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Transformer models coupled with Simplified Molecular Line Entry System (SMILES) have
recently proven to be a powerful combination for solving challenges in cheminformatics. These
models, however, are often developed specifically for a single application and can be very
resource-intensive to train. In this work we present Chemformer model – a Transformer-
based model which can be quickly applied to both sequence-to-sequence and discriminative
cheminformatics tasks. Additionally, we show that self-supervised pre-training can improve
performance and significantly speed up convergence on downstream tasks. On direct synthesis
and retrosynthesis prediction benchmark datasets we publish state-of-the-art results for top-
1 accuracy. We also improve on existing approaches for a molecular optimisation task and
show that Chemformer can optimise on multiple discriminative tasks simultaneously. Models,
datasets and code will be made available after publication.

1 Introduction

Recent years have witnessed an explosion in research applying neural network models to chemin-
formatics tasks. Sequence-to-sequence models, such as the Transformer [1] and models based on
the Recurrent Neural Network (RNN) architecture [2, 3], are well suited to tasks such as direct
reaction prediction, retrosynthesis prediction and molecular optimisation. Applying molecules en-
coded using Simplified Molecular Line Entry System (SMILES) [4] to the Transformer model has
produced state-of-the-art results on benchmark datasets for these tasks [5–7]. Transformers have
also been successfully applied to discriminative tasks such as biological activity prediction (virtual
screening) [8] and molecular property prediction (QSAR modelling) [8–14]. Training Transformer
models on SMILES strings, however, can be computationally expensive; a recently proposed model
for direct synthesis prediction requires two days of training [15]. Additionally, separate models
must be built, trained and tuned for each task, increasing the amount of effort required by research
teams.

Self-supervised learning using the Transformer has revolutionised Natural Language Processing
(NLP) in recent years; large language models such as BERT [16], BART [17], GPT [18, 19],
UniLM [20] and T5 [21] have provided significant improvements on key benchmark NLP tasks.
Pre-training these models – training on a large unlabelled dataset of text before fine-tuning on the
dataset of interest – has been shown to improve results on downstream tasks, especially when the
amount of data for fine-tuning is limited. Furthermore, pre-training can also significantly reduce
the amount of time required for fine-tuning [16], thereby reducing computational costs and making
state-of-the-art models more accessible to those with limited computational resources.
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Transfer learning has also recently been shown to improve performance on reaction informatics
tasks [22–27] and, separately, on discriminative tasks [8–10, 14, 28]. However, many of these
approaches pre-train on a task-specific dataset, such as reaction informatics data. It is unclear how
well these models would be able to transfer their knowledge to other domains. Other approaches
make use of the encoder stack of the Transformer only, along with a fully-visible attention mask [8,
9, 11]. This makes it difficult to apply these models to sequence-to-sequence tasks. In one study,
embeddings from a self-supervised Augmented Transformer were used to build QSAR models [29],
but the pre-trained weights were not subsequently fine-tuned.

One model, X-MOL [10], uses a Transformer encoder with a combined fully-visible and autore-
gressive attention mask. This allows the model to be applied to both discriminative and sequence-
to-sequence tasks. However, this is very resource intensive for the latter since the amount of
memory and computation required grows quadratically with the length of the sequence [1]. Ad-
ditionally, X-MOL does not approach pre-training from a language-modelling perspective and it
explores only a single pre-training task.

Taking inspiration from NLP, we aim to address the resource challenges within computational
chemistry by exploiting transfer learning to provide a model which can be quickly applied to di-
verse tasks. The purpose of this work is therefore to use SMILES as a “language for Chemistry” [4]
to provide a common data format on which we then apply Transformer-based language models.
We investigate the ability of self-supervised pre-training on a large dataset of unlabelled molecules
to decrease convergence time for a number of sequence-to-sequence tasks, thereby improving the
results on these tasks when training time is limited. We explore a number of self-supervised
pre-training tasks and model architectures, and quantitatively compare their performance on
both sequence-to-sequence and discriminative downstream tasks. We show that, with the help
of transfer learning, our models can achieve state-of-the-art results on four downstream datasets.
Additionally, we examine the ability of these models to fine-tune on multiple discriminative tasks
simultaneously, further improving cheminformatics research efficiency.

