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Abstract 

Wildfires have become the dominant source of particulate matter (PM2.5, < 2.5 µm diameter) leading 

to unhealthy air quality index occurrences in the western United States. Since people mainly shelter 30 

indoors during wildfire smoke events, the infiltration of wildfire PM2.5 into indoor environments is a 

key determinant of human exposure, and is potentially controllable with appropriate awareness, 

infrastructure investment, and public education. Using time-resolved observations outside and 

inside over 1400 buildings from the crowdsourced PurpleAir sensor network in California, we found 

that infiltration ratios (indoor PM2.5 of outdoor origin/outdoor PM2.5) were reduced on average from 35 

0.4 during non-fire days to 0.2 during wildfire days. Even with reduced infiltration, mean indoor 

concentration of PM2.5 nearly tripled during wildfire events, with lower infiltration in newer buildings 

and those utilizing air conditioning or filtration.  

Significance Statement 

Wildfires have become the dominant source of particulate matter in the western United States. 40 

Previous characterizations of exposure to wildfire smoke particles were based mainly on ambient 

concentration of PM2.5. Since people mainly shelter indoors during smoke events, the infiltration of 

wildfire PM2.5 into indoor environments determines exposure. We present analysis of infiltration of 

wildfire PM2.5 into more than 1400 buildings in California using more than 2.4 million sensor-hours 

of data from the PurpleAir low-cost sensor network. Findings reveal that infiltration of PM2.5 during 45 

wildfire days was substantially reduced compared with non-fire days, related to people’s behavioral 

change. These results improve understanding of exposure to wildfire particles and facilitate 

informing the public about effective ways to reduce their exposure. 
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Introduction 

Fine particulate matter (PM2.5) air pollution is the single-largest environmental risk factor for human 

health and death in the United States (US) (1). Wildfires are a major source of PM2.5, and are 

documented to cause adverse respiratory health effects and increased mortality (2). Toxicological 

and epidemiological studies suggest that PM2.5 from wildfires is more harmful to the respiratory 55 

system than equal doses of non-wildfire PM2.5 (3, 4). The number and magnitude of wildfires in the 

western US has increased in recent decades due to climate change and land management (5–7). 

Although the annual mean level of PM2.5 has substantially declined over this period following the 

implementation of extensive air quality policies to reduce emissions from controllable sources, the 

frequency and severity of smoke episodes with PM2.5 exceedances has increased sharply due to 60 

wildfires in the Pacific Northwest and California (8, 9). The annual mean PM2.5 in Northern California 

has increased since 2015 (SI Appendix, Fig. S1) due to massive seasonal fire events, and these 

events have become the dominant cause of PM2.5 exceedances. 

People in the United States spend 87% of their time indoors (10). However, the protection 

against air pollutants of outdoor origin provided by buildings is commonly overlooked in air quality, 65 

epidemiologic, and risk assessment studies (11). To accurately characterize and reduce population 

exposures to wildfire PM2.5, it is necessary to understand then optimize how buildings are used by 

their occupants to mitigate exposure. Previous estimations of indoor particles of outdoor origin 

typically relied on measurements from a limited number of buildings, and extrapolation of these 

measurements to other buildings based on the empirical infiltration and removal parameters (12, 70 

13). However, such extrapolation is not applicable to wildfire events because it does not take into 

account the distribution of protection provided by buildings (including natural and mechanical 

ventilation) due to lack of data measuring infiltration under representative conditions. The infiltration 

of outdoor particles is dependent on people’s behavior (11, 14, 15), which changes during wildfires 

(and in 2020 during the COVID-19 pandemic). Pollution levels during wildfire events, and 75 

knowledge of those pollution levels through available air quality data, directly impact human 

responses aimed at controlling the infiltration of outdoor PM2.5 including reducing ventilation, using 
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air conditioning, and using active filtration. Statistically robust observations of the variability of PM2.5 

infiltration during actual wildfire events across a broad cross-section of normally occupied 

residences provides the opportunity to understand the distribution of real infiltration rates affecting 80 

human exposure, and the factors controlling them, potentially informing guidance towards 

improvement. 

Here, we exploit a recent trend in air quality sensing – public data from a network of 

ubiquitous crowdsourced low-cost PM2.5 sensors – to characterize how indoor air quality during 

wildfire episodes is affected by buildings and their occupants. We demonstrate that buildings 85 

provide substantial protection against wildfire PM2.5, and that behavioral responses of building 

occupants contribute to effective mitigation of wildfire smoke. Real-time PM2.5 sensors based on 

aerosol light scattering have proliferated as easy-to-use and low-cost consumer devices in recent 

years, providing a novel opportunity to explore the indoor intrusion of wildfire PM2.5. Among various 

devices available, the crowdsourced PurpleAir network has developed the most extensive public-90 

facing network currently available. As of June 2, 2021, there are 15,885 publicly accessible active 

PurpleAir sensors reporting data from across the earth, 76% are outdoor (12,088), and 24% are 

indoor (3,797). Of these PurpleAir sensors, 57% are installed in California (9,072), split into 69% 

outdoor (6,273) and 31% indoor (2,799). As shown in Fig. 1, California accounts for 74% of all 

indoor PurpleAir sensors worldwide, with adoption increasing most rapidly following individual 95 

wildfire episodes, as noted by prior work (16). We focus here on analyzing the data from these 

sensors deployed across the metropolitan regions of San Francisco and Los Angeles, California, 

where the public adoption of indoor and outdoor PurpleAir sensors is especially high, at least 

partially in response to the high frequency of recent wildfire events. Analyses are presented for the 

wildfire season in the San Francisco Bay Area of Northern California (NC) during August-100 

September 2020 (denoted NC 2020) and November 2018 (NC 2018), and for the Los Angeles area 

of Southern California (SC) in August-September 2020 (SC 2020). Maps of the measurement 

regions are provided in SI Appendix, Fig. S2 and S3. We analyzed the data from over 1,400 indoor 

sensors and their outdoor counterparts to characterize levels of and dynamics of indoor PM2.5 and 
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the fraction of outdoor PM2.5 that entered buildings, comparing wildfire and non-fire periods. The 105 

vast majority (> 87%) of sensors in our dataset are in buildings that are unambiguously identified 

as residential. We mainly focus on residential buildings, which is facilitated by linking individual 

PurpleAir sensor locations with a dataset of detailed home property characteristics (Zillow). 

 

Results and Discussion 110 

PM2.5 inside and outside an example house. Fig. 2 displays the PM2.5 concentrations measured 

by an indoor sensor and its nearest outdoor counterpart on wildfire days and non-wildfire days 

(classified by whether the daily average PM2.5 level measured by the nearest EPA Air Quality 

Measurement Station was above or below 35 µg m-3). The outdoor PM2.5 concentration was clearly 

affected by wildfire plumes for August 14-28, September 6-15, and September 28-30. On fire days, 115 

the 10-min average outdoor PM2.5 exceeded 250 μg m-3 several times. The indoor concentration 

was more than doubled in these periods due to the infiltration of wildfire particles. We also observed 

peaks of indoor PM2.5 exceeding the outdoor PM2.5 even on the most polluted days. These peaks 

typically lasted between 1 hour and 4 hours, which match well with the characteristics of 

cooking/cleaning peaks, reported in studies such as Patel et al. and Tian et al. (17, 18). Fig. 2C 120 

shows the concentration profiles of indoor and outdoor PM2.5, and 1D shows the outdoor PM2.5 and 

indoor PM2.5 with outdoor origins (after removal of identified indoor emission events). The infiltration 

of outdoor wildfire smoke caused the concentration of indoor PM2.5 to exceed 75 μg m-3 in this 

building occasionally (Fig. 2D).  

