2019, 183, 111673.

27



Graphical TOC Entry

28