2 Methods

Chemformer is based on the BART language model, which uses both the encoder and decoder
stacks of the Transformer. This makes it very suitable for sequence-to-sequence tasks such as
reaction prediction and molecular optimisation. The BART model can also easily be applied to
discriminative tasks by using only the encoder stack.

The Chemformer models were firstly trained in a self-supervised manner and the learnable
weights were saved. These weights were then loaded separately for each downstream task of
interest and the task-specific fine-tuning procedure took place. Figure 1 provides an overview of
how the pre-training and downstream fine-tuning tasks are applied to the Chemformer model.

In order to investigate the importance of the number of learnable model parameters, we pre-
trained both a base model, Chemformer, and a larger model, Chemformer-Large. The Chemformer
model uses the same hyperparameters as the original Transformer and contains approximately
45 million learnable weights, whereas the Chemformer-Large model expands this to 230 million
weights. Full details of the models can be found in Section 2.4.

2.1 Pre-Training

2.1.1 Dataset

An unlabelled dataset of approximately 100 million SMILES strings was used to pre-train the
models. These molecules were randomly selected from roughly 1.5 billion molecules available
from the publicly accessible ZINC-15 dataset [30] with the following constraints: reactivity set
to reactive, purchasability set to annotated, molecular weight ≤ 500 Daltons and LogP ≤ 5.
Train, validation and test splits were then randomly assigned, with training data taking 99% and
validation and testing each assigned 0.5% of the 100 million molecules.
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Figure 1: Illustration of the pre-training and fine-tuning procedures for downstream tasks.

2.1.2 Procedure

The pre-training procedure begins by converting each molecule in the batch to a non-canonical
SMILES form which corresponds to the given molecule. SMILES strings are then randomly
modified, tokenised and embedded into a sequence of vectors. Sinusoidal positional embeddings [1]
are added before the sequence is passed into the Transformer layers of the model. The modified
sequence is passed to the bidirectional encoder, while the autoregressive decoder is asked to predict
the original SMILES sequence, given the same sequence right-shifted. A fully-connected layer is
applied to the output of the decoder to produce a distribution over the model’s vocabulary and a
cross-entropy loss function is used to train the model.

For the base Chemformer model, we investigated three SMILES modification techniques in this
work: masking, augmentation and a combination of masking and augmentation. Due to resource
constraints, however, the Chemformer-Large model was pre-trained only on the combined task.
Figure 2 illustrates example SMILES strings for all three pre-training tasks. Each of the tasks are
implemented as follows:

• Masking Masking is conducted with the span masking algorithm used by the BART [17]
model – short sequences of tokens within a SMILES string are randomly replaced by a single
<MASK> token.

• Augmentation The augmentation task is conducted similarly to the approach of the hetero-
encoder model [31]; the input to the model is modified by randomly generating another
SMILES string which corresponds to the same molecule as the output. This is done following
the SMILES enumeration technique [32] – permuting the atom order before generating a non-
canonical SMILES form. Unlike many corruption tasks used for pre-training NLP models [16,
17], this task is specific to the SMILES language.
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Figure 2: Comparison of the three pre-training tasks for a caffeine molecule. On the left is the
modified SMILES given to the encoder, and on the right is the original SMILES which we train
the decoder to predict.

• Combined Data for the combined task are created by first augmenting and then masking
each SMILES string. This task can be seen as a method of combining pre-training techniques
for both natural language and chemistry.

2.2 Sequence-to-Sequence Fine Tuning
After pre-training, the models were fine-tuned on downstream datasets. For this work we inves-
tigated three downstream sequence-to-sequence tasks: direct synthesis prediction, retrosynthesis
prediction and molecular optimisation.

2.2.1 Datasets

For the direct synthesis prediction task we made use of the benchmark USPTO-MIT dataset [33],
which contains approximately 470,000 reactions originally extracted from patents [34]. We evalu-
ated performance on both USPTO Mixed, where reactants and reagents are assorted arbitrarily
within the input string, and USPTO Separated, where reactants are reagents are split by a sep-
arator token. The USPTO-50K [35] dataset, which contains approximately 50,000 reactions, was
used to benchmark Chemformer on the retrosynthesis prediction task.