Differences of infiltration on fire days and non-fire days. Taking all the buildings in the NC 2020 125 

case into consideration, we found that the mean concentration of indoor PM2.5 nearly tripled on the 

fire days compared to the non-fire days due to the infiltration of outdoor smoke (Table 1, SI 

Appendix, Fig. S4). On the fire days, the average outdoor concentration of PM2.5 was more than 4 

times the mean indoor PM2.5. Fig. 3A displays the distribution of the mean indoor/outdoor PM2.5 

ratio of each building on the fire days and the non-fire days. The average indoor/outdoor PM2.5 130 

ratios for many buildings exceeded 1 due to indoor emission events, particularly on non-fire days. 
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On fire days, the majority of indoor PM2.5 infiltrated from outdoors, but the indoor/outdoor PM2.5 

ratios were much lower because people closed their buildings and many also filtered their indoor 

air for protection from the smoke. Figure 3B shows the ratio of indoor PM2.5 of outdoor origin to 

outdoor PM2.5 (defined as the infiltration ratio). The infiltration factor (Fin) is the steady-state fraction 135 

of outdoor PM2.5 that enters the indoor environment and remains suspended there (14). It quantifies 

the extent that the building provides protection against outdoor particles (11). For particulate matter, 

Fin can be obtained from the ratio of indoor/outdoor concentration when there are not additional 

indoor sources or loss processes (19, 20). On fire days (PM2.5 > 35 µg m-3), due to the 

predominance of PM2.5 of outdoor origin, the infiltration ratio approaches the infiltration factor. The 140 

infiltration factors of PM2.5 for different buildings in NC 2020 have a geometric mean (GM) of 0.23 

(0.16, 0.36 for 25th and 75th percentiles, same below). On non-fire days (PM2.5 < 35 µg m-3), the GM 

infiltration ratio increases to 0.42 (0.35, 0.56), while on days with unhealthy air quality (PM2.5 > 55.4 

µg m-3), the GM infiltration ratio reduces to 0.19 (0.13, 0.31) (Table 1). However, around 18% of 

buildings had PM2.5 infiltration factors above 0.4 on the fire days (Fig. 3B). Occupants of these 145 

exposure hotspot buildings could have experienced much higher levels of wildfire smoke. For 

context, infiltration factors of homes and commercial buildings measured in the US are usually 

above 0.5 (14, 21), and the infiltration factor of office buildings with 85% ASHRAE filters were 

predicted to be around 0.18 (22).  The difference in mean infiltration ratio between fire days and 

non-fire days are most apparent in the daytime (SI Appendix, Fig. S5), consistent with more 150 

ventilation typically occurring during daytime (23). The lower infiltration factors for the buildings on 

fire days indicates the efficacy of reduced ventilation and enhanced removal of particles as people 

took measures to protect themselves from smoke exposure, and that more behavioral changes 

happened in daytime. Infiltration ratios of PM2.5 were not significantly different between fire days 

and non-fire days in the SC 2020 case (Fig. 4), in contrast to the 2020 NC observations. This 155 

difference is probably because the hotter weather in Southern California caused more frequent use 

of air conditioning systems (and shutting windows), which is implied by a higher 2 pm mean indoor-

outdoor temperature difference (~4ºC) than buildings in the San Francisco Bay Area (~2ºC). 
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Another possibility is that the PM2.5 pollution levels in the Greater Los Angeles area were not high 

enough to induce people to change their behaviors (SI Appendix, Fig. S6-S9).  160 

Infiltration and building characteristics. Differences in fire-day infiltration ratios may also stem 

from differences in building characteristics. As shown in Table S4 in SI Appendix, buildings with 

fire-day infiltration ratio < 0.14 were widely distributed in the study area. However, buildings with 

fire-day infiltration ratio > 0.4 were mostly located in San Francisco where the climate is cooler and 

air conditioning is much less common. Buildings in California Climate Zone 12 (Northern California 165 

Central Valley) had lower infiltration ratios than any other climate zones in the San Francisco Bay 

Area (SI Appendix, Fig. S10). Due to the summer hot weather, substantial cooling is required for 

buildings in this zone (24). Air conditioning and associated filtration systems apparently decrease 

the indoor PM2.5 in those buildings. In addition, since the mid-late 1990s, most new residential 

buildings in the US are equipped with air conditioning systems (25). Since 2008, new buildings in 170 

California are mandated to have mechanical ventilation systems (26). Many of the newer buildings 

also have filtration systems (27). The changes in the building stock are apparent in the resulting 

data, as residences built after 2000 had significantly lower infiltration ratios on both fire days and 

non-fire days compared with older buildings (SI Appendix, Fig. S10), which is consistent with the 

findings of a recent wildfire smoke infiltration study in Seattle (28). We further classified the 175 

buildings in the NC 2020 case into cool buildings and hot buildings based on whether the 95th 

percentile indoor temperature reached 30ºC. These cool buildings were more likely to have air 

conditioning systems on. As shown in SI Appendix, Fig. S11, the cool buildings have significantly 

lower fire-day infiltration ratios than the hot ones (p < 0.01), and around 17% of cool buildings had 

extremely low infiltration ratios (< 0.1). In sum, these results demonstrate that (i) this sensing and 180 

analysis approach yields findings in line with mechanistic plausibility (ii) and that the diversity of 

building characteristics within a region leads to substantial heterogeneity in the degree to which 

populations are protected indoors from wildfire PM2.5.   

Decay rate constants for PM2.5 were determined for all indoor observations using a box 

model (Equation 2). The difference in the decay rate constants of PM2.5 indoors further reveals why 185 
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the infiltration ratio was lower on fire days. Fig. 5 shows the distribution of mean total loss rate 

constant of PM2.5 on fire days and non-fire days in the buildings. The mean and median total loss 

rate constants (λt) are 1.5 h-1 and 1.2 h-1 on fire days, and 2.2 h-1 and 1.9 h-1 on non-fire days, 

respectively. Comparing individual buildings on fire days and non-fire days, 67% of them have 

lower particle loss rate constants on fire days, indicating a high percentage of buildings whose 190 

occupants took effective action to reduce PM2.5 infiltration. During the fire days, the decrease in air 

exchange rate exceeded the enhanced indoor filtration, making the loss rate smaller. Since the 

infiltration ratio (infiltration rate/total loss rate, / ( )lossaP a k+ )  was also lower on fire days, it can 

be inferred that the infiltration rate (air exchange rate × penetration factor, aP) was lower on fire 

days (Equations 1 and 3). We expect both air exchange rate and penetration factor to drop on fire 195 

days. Closure of windows and doors will lead to a lower air exchange rate. The usage of filtration 

systems on incoming air and closure of openings will lead to a lower penetration factor (12).  For 

the SC 2020 case, the mean estimated particle loss rate constants (1.3 h-1 on fire days and 1.4 h-1 

on non-fire days) are lower than in the San Francisco Bay Area (SI Appendix, Fig. S12), which 

further implies that a larger fraction of PurpleAir sensor owners in the Los Angeles area kept their 200 

windows/doors closed.  

People are more likely to open the windows when the indoor temperature is higher than 

the outdoor temperature in summer (29, 30). In the NC 2020 and SC 2020 cases, the difference in 

daytime indoor/outdoor temperature alternated between positive and negative values (SI Appendix, 

Fig. S13). However, in the NC 2018 case, due to the colder outdoor temperatures in November, 205 

we infer that people probably closed their windows for a longer time, explaining the lower loss rate 

constants observed. This was expected to reduce the difference between the infiltration ratio on fire 

days and non-fire days. However, this ratio is still statistically significantly higher (p < 0.05) on fire 

days, which suggests the widespread application of filtration systems. 