The dataset [6] for the molecular optimisation task consists of a set of matched molecular
pairs (MMPs) extracted from ChEMBL [36], together with the property changes of the MMPs.
Three molecular properties: logD, solubility and clearance, are optimised simultaneously. Property
values for each molecule were predicted from models built using internal, experimental data. The
property prediction models were used for both the construction of training data, and also for the
evaluation of the generated molecules during testing. The dataset includes 160,831 train, 17,871
validation and 19,856 test MMPs. Full details of the dataset and the models used to generate
molecular property predictions can be found in [6].

2.2.2 Procedure

Sequence-to-sequence fine-tuning is analogous to pre-training; inputs are passed to the encoder,
right-shifted outputs along with the memory embeddings from the encoder are applied to the
decoder, and the decoder output embeddings are passed through a fully-connected layer to produce
a distribution over the model’s vocabulary. A cross-entropy loss function is used to train the model.

For the direct reaction prediction task, the model is given the reactants and asked to predict
the products, with the reverse being true for the retrosynthesis prediction task. Fine-tuning
for the molecular optimisation task is performed by prefixing the molecule to be optimised with
optimisation tokens. For example, if we wish the solubility to be increased, the clearance to be
decreased, and the LogD to be left unchanged, we encode this into an optimisation using tokens
in the model’s vocabulary. The model is then trained to predict the MMP output molecule given
in the dataset.
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In addition to our novel pre-training tasks, we also introduce a novel SMILES augmentation
scheme for downstream tasks which uses a tunable augmentation probability. Given a canonical
input-output pair of SMILES from the training set, (sin, sout) ∈ Dtrain, we randomly augment sin
and sout independently with probability paug. For sequence-to-sequence tasks we use paug = 0.5
throughout, unless stated otherwise. Since the augmentations do not need to be pre-computed,
we can augment on-the-fly, similarly to a previous study [37]. Thus, this approach has three key
advantages. Firstly, the augmentation probability can be tuned. Secondly, only the canonical
data needs to be stored, rather than every augmented version of the dataset. And, thirdly, the
model sees a different form of the same data every epoch, regardless of the number of epochs; we
conjecture that this could improve the model’s ability to generalise to unseen data.

2.3 Discriminative Fine-Tuning
In addition to sequence-to-sequence fine-tuning, we also examined Chemformer’s application to
discriminative tasks. In particular, we fine-tuned on molecular property prediction and biological
activity tasks. Since we aim to improve efficiency in cheminformatics research, and since there
should be significant synergy between tasks, we trained the models to optimise for multiple tasks
simultaneously – an approach known as “multi-task learning” [21, 38]. Specifically, we trained
molecular property models to solve three property prediction tasks simultaneously, and trained
biological activity models to predict activity for 133 genes simultaneously, rather than having
separate models for each task.

2.3.1 Datasets

The Chemformer model was applied to three molecular property datasets from MoleculeNet [39]:
ESOL, FreeSolvation and Lipophilicity, containing 1128, 642 and 4200 molecules, respectively.
Since we are interested in optimising the model for all three tasks simultaneously, we ensure that
all molecules which appear in more than one dataset appear only in the train set. After splitting
the remaining molecules we end up with train, validation and test splits corresponding to 75%, 10%
and 15% of the dataset, respectively. We generated 20 different random splits in these proportions.
The data was pre-processed by scaling the values in the training set to be between 0 and 1. Each of
the three datasets was scaled independently and the same scaling functions are used for validation
and testing. Due to their size, the ESOL and FreeSolvation datasets were upsampled by factors
of 2 and 3, respectively, during training.

The biological activity data were downloaded from the Exascale Compound Activity Prediction
Engine (ExCAPE) database [40]. The data consists of the standardized, log-transformed activity
values (pXC50 values) for chemical compounds against an array of protein targets. We selected
the subset of genes from the dataset which had biological activity readings for more than 1200
compounds. Additionally, we selected only genes which obtained a regression coefficient over 0.4
when a ridge regression model was applied to the compounds’ Morgan fingerprints with radius 2.
The full list of the 133 included genes can be found in the supplementary information. The final
dataset contains 312,202 molecules with biological activity readings. Molecules for each gene were
randomly split into train, validation and test splits of 70%, 5% and 25%, respectively.