Our conclusions come with caveats. First, we treated each building as a well-mixed box, 210 

which assumes the indoor sensor measurement can represent the PM2.5 levels of the entire 

building. Second, our algorithm to remove the indoor-source peaks could miss lower indoor 
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emission events. In addition, we assumed a universal quasi-linear response for all the PurpleAir 

sensors throughout the analysis period. Such treatment could lead to biases, but our results should 

still reflect the average trend. Indoor environments with PurpleAir sensors may not be 215 

representative of the entire distribution of buildings (details are provided in the SI Appendix). 

Adoption of PurpleAir sensors (at least ~200 US dollars per sensor) is higher among affluent people 

concerned about exposure to PM2.5. Consistent with the expectation of an affluent “early-adopter” 

effect, PurpleAir owners live in homes with estimated average property values 21% greater than 

the median property value for their cities (SI Appendix, Table S3 and Fig. S14). The 2015 U.S. 220 

Residential Energy Consumption Survey shows that households with less than $40,000 annual 

income are less likely to use air-conditioning equipment than other households (31). Low-income 

houses tend to be older, and they are shown to have larger leakage than other houses (32, 33). 

Lower-income households can therefore have disproportionately higher exposure to wildfire 

smoke. Finally, although we were not able to disentangle the influence of multiple regionally varying 225 

parameters (such as building type, floor area, property values) on penetration of wildfire smoke 

with the current distribution of indoor sensors, more extensive sensor adoption in coming years 

may allow future work to address this limitation.   

This work demonstrates that crowdsourced environmental sensing can provide valuable 

information about how people are protecting themselves from the increasingly severe 230 

environmental hazard of wildfire smoke. We find that common adaptation measures, including 

reducing ventilation and active air filtration, effectively mitigate the average indoor exposures of all 

the buildings by 18% and 73% relative to indoor baseline and outdoor conditions, respectively. This 

work further suggests that such protective measures could be enhanced through public education 

to substantially mitigate indoor exposures at the population scale in the future. Given anticipated 235 

increases in wildfire smoke in coming decades, it is critical to evaluate these findings in other 

settings, including in lower-income communities and in other climate regions affected by wildfires. 

While our data imply that early adoption of crowdsourced indoor PurpleAir sensors seems to be 

propelled by wildfire events (Figure 1), gaining more broadly representative insight into the 
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distribution of indoor PM conditions might benefit from complementary approaches to 240 

disseminating these sensors, such as targeted deployments in lower-income communities. Overall, 

our results suggest the increasing ubiquity of indoor and outdoor air pollution sensors can aid in 

understanding exposures to episodic pollution sources such as wildfires.  

 

Materials and Methods 245 

Selection of Sensor Correction Models. The performance of low-cost PM2.5 sensors is 

dependent on humidity, temperature, particle size distribution and level of particulate matters (34–

42). To evaluate the performance of the PurpleAir sensors against reference US EPA PM2.5, we 

linked hourly average measurements from all 16 reference monitors in the study domain (for the 

entire study period) with surrounding (within 5 km) outdoor PurpleAir sensors, as detailed in the SI 250 

Appendix (section “Selection of Sensor Correction Models”, Figures S6-S9, Tables S1 and S2). We 

then evaluated the relationship between PM2.5 data from PurpleAir sensors and US EPA monitors 

for multiple calibration schemes in three categories: (i) previously reported calibration factors for 

wildfire smoke from the literature (35, 38), (ii) parsimonious empirical calibration relationships 

based on linear regression using this dataset, and (iii) a machine learning (random forest) based 255 

calibration scheme using this dataset. Our parsimonious ordinary least-square fit (correction factor 

= 0.53, intercept = 0) provided good agreement with the EPA measurements for this dataset, with 

R2 = 0.87 and normalized root mean square error = 0.50. For the range of increasingly complex 

calibration models considering extra parameters for the PurpleAir vs. reference monitor that we 

developed, we found moderate further improvement to sensor precision and accuracy, but with 260 

qualitatively unchanged results (see SI Appendix). Accordingly, we rely on our no-intercept linear 

calibration equation for its more straightforward interpretability in our core analyses. 

Decomposition of Indoor PM2.5 In addition to infiltration of PM2.5 from outdoors, cooking, cleaning 

and resuspension are the main sources of indoor PM2.5 (17, 18, 43). Prior to assessing the amount 

of indoor PM2.5 resulting from infiltration of wildfire smoke, we first identified and removed the events 265 
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(peaks) caused by indoor sources based on the magnitude and duration of indoor PM2.5 peaks. 

Details of the algorithm can be found in the SI Appendix. 

 

Other QA and QC 

As described in detailed QA/QC procedures in the SI Appendix, we sought to ensure appropriate 270 

sensor selection, and to exclude sensors that were likely mislabeled. 

Mass Balance Model. We explored the dynamics of indoor PM2.5 with a well-mixed box model. 

When the indoor and outdoor particles are in steady state, and the indoor source is small, we have: 

0 ( )in in
out loss in in

out loss

dC C aP
aPC a k C F

dt C a k
= = − +  = =

+
 [1] 

where a is the air exchange rate, P is the penetration factor of particles, kloss is the loss rate constant 275 

including deposition and indoor filtration. Cin and Cout are the indoor and outdoor concentrations, 

respectively (14, 19). Fin is the infiltration factor (which is close to the infiltration ratio).  

Particle Loss Rate Constant Calculation. After major indoor emission events, the indoor 

concentration of PM2.5 will decay following: 

( )in
loss in

dC
a k C

dt
= − +  [2] 280 

Therefore, (a+kloss) can be estimated by fitting the curve of Cin(t) (44). We define the total indoor 

particle loss rate constant (λt) as: 

t lossa k = +  [3] 

Details of the derivation of these equations and the algorithms are provided in the SI Appendix. 

Building information. Property data were obtained by matching coordinates associated with the 285 

PurpleAir sensors to addresses. The list of addresses was then inputted to Zillow, a publicly 

accessible website to find the publicly available building information such as building age and 

livable area. Zillow uses existing building information and a proprietary algorithm to derive an 

estimate of the current (as of December 2020) price of the home or apartment. More details are 

provided in the SI Appendix. 290 
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Data availability Data used in this work can be freely downloaded from the PurpleAir and EPA 

websites (links are provided in the SI Appendix). 
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Figures and Tables 410 

 

Figure 1. Number of publicly accessible indoor PurpleAir sensors in the United States and 

California. Shadings show major wildfire periods (start date to containment date of fires with > 

50,000 total acres burned) in California. Wildfire periods are from Cal Fire website 

(https://www.fire.ca.gov/incidents/). 415 

 

https://www.fire.ca.gov/incidents/
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Figure 2. Relationship of indoor and outdoor PM2.5 for an example house (A) Scatterplots of 

calibrated PM2.5 measured at 10-min resolution by an indoor PurpleAir sensor against the nearest 

outdoor PurpleAir measurement, differentiating fire days (red) and non-fire days (blue), illustrative 420 

of the levels of PM2.5 pollution of buildings in the NC 2020 case. (B) Scatterplots of calibrated indoor 

PM2.5 of outdoor origin against outdoor PM2.5. (C) Concentration time profile of calibrated indoor 

and outdoor PM2.5 measured by the two sensors. (D) Concentration time profile of calibrated 

infiltrated PM2.5 and outdoor PM2.5. The figures demonstrate the indoor PM2.5 were clearly affected 

by the outdoor smoke, and our algorithm can effectively remove the indoor peaks due to indoor 425 

emissions. 
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Figure 3. Distribution of the indoor/outdoor ratio and the infiltration ratio in the San Francisco Bay 430 

Area in August and September 2020. (A) Mean Indoor/Outdoor PM2.5 ratio of buildings during fire 

days and non-fire days and (B) mean infiltrated PM2.5/Outdoor PM2.5 ratio of buildings during fire 

days and non-fire days. Buildings have lower indoor/outdoor PM2.5 ratio and infiltration ratio on fire-

days. 

  435 



 

 

19 

 

 
 
Figure 4. Violin plots of particle infiltration ratios during fire and non-fire periods. N = 1274 buildings, 

2.1×106 sensor-hours for NC 2020, N = 115 buildings, 2.8×105 sensor-hours for SC 2020 and N = 

52 buildings, 4.4×104 sensor-hours for NC 2018. Each violin plot shows the probability density of 440 

the infiltration ratio and a boxplot of interquartile range with whiskers extended to 1.5 times the 

interquartile range. Circles indicate the median, and horizontal lines indicate the mean. 
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Figure 5. Frequency distribution of indoor PM2.5 total loss rate constants (λt) in buildings in the San 445 

Francisco Bay Area on the fire days and non-fire days in August-September 2020 (decay peaks 

were found in N = 1000 buildings). A reduced total PM2.5 loss rate constant on the fire days indicates 

a reduction in ventilation.



 

 

21 

 

Table 1. Statistics of the concentration indoor/outdoor ratios for buildings with PurpleAir sensors in August-

September 2020 in the San Francisco Bay Area (35 µg m-3
 daily average PM2.5 concentration measured at 450 

the nearest EPA measurement site was used as the threshold for fire days and non-fire days). N = 1274. 

Unhealthy days are defined as days with daily average EPA PM2.5 concentration above 55.4 µg/m3. GM = 

Geometric Mean, GSD = Geometric Standard Deviation. 

 Mean 
outdoor 

conc µg m-3 

Mean indoor conc µg m-3 Indoor/outdoor ratio Infiltration ratio 

 Mean ± s.d. Mean ± s.d. GM, GSD Mean ± s.d. GM, GSD Mean ± s.d. GM, GSD 

Non-fire 
days 

9.1±4.0 4.1±2.5 3.7, 1.6 0.90±0.88 0.73, 1.8 0.45±0.15 0.42, 1.5 

Fire days 45.4±17.0 11.1±8.3 8.9, 2.0 0.41±0.44 0.31, 2.1 0.27±0.14 0.23, 1.8 

Unhealth
y days 

61.2±20.5 13.5±10.6 10.3, 2.1 0.31±0.42 0.23, 2.1 0.23±0.14 0.19, 1.9 

 

Quantile-quantile plots (SI Appendix, Fig. S4) show the mean concentration of indoor PM2.5 in all the 455 

buildings can be satisfactorily described by the Weibull distribution. Parameters of the Weibull fit are shown 

in Table S5 in the SI Appendix. Parameters of the SC 2020 and NC 2018 cases are not shown here due to 

the small sample sizes, which are less representative of all the buildings in these areas at that time. 
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Extended Materials and Methods  

Data Sources and Study Regions. The PurpleAir sensors report the mass of size-resolved particulate 

matter, as well as environmental parameters such as temperature and relative humidity (RH). Data from 

many of these sensors are voluntarily shared online by the owners (including the citizens, and government 

agencies like the California Air Resources Board, Bay Area Air Quality Management District and Southern 495 

California Air Resource Board). For this study we downloaded the 10-min average PM2.5 concentration data 

from the PurpleAir website (https://www2.purpleair.com/). For the NC 2020 case, we used data from the 

areas boxed by latitudes [38.77º N, 38.04º N] and longitudes [123.19º W, 121.15º W]; [38.04º N, 37.98º N] 

and [123.19º W, 121.60º W]; [37.98º N, 37.67º N] and [122.69º W, 121.90º W]; [37.67º N, 37.21º N] and 

[122.47º W, 121.36ºW] for August and September 2020 (Fig. S2). These boxes cover most of the San 500 

Francisco Bay Area and part of the Sacramento County. In this period, residents in this area experienced 

smoky days caused by the LNU Lightning Complex Fire, the August Complex Fire, the SCU Lightning 

Complex Fires, the CZU Lightning Complex Fires, and at the end of September the Glass Fire, as well as 

the massive fires in Oregon (https://www.fire.ca.gov/incidents/2020/). The same study area was used in the 

NC 2018 case, although fewer sensors were operating at that time. The study area for the SC 2020 case 505 

is boxed by [33.47º N, 34.50º N] and [116.85º W, 119.40º W], as shown in Fig. S3. 

 

Selection of Sensor Correction Models. Plantower sensors (Plantower Technology) used by PurpleAir 

measure the mass of particulate matter by measuring light scattering at 680±10 nm (1). The manufacturer 

has a proprietary algorithm to convert the light scattering signal to the mass concentration of particulate 510 

matter. Each sensor is also embedded with a BME 280 sensor (Bosch Sensortec) to measure the 

temperature, pressure, and relative humidity in real time. The performance of low-cost PM2.5 sensors is 

dependent on humidity, temperature and level of particulate matters (2–7). Many corrections have been 

proposed to convert the raw PM2.5 data (PM2.5 CF=1) measured by Plantower sensors to values consistent 

with research grade instruments. In our analysis, hourly average primary PM2.5 data measured by 16 EPA 515 

Air Quality Measurement Stations (AQMSs) in August and September 2020 in the study area was 

downloaded from the EPA AirNow’s API website (https://docs.airnowapi.org/). According to the California 

Air Resource Board (https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-

https://www2.purpleair.com/
https://www.fire.ca.gov/incidents/2020/
https://docs.airnowapi.org/
https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-monitoring-network-report
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monitoring-network-report), the primary PM2.5 monitors in these sites are MetOne BAM (beta-ray 

attenuation) continuous monitors. For each EPA measurement site, we compared the data measured by 520 

outdoor PurpleAir sensors within 5 km (using at most 50 sensors near each EPA site to avoid data being 

skewed towards a small number of sites). We excluded outdoor sensors that (a) reporting less than 4 weeks 

of data. (b) had weak correlation with the EPA station’s measurement (r < 0.8) because it might be affected 

by other local pollution sources or it could be listed as an outdoor sensor by mistake, (c) reported PM2.5 

larger than 800 µg m-3 and sensors always reporting data lower than 10 µg m-3 as they were either 525 

malfunctioning or were operating outside of the recommended limits of detection. In total, data from 446 

outdoor sensors surrounding the 16 EPA sites were included in the correction factor evaluation. 