2.3.2 Procedure

Unlike sequence-to-sequence tasks, discriminative tasks only make use of the encoder stack of
the model. Firstly, the tokenised SMILES string of a molecule is prefixed with one or more
task tokens – gene symbols for biological activity prediction, or molecular properties for QSAR
modelling. This sequence of tokens is passed through the model’s embedding layer, followed by the
model’s encoder. The output vector for each task token is then passed through a small multi-layer
perceptron (MLP) head to produce either a class distribution vector or a single output number
for classification and regression tasks, respectively. Since we only investigated regression tasks in
this work, a mean squared error loss function is applied to the MLP output for each task token.
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Chemformer Chemformer-Large
Model Dimension 512 1024
Feed-Forward 2048 4096
Layers 6 8
Attention Heads 8 16
Parameters 45M 230M

Table 1: A comparison of the differences in hyperparameters and number of learnable weights
between the two Chemformer model sizes we investigated.

We augmented the input SMILES string for discriminative tasks with paug = 1.0 and, as with
sequence-to-sequence tasks, this augmentation was performed on-the-fly during training.

For each high-level task – biological activity prediction and molecular property prediction –
Chemformer models were trained simultaneously on all subtasks. The models were then evaluated
separately on each subtask, to facilitate easy comparison. Property prediction models were trained
on all 20 dataset splits and an average of the evaluation results was taken. Hyperparameters were
tuned separately for each Chemformer model, and, to combat overfitting, the size (number of
layers, attention heads, model dimension and feed-forward dimension) of the randomly initialised
model was also tuned. The full details of the tuned hyperparameters for each Chemformer model
can be found in the supplementary information.

In addition to the four different base Chemformer models, we also trained Support Vector
Regression (SVR) models as comparison baselines. 2048-bit Morgan fingerprints with radius 2
were calculated for each molecule, and an SVR with a Tanimoto kernel was then applied. The
SVR models were tuned, trained and evaluated on each subtask separately.

2.4 Implementation Details
The Chemformer model was implemented using the PyTorch [41] and PyTorch Lightning [42]
frameworks. We used the Transformer in the pre-norm layout – Layer Normalisation [43] is applied
before the attention and feedforward blocks – and the GELU activation function [44] throughout.
A comparison of the size of the Chemformer and Chemformer-Large models is shown in Table 1.

Each model was pre-trained for 1,000,000 steps using 4 NVIDIA V100 GPUs with a batch size
of 128 molecules per GPU. The original Transformer learning rate schedule was used, along with
8000 linear warm-up steps. Pre-training took approximately 2.5 days for Chemformer and 6 days
for Chemformer-Large. The one-cycle learning rate schedule [45] was used for fine-tuning, for both
sequence-to-sequence and discriminative tasks. Additionally, we used the Adam optimiser [46] with
parameters β1 = 0.9 and β2 = 0.999 for both pre-training and fine-tuning on all tasks.

Chemformer’s vocabulary is constructed by applying regular expression matching (we use the
same regex as the Molecular Transformer [15]) to the canonical SMILES of the molecules in the
ChEMBL 27 [36]. There are 523 tokens in the vocabulary in total, including a large number of
unused tokens which can be replaced with task-specific tokens, as required. Tokenisation and
augmentation of SMILES was performed by extending the PySMILESUtils framework [47].

3 Results

We evaluate the performance of Chemformer and Chemformer-Large models on three downstream
sequence-to-sequence tasks: direct synthesis prediction, retrosynthesis prediction and molecular
optimisation. Additionally, we investigate Chemformer’s ability to train simultaneously on multi-
ple downstream discriminative tasks. Specifically, we look at three molecular property prediction
tasks and biological activity prediction for 133 genes.
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Model Sequence-to-Sequence (%) Discriminative (Mean R2)
Direct Retro Mol Opt Mol Prop Bioactivity

Random 91.1 50.8 73.1 0.680 0.480
Mask 91.2 52.1 75.0 0.843 0.603
Augment 91.1 51.8 74.3 0.848 0.606
Combined 91.8 53.6 72.2 0.857 0.631

Table 2: Results on downstream tasks for a selection of pre-training approaches when fine-tuning
is limited to no more than 12 hours. The Random model uses randomly initialised weights rather
than weights learned during pre-training. For the molecular optimisation task we measure the
percentage of generated molecules which fulfill the desirable properties. For discriminative datasets
we report the mean R2 over all of the subtasks.