To get correction factors for converting PurpleAir sensor measurements to federal 

reference/equivalent method measurements, some studies performed a linear regression of PM2.5 

measured by the PurpleAir sensors with data from nearby EPA regulatory instruments (2), while others also 530 

considered the effect of temperature and relative humidity on the sensor’s performance (5, 8, 9). There are 

two main types of PurpleAir sensors available for purchase on the PurpleAir website 

(https://www2.purpleair.com/collections/air-quality-sensors). The PA-I sensors only have one channel 

(Plantower PMS 1003) for PM measurement. Each PA-II PurpleAir sensor has two Plantower PMS 5003 

sensors inside (Channel A and Channel B). Ideally, it is good to average the values reported by the two 535 

sensors and to remove some abnormal data because of sensor failures that can be captured by the 

difference of PM reported for the two channels. However, many sensors did not report PM2.5 data from 

Channel B, presumably because they were the indoor PA-I sensor model. To incorporate as many sensors 

(buildings) as possible in the analysis, we only used Channel A data if data from both channels are 

available. According to the evaluation by Barkjohn et al. (8), the PM2.5 concentrations reported by Channels 540 

A and B agree well. In line with this prior result, we compared 42 sensors with fully available Channel A and 

B data and found excellent agreement [slopes of linear fit between two channels’ PM2.5 data have IQR of 

(0.97, 1.06) with median at 1.01; R2 of fit between two channels’ PM2.5 are all above 0.95]. More broadly, 

we believe that many instances of abnormal data are reliably excluded by our other QA/QC procedures 

(described in “Other QA and QC” section below). The sensors report both PM2.5 CF = 1 data and PM2.5 CF 545 

= ATM (atmospheric) data. It is not known how the CF = 1 data are converted to CF = ATM data in the 

https://ww2.arb.ca.gov/our-work/programs/ambient-air-monitoring-regulatory/annual-monitoring-network-report
https://www2.purpleair.com/collections/air-quality-sensors
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proprietary algorithm from the manufacturer. However, it is known that the ATM data can result in a 

nonlinearity for concentrations below and above around 20-40 µg m-3
 (10, 11), while CF = 1 data do not 

have this problem. The PM2.5 CF = 1 data have also been shown to correlate better with the EPA federal 

reference methods or federal equivalent methods. The PM2.5 CF = 1 data were therefore chosen as the raw 550 

input data in our calibration.  

Seven correction methods were compared in our analysis, with their performance summarized in 

Table S1. Method 1 and 2 are based on linear regressions (ordinary least square method) of the EPA PM2.5 

data with the PurpleAir PM2.5 CF = 1 data (of individual sensors, not the average of all sensors within 5 km 

of each AQMS). Method 3 uses an orthogonal distance regression (ODR) with zero intercept. The Barkjohn 555 

et al.(9) US fire correction was based on comparison of PurpleAir measurement data with collocated federal 

equivalent methods in 7 sites across the United States affected by prescribed fires, ambient aged fires, 

woodstove fires and wildfires. It considers the effect of relative humidity on the measurement. A similar field 

comparison was performed by Holder et al. (3). The correction factors from these two studies were also 

evaluated here for our dataset. We also constructed a “New fit incorporating RH” correction by a multivariate 560 

regression of EPA PM2.5 against PM2.5 and RH measured by nearby outdoor PurpleAir sensors using data 

in August and September 2020 from the San Francisco Bay Area. In some studies, a nonlinear RH term 

RH2/(1-RH) was used (5, 8). However, recently it has been demonstrated that a linear term of RH can 

perform even better than the non-linear term (6). Therefore, the linear RH function is used in our “New fit 

incorporating RH” correction. Finally, using EPA PM2.5 as the response, and PM2.5 and RH reported by the 565 

nearby PurpleAir sensors as input, we trained a binary decision tree for regression model using the 

Statistics and Machine Learning Toolbox in MATLAB. The temperature term was not included in our 

correction models because it has been shown that including the temperature term can only negligibly 

improve the performance of such correction models (5, 6). The commonly used Lane Regional Air 

Protection Agency (LRAPA) correction, which uses the CF = ATM data in the correction equation (6), was 570 

not compared here.  

Adding a non-zero intercept to the model did not substantially improve the R2 or reduce the root 

mean square error (RMSE). A major disadvantage of adding such an intercept is it can lead to an 

overestimation when the PM2.5 concentration is very low. We also evaluated whether the linear regression 
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of the EPA PM2.5 data with the PurpleAir PM2.5 (CF = 1) data are sensitive to the distance threshold. Table 575 

S2 shows that the regression coefficients are not very sensitive to the distance threshold from 2 km to 20 

km.  

In ordinary least square regression, it is assumed that the independent variable is free from errors 

(13). However, this assumption may not be true for PurpleAir sensor measurements. We therefore also 

calculated the slope using orthogonal distance regression (ODR). The ODR minimizes the sum of 580 

orthogonal distances of the data points from the regression line (13). Using the ODR method changed the 

correction factor by only 0.01 and increased the RMSE (Table S1). Adding RH in the linear regression also 

only made an almost negligible improvement. We therefore chose the linear regression without intercept 

correction. In this case, the fitted correction factor is 0.53. Fig. S6 displays the hourly concentration time 

profiles of PM2.5 measured by each EPA monitor in the San Francisco Bay Area, and the average 585 

concentrations of PurpleAir sensors (after correction with CF = 0.53) within 5 km in August and September 

2020. They agree reasonably well with each other.  

It is important to note that the correction equations evaluated here are only applicable for this 

analysis, and they should not be generalized to other places and/or at other times. As shown in Holder et 

al. (3), even the correction factors for wildfire smoke from different fires in the US can differ by a factor of 590 

more than 2. It is also worth noting that our analysis is not heavily dependent on the exact correction factor 

because the concentration ratios are the targets. The correction factors only affected which peaks were 

defined as indoor source peaks. When wildfire smoke affected a region, the composition of indoor and 

outdoor PM2.5 were expected to be similar because wildfire particles dominated even in the indoor 

environments (Table 1). Therefore, it is reasonable to use the same correction for both indoor and outdoor 595 

PM2.5, especially we focus on the indoor/outdoor ratios, as suggested by Bi et al. (14). . 

As shown in Table S1 and Fig. S15, the binary decision tree method can improve the correlation of 

PurpleAir data with EPA measurements. Results from the same analysis with this correction are shown in 

Fig. S16. The trend of the result is the same as the no-correction case, but the difference between the fire 

days and non-fire days are larger, which is probably due to a non-zero intercept in the correction. 600 

We also performed regression for the correction of Greater Los Angeles Area sensors (SC 2020 

case). Based on linear regression of EPA monitor data with the nearby PurpleAir sensor using the same 
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approach as in the NC 2020 case, a correction factor of β1 = 0.58 was adopted (NRMSE = 0.42, see Figures 

S8-S9). Similar analysis has been performed by Delp and Singer (2) for San Francisco Bay Area sensors 

in November 2018. A correction factor of β1 = 0.48 was adopted in our analysis.  605 

 

Other QA and QC. We selected indoor sensors that had measurement value for at least 1/6 of the time 

(~10 days) in the two-month period considered in our study. We found 1459 indoor monitors in this region 

meeting this criterion. For each indoor sensor selected, we used its longitude and latitude to locate the 

nearest outdoor sensor. More than 2000 outdoor sensors in this region reported at least 10 days data during 610 

the period considered, compared with only 16 EPA Air Quality Monitoring Stations (AQMS) in this region. 

The geometric mean (GM) distance from an indoor sensor to the nearest AQMS is 6.7 km, but it is only 

0.21 km to the nearest outdoor sensor (Fig. S17). The substantially reduced distance allows much more 

accurate evaluation of indoor/outdoor concentration relationships. To prevent the possibility that the nearest 

outdoor sensor was located near major pollution sources, when the nearest outdoor sensor is more than 615 

500 m away from the indoor sensor, we required the 50th percentile concentration at this outdoor node 

when it was not affected by wildfires to be below 25 µg m-3, according to the levels and spatial decay rate 

of PM2.5 measured near roads (15–18). We further required the outdoor sensor to cover at least 85% of the 

time when the indoor sensor reported data. If the PM2.5 concentration measured by an “indoor” sensor is 

correlating too well with a nearby outdoor sensor (r2 > 0.8), it is likely that this sensor was placed outdoors. 620 

This mislabeled or dislocated sensor is therefore not used in the analysis. Fig. S18 shows an example of 

an indoor node discarded for this reason. We removed 165 “indoor” sensors from the analysis because of 

this problem. Another 20 indoor sensors were not considered because we could not find a nearby outdoor 

sensor that reported data for more than 85% of the time when the indoor sensor reported data. With all 

these criteria in place, data from N = 1274 indoor sensors in this region could be used. The same procedure 625 

was applied to data in the NC 2018 and SC 2020 cases. Negative values of PM2.5 concentration were also 

discarded. 

 

Decomposition of Indoor PM2.5 We separated the indoor PM2.5 from indoor and outdoor origins by 

removing short-term indoor PM2.5 peaks that were unlikely due to penetration. A very similar approach has 630 
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been demonstrated in previous studies by Allen et al. (19, 20). According to high time-resolution 

measurements of particulate matter in previous indoor studies, the major indoor emission processes (mainly 

cooking and cleaning) typically last for half an hour to an hour, and after that a longer period is needed for 

the PM2.5 perturbation to decay to less than half of its peak value (21). When these processes happen, the 

indoor level of PM2.5 was at least 30 µg m-3. We therefore selected all the peaks with half-prominence width 635 

(w) between 1 hour and 4 hour and prominence level above 30 µg m-3 as indoor-source peaks. It is possible 

that in some buildings the windows were opened for around an hour during the fires and created peaks that 

meet this criterion. Out of the 1274 buildings considered, we identified these large indoor source peaks in 

834 buildings. Buildings without such peaks might be commercial buildings without large indoor PM2.5 

sources, or the sensor in that building was placed in a location free from large indoor emissions. We 640 

assumed the indoor PM2.5 other than that caused by these large peaks to be infiltrated PM2.5. We 

reconstructed the infiltrated PM2.5 by linearly interpolating indoor PM2.5 concentration 3w before and after 

these large peaks with respect to time. The long 3w window was chosen to ensure that the indoor source 

peaks can be more thoroughly removed. For data outside of this window, the indoor concentration was 

assumed to be equal to the infiltrated PM2.5. As a QA/QC step, if the calculated non-cooking indoor 645 

concentration was higher than outdoor concentration, that data point was removed from the analysis. 

 

Mass Balance Model and Total Indoor Particle Loss Rate Constant Calculation. The indoor 

concentration of PM2.5 depends on infiltration, indoor emission, and loss. We explored the dynamics of 

indoor PM2.5 with a box model. If we assume the PM2.5 is well-mixed indoors, the mass balance of PM2.5 in 650 

a building can be written as:  

in
out in loss in

dC
V aPVC aVC k VC S

dt
= − − +   (S1) 

where V is the volume of the room, a is the air exchange rate, P is the penetration factor of particles, kloss 

is the loss rate constant including deposition and indoor filtration, and S is the indoor emission rate. Cin and 

Cout are the indoor and outdoor concentrations, respectively (22, 23). Dividing by V on both sides, we can 655 

simplify the equation to: 
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( )in
out loss in

dC S
aPC a k C

dt V
= − + +

 (S2) 

When the indoor and outdoor particles are in steady state, and S is small, we have: 

0 ( )in in
out loss in in

out loss

dC C aP
aPC a k C F

dt C a k
= = − +  = =

+
 (S3) 

where Fin is the infiltration factor. For particulate matter, Fin can be obtained from the ratio of indoor/outdoor 660 

concentration when there are no outdoor sources (23, 24). Another way to estimate Fin is to regress the 

indoor PM2.5 on outdoor values (25). However, this method has been shown to underestimate the infiltration 

factor while overestimating the indoor background (23), or produce infiltration factors outside [0,1] (14). 

Therefore, the ratio method was used for our analysis. 

During the peak of cooking-like indoor particle release events, the indoor PM2.5 resulting from 665 

cooking is much larger than the infiltrated smoke. When the indoor emission event is over, we assume the 

indoor source term becomes 0, and we have: 

( )( )

,( ) ( ) loss peaka k t tin
loss in in peak in peak

dC
a k C C t t C e

dt

− + −
= − +  − =

 (S4) 

Therefore, (a+kloss) can be estimated by fitting the curve of Cin(t) (26). We define (a+kloss) as the total indoor 

particle loss rate constant (λt). A peak prominence of 30 µg m-3 (20 µg m-3 in the SC 2020 case to incorporate 670 

more peaks) was used as the threshold to find large indoor peaks that were subsequently used in the 

particle loss rate constant calculation. If windows were opened and then closed, the decay of resulted indoor 

PM2.5 can also be described by Equation S4. Those peaks were also included because the decrease of 

indoor PM2.5 under that circumstance can also be described by the exponential decay. The decay rate 

constant is also not substantially affected by the correction factor used because the correction factor affects 675 

Cin and Cin, peak in the same way. To get total particle loss rate λt = a+kloss, Equation S4 can be rewritten as:  

( )
ln ( )

( )

in
t peak

in peak

C t
t t

C t
− = −

(S5) 

We then linearly fitted this equation by least square method to get slope λt for the decay of each 

peak of indoor PM2.5. In this part, we no longer require the width of the peak to be above 1 hour. In this way, 

indoor PM2.5 peaks resulting from short-time window opening were also used to get λt. The 95% confidence 680 
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interval of λt was also calculated. To ensure the exponential decay model is applicable, if the lower bound 

of the confidence interval of λt for a peak was below zero, this peak was not used as data for Fig. 5.  

The decrease of indoor PM2.5 concentration can also be caused by the decrease of outdoor PM2.5 

concentration. In such cases, the assumption that incoming outdoor PM2.5 source is stable no longer holds. 

Therefore, if the indoor PM2.5 was decaying together with the outdoor PM2.5 measured by the nearest sensor 685 

(r2 > 0.8), this peak was excluded from the analysis. For the 1274 buildings considered in the NC 2020 

case, we observed such decay peaks in 1000 buildings. On average, 4.7 decay peaks were captured in 

each building in the two-month period. 

Uncertainty of the infiltration ratios and the decay rate constants 

We roughly estimated the uncertainty of the infiltration ratios of individual sensor pairs, based on the idea 690 

that disagreement among any two paired sensors would lead to an uncertain estimate of the ratio of 

concentrations between those sensors. Thus, we gain a magnitude estimate of the uncertainty of the 

indoor/outdoor concentration ratio by examining the disagreement among a large number of paired nearby 

outdoor sensors across the PurpleAir dataset in our domain. We consider two timescales: (1) the 

uncertainty of the indoor/outdoor ratios of the 10-min data, reflecting the transient noise at short time scales, 695 

and (2) the uncertainty of the infiltration ratio for a building over the two-month period in the analysis, 

reflecting the possible range of persistent-sensor-to-sensor bias. To do so, we first found the outdoor 

sensors that were used to calculate indoor/outdoor ratios. Since it is possible that the nearest outdoor 

sensor of multiple indoor sensors is the same sensor, for the 1274 pairs of sensors, there are only 784 

outdoor sensors used. For each sensor, we tried to find the nearest outdoor sensor within 1 km, which was 700 

successful for 775 sensors. For each pair of sensors i at time j, we calculate the ratios of xi,i/yi,j, where xi,I is 

the concentration of the ith of the 775 used outdoor sensors at time t, and yi,j is the concentration of its 

nearest outdoor sensor. We make Ri as: 

,1 ,2 ,

,1 ,2 ,

, ,... 