3.1 Effects of Transfer Learning

3.1.1 Improvement in Performance

Table 2 compares the downstream results for the three different pre-trained models, as well as
a model with randomly initialised weights (no pre-training) on a selection of the tasks. The
training time is limited to no more than 12 hours for each task. In particular, this corresponds
to: 40 epochs for direct reaction prediction on the USPTO Separated dataset; 500 epochs for
retrosynthesis prediction on the USPTO-50K dataset; 100 epochs for the molecular optimisation
task; 150 epochs of simultaneous fine-tuning on the property prediction tasks; and the same for the
biological activity tasks. For sequence-to-sequence tasks, output SMILES are generated using the
beam search algorithm with a beam width of 10, and the top-1 prediction is used for evaluation.

From Table 2 we can see that transfer learning provides a significant improvement; pre-trained
models beat the randomly initialised baseline for all datasets. We can also see that the Chem-
former model pre-trained on the combined task is the strongest performer. Other than molecular
optimisation, the combined model performs best on all tasks. For molecular optimisation, the
model pre-trained using only masking is the best performer, while the combined model is unable
to beat the model with no pre-training. We discuss possible explanations for this in more detail
in Section 4.

Examining the molecular property prediction tasks in more detail, we continue to see that
transfer learning provides a performance boost. Table 3 outlines the results of Chemformer models
on these tasks. The most significant increase in performance from transfer learning is witnessed
on the lipophilicity task; the performance boost on the ESOL and free solvation datasets is more
modest. The table also compares the Chemformer models against an SVR baseline, trained as
described in Section 2. The SVR is able to beat the randomly initialised Chemformer model on
the lipophilicity task, but is otherwise outperformed by all other models across all tasks. The
combined model outperforms all others, including the SVR, on all three tasks.

Model Lipophilicity ESOL Free Solvation
R2 RMSE R2 RMSE R2 RMSE

SVR 0.617 0.746 0.766 1.03 0.754 2.11
Random 0.398 0.946 0.855 0.803 0.786 1.89
Mask 0.736 0.621 0.903 0.657 0.889 1.37
Augment 0.738 0.618 0.904 0.652 0.901 1.29
Combined 0.754 0.598 0.910 0.633 0.908 1.23

Table 3: R2 (higher is better) and RMSE (lower is better) downstream molecular property predic-
tion results for Chemformer models pre-trained on different tasks, as well as an SVR baseline. The
Random model uses randomly initialised weights rather than weights learned during pre-training.
Each model was fine-tuned on all three molecular property subtasks simultaneously.
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Figure 3: Comparison of the performance of Chemformer models with that of an SVR baseline
across 133 bioactivity prediction tasks. Each dot corresponds to the bioactivity prediction result
for a single gene. If the dot is above the dashed line the Chemformer model is a better predictor
for that gene.

Figure 3 provides a more detailed view of the results on the biological activity prediction tasks.
The performance of each Chemformer model is compared to that of the SVR for each of the 133
tasks. While there is a lot of variation in the results for each gene – some tasks are challenging
irrespective of the model – the improvement provided by transfer learning is clear. All three
pre-trained models perform significantly better than the random initialised model, and, again,
the model pre-trained on the combined task is the strongest performer. However, despite the
improvement provided by pre-training, none of the Chemformer models are able to beat the SVR
baseline on average across all tasks. The full set of results on the 133 tasks can be found in the
supplementary information.

3.1.2 Decreased Convergence Time

In addition to stronger performance on downstream tasks, transfer learning can also significantly
speed up training convergence. Figure 4 illustrates the considerable effect pre-training can have
on performance and convergence speed for the retrosynthesis task. Firstly, the Chemformer model
pre-trained on the combined task is able to outperform the existing SMILES-based state-of-the-
art, the Augmented Transformer, with 20 epochs of fine-tuning. This corresponds to fewer than
30 minutes of training on one GPU. In addition to this, fine-tuning for 50 epochs provides a better
top-1 result than 500 epochs of training from randomly initialised weights – an order of magnitude
difference in training time.

3.2 Comparison with Existing Approaches
Allowing the model to fine-tune for longer than 12 hours improves the results further for most tasks;
in Table 4 we compare existing direct reaction prediction implementations against Chemformer
and Chemformer-Large, fine-tuned for 150 and 100 epochs, respectively. Additionally, Table 5
compares the Chemformer model, fine-tuned for 500 epochs, and the Chemformer-Large model,
fine-tuned for 200 epochs, against existing SMILES- and graph-based approaches on the USPTO-
50K retrosynthesis dataset. All Chemformer models were pre-trained on the combined pre-training
task.
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Figure 4: Comparison of the convergence on the USPTO-50K dataset of the randomly initialised
Chemformer model with that of the model pre-trained on the combined task. Each point shows
the result on the test dataset after a full training cycle for the specified number of epochs.

From the results on the forward prediction datasets and the retrosynthesis prediction dataset
we can see that both Chemformer model sizes are able to outperform the existing SMILES-based
state-of-the-art on top-1 results. Chemformer-Large is also able to outperform the best graph-
based models on top-1 predictions. However, the tables also show that existing methods predict
significantly more reactions correctly for top-5 and top-10 evaluation. We examine this effect in
more detail in Section 4.

In Table 6 we compare the downstream molecular optimisation performance of a number of
pre-trained Chemformer models with existing implementations. In particular, we examine the
performance of all three pre-training tasks with base Chemformer models, after fine-tuning for
100 epochs, along with a Chemformer-Large model (pre-trained on the combined task) fine-tuned
for 80 epochs. For the Transformer [6] and Transformer-R [7] benchmarks we use the published
models, but examine only top-1 performance. From the table we can see that, while all Chemformer
models perform strongly in comparison to existing benchmarks, the smaller Chemformer models
outperform the larger on the percentage of desirable molecules generated. The Transformer-R
model, however, generates more molecules which meet the MMP-33 requirement. This metric
measures the percentage of generated molecules for which, firstly, a single transformation has
been applied to the starting molecule, and, secondly, the ratio between the number of heavy
atoms (non-hydrogen atoms) in the transformation and the number of heavy atoms in the entire
molecule is not greater than 0.33. All models we examined generated a very high proportion of
valid molecules, but the Chemformer models generated slightly more than existing approaches.

Model Mixed Separated
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

Mol Transformer [15] 88.6 94.2 - 90.4 95.3 -
Aug Transformer [5] 90.0 95.8 96.2 91.1 96.3 96.7
Chemformer 90.9 93.8 94.1 92.5 94.9 95.1
Chemformer-Large 91.3 93.7 94.0 92.8 94.9 95.0

Table 4: Percentage of reactions predicted correctly in the forward direction from the USPTO
MIT dataset. In the Mixed dataset reactants and reagents are assorted arbitrarily, while in the
Separated dataset they are separated by an otherwise unused token.
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Model Top-1 Top-5 Top-10
SMILES-based
SCROP [48] 43.7 65.2 68.7
Two-Way Transformer [49] 47.1 73.1 76.3
Aug Transformer [5] 48.3 73.4 77.4
Chemformer 53.6 61.1 61.7
Chemformer-Large 54.3 62.3 63.0
Graph-based
MEGAN [50] 48.1 78.4 86.1
GLN [51] 52.5 75.6 83.7
GraphRetro [52] 53.7 72.2 75.5

Table 5: Percentage of retrosynthesis reactions predicted correctly on the USPTO-50K dataset on
a selection of SMILES- and graph-based approaches.