T

i i i n

i i i n

x x x

y y y

 
=  
  

i
R (S6) 

 Then we concatenate the Ri array into Rall array by: 705 



 

 

31 

 

 1 2  ... 
T

n=allR R R R
(S7) 

The uncertainty of the indoor/outdoor ratio of 10-minute data is reflected by the variation of Rall, which yields 

0.886, 1.005, and 1.138 as 25th, 50th, and 75th percentiles values, respectively.  

The uncertainty of the infiltration ratio for a building over the two-month period can be roughly estimated by 

the statistics of ( )median
i

R , which has 0.955, 1.035, and 1.131 as 25th, 50th, and 75th percentiles values, 710 

respectively. Therefore, we can conclude that the uncertainty of the infiltration ratio for a building over the 

two-month period is less than ±10%.  

The decay rate calculation should have a very small uncertainty due to any bias in PA sensors 

because it uses measurements only from a single indoor sensor. We were fitting the decay curves of 

individual sensors by: 715 

( )
ln ( )

( )

in
t peak

in peak

C t
t t

C t
− = −

 (S5) 

in which Cin(t) ratios by the same sensor (especially in the same peak) should have very small uncertainty. 

Given the reasons stated above, we expect the exposure reduction calculations have even lower 

uncertainties because we are averaging the exposure reduction of the 1274 buildings. Assume uncertainty 

of the infiltration ratio for a building over the two-month period is 10%, the average of infiltration ratios of all 720 

the buildings will have an uncertainty of  10% / 1274 0.28%=  following central limit theorem. More 

conservatively, the median uncertainty of the infiltration ratio over two months, as reported for 774 sensor 

pairs above, was 1.035, or 3.5%. In either case, this uncertainty is quite small. We expect that the average 

exposure reduction would have a quantified uncertainty of similar or better magnitude to the I/O ratio, in 

other words, well less than 5%. Other unquantifiable uncertainties – e.g., differential or non-linear response 725 

of the PurpleAir to time-varying aerosol properties – add additional uncertainties that are more difficult to 

directly estimate, but we believe that these uncertainties do not fundamentally undermine the validity of our 

qualitative results. 
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Building information. Property data for PurpleAir Indoor-Outdoor comparison analysis were obtained by 730 

matching coordinates to addresses, verifying the addresses, looking up the addresses on publicly available 

property listing services, and finally quality control of the resulting data. The latitude-longitude coordinates 

were obtained from the publicly available PurpleAir database formally from a PurpleAir JSON file 

(purpleair.com/json – defunct as of December 2020), now available through the official PurpleAir API 

(api.purpleair.com). The coordinates contain 6 decimal places of precision and thus are accurate to under 735 

10 meters, however, the placement is based on the available WiFi signal and can be edited by the sensor 

owner to be located anywhere on the map. As such, there is some uncertainty introduced into the reverse 

geocoding process, but since citizen scientists are interested in air quality within their own homes and 

research groups require spatial fidelity it can be assumed these coordinates are approximately correct. 

After obtaining the list of coordinates, the Google and ArcGIS geocoding engines performed 740 

reverse geocoding scripted using the Python library OSMnx 1.0.1 (osmnx.readthedocs.io/en/stable/). About 

38.5% of addresses in the SF Bay region disagreed between Google and ArcGIS lookups. The reasons for 

the disagreements are due to placement in homes leading to low confidence assigning addresses to lots 

such as on a street corner. The sensor labels and manual searches on Google Maps were used to confirm 

the address. If the sensor label contains the address or a partial address or is obvious from the Google 745 

Map manual search, the confidence to the matched address is high. If the reverse geocoded searches 

match, then the confidence is medium, otherwise, it is assigned low confidence. From this analysis of valid 

address (n=1274), 13% were assigned high confidence, 73% were assigned medium confidence, and 14% 

were assigned low confidence. For low confidence addresses, the ArcGIS address was used. 

The list of addresses was then manually inputted to Zillow, a publicly accessible website which 750 

offers data on homes and apartments using multiple listing services and county databases including 

building age, HVAC information, and livable area. Zillow furthermore uses existing publicly available 

information as well as a proprietary algorithm to derive an estimate of the current (as of December 2020) 

evaluation of the home or apartment (rent if a rental unit) termed a “Zestimate®.” If the address matches an 

apartment complex, the first listed unit was then used to find the year of construction, HVAC information, 755 

http://purpleair.com/json
http://api.purpleair.com/
http://osmnx.readthedocs.io/en/stable/
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and a bell-weather of the typical price and area of apartments since these can vary within complexes. From 

the 1274 address, 79.5% returned the year of construction, 83.6% returned HVAC data, 76.7% returned a 

price estimate, and 72.2% returned the area.  Out of the 1274 buildings analyzed, 1112 (87%) buildings 

were found to be residential. Among these residential buildings, 80%, 13%, and 4% were matched to single-

family houses, condominiums or multi-family buildings, and apartments, respectively.  760 

As an additional sensitivity analysis, we restricted our dataset to the 87% of buildings that could 

unambiguously by ascertained to be residential. For this restricted dataset, the mean infiltration ratios on 

both fire days and non-fire days changed by less than 0.01. 

 

 765 

Fig. S1. A. Annual average PM2.5 concentrations in 3 Air Basins in California from 1999 to 2019 (Data 

retrieved from California Air Resource Board website https://www.arb.ca.gov/adam). The missing point 

is because of insufficient data available to determine the value. B. San Francisco Bay Area Air Quality 

Index (AQI) category in August and September 2020 based on 24-hour average level of PM2.5 at each EPA 

Air Quality Measurement Station. 0 - 15.4 µg/m3: Good; 15.5 - 35.4 µg/m3: Moderate; 35.5 - 55.4 µg/m3: 770 

Unhealthy for sensitive groups; 55.5 - 150.4 µg/m3: Unhealthy; 150.5 - 250.4 µg/m3: Very unhealthy. 

 

  

https://www.arb.ca.gov/adam
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Fig. S2. A. Study regions in the San Francisco Bay Area. Google Earth imagery © 2020 Google. PurpleAir 775 

sensors in the three boxes were analyzed together. B. Locations of all the indoor PurpleAir sensors included 

in the NC 2020 case. 
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Fig. S3. A. Study region in the Greater Los Angeles Area. Google Earth imagery © 2020 Google. B. 780 

Locations of all the indoor PurpleAir sensors included in the SC 2020 case. 
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Fig. S4. Quantile-quantile plots of mean indoor PM2.5, on the fire days (A) and non-fire days (B) against 

Weibull distribution. The reference line represents the theoretical Weibull distribution. 785 
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Fig. S5. Diel plots (local time) A. Infiltrated PM2.5 /outdoor PM2.5 on fire days and B. Infiltrated PM2.5 / outdoor 

PM2.5 on non-fire days C. Diel plot of the difference in infiltrated PM2.5 / outdoor PM2.5 (non-fire days – fire 790 

days). Gray shading in A & B shows the standard deviation. Data are average of all the PurpleAir sensors 

in the NC 2020 case. The difference in mean infiltration ratio between fire days and non-fire days are most 

apparent in the daytime, consistent with more ventilation typically occurring during daytime. 
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 795 

Fig. S6. Hourly time profile of PM2.5 concentration of the EPA monitors (black) and mean (purple) ± standard 

deviation (gray) of PM2.5 (corrected) measured by nearby PurpleAir sensors in the San Francisco Bay Area 

in August and September 2020. The plots only include EPA monitoring stations having at least three 
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outdoor PurpleAir sensors within 5 km of them. The EPA measurement and nearby PurpleAir sensors 

measurement agree reasonably well with each other. 800 

 

Fig. S7. Scatter plot of PM2.5 (µg m-3) of the EPA monitors and mean PM2.5 (corrected) measured by nearby 