4 Discussion

The downstream results presented in Section 3 show that the Chemformer model can be success-
fully applied to both sequence-to-sequence and discriminative tasks. The results also that transfer
learning can provide a significant boost to downstream performance and convergence speed. With
the exception of the molecular optimisation task, the model pre-trained on the combined task,
outperforms all other Chemformer models, and, in some cases, outperforms the existing state-of-
the-art. This result suggests that valuable chemical information is contained in the weights of the
pre-trained Chemformer model.

4.1 Sequence-to-Sequence Tasks
Downstream results on sequence-to-sequence datasets show that our pre-trained Chemformer mod-
els outperform not only their randomly initialised (no transfer learning) counterparts, but also the
current state-of-the-art models for a number of tasks. Specifically, Chemformer is able to beat
the existing state-of-the-art on top-1 prediction for direct synthesis and retrosynthesis prediction,
and is able to produce more desirable molecules than existing approaches on the molecular opti-
misation task. However, for molecular optimisation, our Chemformer models used beam search
(with a beam width of 10) to generate output molecules while the Transformer and Transformer-R
benchmarks used greedy search. Furthermore, these models contain fewer learnable parameters
than Chemformer and use a different augmentation strategy. The randomly initialised Chem-
former model is able to generate more desirable molecules than the baselines, suggesting that
the performance of these existing models would improve with different sampling or augmentation
techniques, or with more parameters.

While the Chemformer model pre-trained on the combined task performed strongest on the

Model Desirable MMP-33 Valid
Transformer [6] 65.2 96.0 97.3
Transformer-R [7] 70.2 99.0 98.4
Chemformer (Mask) 75.0 97.0 99.9
Chemformer (Augment) 74.3 97.8 99.9
Chemformer (Combined) 72.2 96.0 99.9
Chemformer-Large (Combined) 70.1 94.6 99.9

Table 6: Percentage of top-1 generated molecules which fulfill the desirable properties, are matched
molecular pairs and are valid, for a selection of Chemformer models and existing implementations.
The pre-training tasks for the Chemformer models are shown in brackets.
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(a) Top-1, 5 and 10 molecular accuracy (b) Percentage of replicated molecules

Figure 5: Analysis of the impact of paug, the augmentation probabilty, on performance when
fine-tuning Chemformer on USPTO-50K. The percentage of replicated molecules is determined by
calculating the proportion of molecules in the top-10 which are replicated, and taking an average
over the whole dataset.

reaction informatics tasks, the model pre-trained with only the masking task performs best on
the molecular optimisation dataset. This is a surprising result since, for the combined task, the
model is required to solve both the masking and the augmentation pre-training tasks. One possible
explanation for this is that the combined task model overfits quickly on the molecular optimisation
task. This is supported by the lower performance of the Chemformer-Large model on the same
task. We therefore conjecture that with further hyperparameter tuning the performance of the
combined task model could be improved. In particular, more work is needed to determine the
optimal number of epochs required for fine-tuning.

When comparing the performance on the forward synthesis and retrosynthesis prediction tasks,
we noted that the augmentation approach we employed resulted in stronger top-1 performance,
but that the top-5 and top-10 performance was weaker than existing methods. By analysing the
output of the beam search we found that the proportion of augmented forms of the same molecule
in the beam outputs was significantly larger in the models trained with augmentation than the
model trained without augmentation. Figure 5a shows how the augmentation probability affects
the top-1, top-5 and top-10 molecular accuracy for the USPTO-50K retrosynthesis prediction task.
Fine-tuning with no augmentation provides the lowest top-1 performance but the highest top-5
and top-10 performance. Fine-tuning with paug ∈ {0.25, 0.5, 0.75, 1.0} all lead to comparable top-1
performance, but top-5 and top-10 performance steadily decrease as paug is increased. Figure 5b
provides an explanation for this effect by examining the percentage of the ten beam outputs
that contain an augmented SMILES form of the same reactants. Filling the beam outputs with
augmented forms results in a lower diversity when SMILES are converted back to molecules; this
causes the top-5 and top-10 results to converge towards the top-1. Our augmentation strategy
therefore creates a trade-off between an improvement in top-1 performance with a decrease in
top-5 and top-10.

In order to combat the detrimental effect of augmentation on top-5 and top-10 results the
beam width could be increased significantly. This would essentially counter the reduction in
molecular diversity by sampling more molecules. However, the amount of computation required
scales linearly with the beam width; increasing the beam width from 10 to 50 would require five
times as much computational resource. Alternatively, Levenshtein augmentation [53] could be
used to ensure the input and generated SMILES sequences are similar. This would reduce the
likelihood of many SMILES forms being generated – specifically those which are dissimilar to the
input – therefore improving molecular diversity.
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4.2 Discriminative Tasks
In addition to fine-tuning on sequence-to-sequence tasks, we have also shown that it is possible
to train Chemformer simultaneously on multiple discriminative tasks. For both the molecular
property prediction tasks and the biological activity prediction tasks, the Chemformer model pre-
trained on the combined task shows strong performance in comparison to randomly initialised and
SVR baselines.

While the three pre-trained Chemformer models perform comparably on both sets of discrim-
inative tasks, the randomly initialised model performs significantly worse. A possible explanation
for this is that, without transfer learning, Chemformer overfits quickly on small datasets - the
number of molecules per biological activity prediction task varies from 1241 to 5830, and the
number of molecules per molecular property is no more than 4200. This explanation is supported
by the observation that, for biological activity prediction, the optimal architecture found for the
randomly initialised model used only 6 million learnable parameters, in comparison to almost 20
million for the pre-trained models. The randomly initialised model for property prediction uses
even fewer parameters. Larger randomly initialised models were found to perform worse. These
results suggests that, in small-data regimes, pre-training is crucial for strong performance with
Transformer models on discriminative tasks.

On the molecular property prediction tasks the results show that pre-trained Chemformer
models are able to outperform the SVR baseline. On biological activity prediction, however,
even the best performing Chemformer model, the combined task model, shows marginally lower
performance than the SVR. The SVR models are, however, trained on each activity prediction
task separately; meaning 133 models need to be maintained and productionised, in comparison
with a single Chemformer encoder. The performance of the SVR models may benefit from this
separation, but more work is needed to determine the extent of this performance improvement.
For both sets of discriminative tasks, more experimentation is also required to compare our models
with existing baselines, including the use of additional molecular fingerprinting algorithms.

Previous works [8–13] have also attempted to use Transformers for molecular property predic-
tion. Many of these works publish stronger results than Chemformer on the three MoleculeNet
tasks we investigated. For example, MolBERT publishes RMSEs of 0.531, 0.948 and 0.561 on
ESOL, Free Solvation and Lipophilicity, respectively. However, we do not produce a direct com-
parison of these models with Chemformer for three reasons. Firstly, since we are constrained by
the use of simultaneous fine-tuning, our dataset splits are different. Secondly, we produce a single
model for all tasks, while most existing baselines fine-tune on each task separately. And, finally,
many existing models contain significantly more learnable parameters than Chemformer; the Mol-
BERT model contains approximately 85 million parameters. Further improvements can be made
to the Chemformer model by scaling up the size of the models and the size of the pre-training
dataset. This is something we intend to investigate in future work.

5 Conclusion

In this work we introduced the Chemformer model which makes use of the SMILES language
for application to diverse computational chemistry tasks. We investigated three different self-
supervised pre-training techniques and applied these on a large dataset of unlabelled SMILES.
Finally, we fine-tuned the pre-trained Chemformer models on a selection of downstream tasks and
compared their performance to randomly initialised models and existing benchmarks.

From the fine-tuning results we presented three key conclusions can be drawn. Firstly, the
Chemformer model can be applied to a wide variety of downstream tasks, including both sequence-
to-sequence and discriminative tasks, fairly easily. Secondly, self-supervised pre-training can im-
prove convergence of the Chemformer model on downstream Cheminformatics tasks, and can
therefore significantly improve results on these tasks when training time is limited. Finally, a
combination of transfer learning and our novel augmentation strategy is able to produce state-of-
the-art top-1 results on all downstream sequence-to-sequence tasks we examined.
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Given its ability to quickly fine-tune on both sequence-to-sequence and discriminative chemin-
formatics tasks, the proposed Chemformer model is a significant step towards a generally applicable
deep learning model for computational chemistry.
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