PurpleAir sensors in the San Francisco Bay Area in August and September 2020. 
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 805 

Fig. S8. Hourly time profile of PM2.5 concentration of the EPA monitors and mean (purple) ± standard 

deviation (gray) of PM2.5 (corrected) measured by nearby PurpleAir sensors in the Greater Los Angeles 

Area in August and September 2020. The plots only include EPA monitoring stations having at least three 

outdoor PurpleAir sensors within 5 km of them. 
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 810 

Fig. S9. Scatter plot of PM2.5 (µg m-3) of the EPA monitors and PM2.5 (corrected) measured by nearby 

PurpleAir sensors in the Greater Los Angeles Area in August and September 2020 
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Fig. S10. Infiltration ratio of buildings in different climate zones A. on fire days (ANOVA p = 0.004); B. non-

fire days (ANOVA p < 10-3) in August and September 2020. Only climate zones with at least 10 indoor 815 

sensors being analyzed are included in this figure. Reference cities for different climate zones (which were 

included in our study) are: Zone 2-Napa, Zone 3-San Francisco & Oakland, Zone 4-San Jose, Zone 6-Los 

Angeles (LAX), Zone 8-Long Beach, Zone 9-Los Angeles (Civic Center), Zone 12-Sacramento (27). 

Infiltration ratio of residential buildings (NC 2020 case) built in different periods C. on fire days (ANOVA p 

= 0.004); and D. on non-fire days (ANOVA p < 10-3). Only residential buildings are considered in C and D. 820 

Buildings in Zone 12 had lower infiltration ratios than other Northern California climate zones considered. 



 

 

43 

 

  



 

 

44 

 

 

Fig. S11. Infiltration ratio on fire days for cool buildings (95th percentile indoor temperature < 30ºC, N = 

142) and hot buildings (95th percentile indoor temperature ≥ 30ºC, N = 1132) in the San Francisco Bay 825 

Area in August and September 2020. The cool buildings have significantly lower fire-day infiltration ratios 

than the hot ones (p < 0.01), and 17% of cool buildings had extremely low infiltration ratios (< 0.1). 
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Fig. S12. Violin plot of total particle loss rate constant in buildings in on the fire days and non-fire days. NC 830 

= San Francisco Bay Area, SC = Los Angeles Area. Each violin plot shows the probability density of the 

total PM2.5 decay rate and a boxplot of interquartile range with whiskers extended to 1.5 times the 

interquartile range. Circles indicate the median, and horizontal lines indicate the mean. 

  



 

 

46 

 

 835 

Fig. S13. Diel plots (local time) of average temperature measured by PurpleAir sensors in the San 

Francisco Bay Area in August-September 2020 (A. Indoor B. Outdoor) and November 2018 (C. Indoor D. 

Outdoor); and in August-September 2020 in Greater Los Angeles Area (E. Indoor F. Outdoor). Gray shading 

shows the standard deviation. In the Summer 2020 cases, the difference in daytime indoor/outdoor 

temperature alternated between positive and negative values. In the NC November 2018 case, the indoor 840 

temperature was almost always higher than the outdoor temperature. 
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Fig. S14. Median price of homes with indoor PurpleAir sensors vs. Median Housing Price in that city, sized 

by the number of indoor sensors in that city (only showing data from cities with at least 10 buildings with 845 

valid indoor sensors in the NC 2020 case). PurpleAir owners live in homes with estimated average property 

values 21% greater than the median property value for their cities. 
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Fig. S15. A. Hourly PM2.5 measured by EPA AQMS against the linearly corrected (correction factor = 0.53) 850 

PM2.5 data measured by nearby PurpleAir sensors; B. Hourly PM2.5 measured by EPA AQMS against PM2.5 

measured by the PurpleAir sensors after the binary tree correction, both for data in San Francisco Bay Area 

in August and September 2020. This figure demonstrates the binary tree model can improve the precision 

and accuracy of the sensors. 

  855 
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Fig. S16. Binary tree PM2.5 correction case. A. Distribution of mean Indoor/Outdoor PM2.5 ratio during fire 

days and non-fire days for the buildings; B. Distribution of Infiltrated/Outdoor PM2.5 ratio during fire days 

and non-fire days for the buildings. C. Probability density distribution of total indoor particle loss rate 860 

constants of PM2.5 for the NC 2020 case. This figure demonstrates the binary tree correction does not 

meaningfully affect the fire day/non-fire day comparison. 
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Fig. S17. Distribution of distance from the indoor sensor to A. the nearest EPA air quality measurement 865 

station and B. the nearest outdoor PurpleAir sensor in the NC 2020 case. The geometric mean (GM) 

distance from an indoor sensor to the nearest AQMS is 6.7 km, but it is only 0.21 km to the nearest outdoor 

PurpleAir sensor. 
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  870 

Fig. S18. Concentration timelines of PM2.5 reported by an “indoor” sensor and the nearest outdoor sensor. 

Because the indoor concentration measured is too close to and too well correlated with the outdoor 

concentration, this sensor might be placed outdoors. This node was therefore not used in this analysis. 



 

 

53 

 

  



 

 

54 

 

Table S1. Parameters and performance of 7 correction methods for the outdoor sensors in the San 

Francisco Bay Area in August and September 2020 (NC 2020 case). Parameters are for the 

correction equation 2.5, 0 1 1 2corrected CFPM PM RH  = + + . RH is between 0 and 1.  

 

 

Linear 
regression 

with 
intercept 

Linear 
regression 

no 
intercept 

Linear 
regression 

no 
intercept 

(ODR) 

Barkjohn 
et al.(9) US 

fire 
correction 

Holder et 
al. (3) 

wildfire 
correction 

New fit 
incorporating 

RH 

Binary 
decision 
tree with 

RH 

β0 
[µg m-3] 

3.52 n/a n/a 5.60 -3.21 3.92 n/a 

β1 0.50 0.53 0.54 0.53 0.51 0.50 n/a 

β2 n/a n/a n/a -0.084 n/a -0.80 n/a 

RMSEa [µg 
m-3] 

12.2 12.6 12.6 12.8 13.9 12.2 7.7 

NRMSEb 0.48 0.50 0.50 0.51 0.55 0.48 0.39 

Regressio
n R2 

0.88 n/a n/a n/a n/a n/a n/a 

R2
 of 

calibrated 
data 

against 
EPA 

reference 
measurem

ents 

0.88 0.87 0.87 0.88 0.88 0.88 0.95 

 

a. The root mean square error (RMSE, in [µg m-3]) is calculated by 

2

1

1
( )

N

h h

h

RMSE x R
N =

= − ,  

where N is the number of 1-hour PM2.5 [µg m-3] data points. xh is hourly averaged sensor PM2.5 

concentration [µg m-3] for hour h after correction. Rh is the hourly concentration of PM2.5 [µg m-

3] measured by the EPA AQMS. 

 

b. The root mean squared error normalized to the observed mean (NRMSE) is calculated by: 

h

RMSE
NRMSE

R
= , 
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where Rh is the mean PM2.5 [µg m-3] observed by reference EPA AQMS. 
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Table S2. Corrections based on linear regression of EPA monitor PM2.5 measurements with 

PurpleAir Sensors within certain distance in the San Francisco Bay Area in August and September 

2020 (NC 2020 case). Number of sensors refer to the total number of sensors near EPA monitoring 

sites that meets the requirements described in the “Selection of correction method” section in the 

Supplement. At most 50 sensors near each EPA site were included. Parameters are for the 

correction equation. 

Distance (km) 2 5 10 20 

Number of sensors 104 442 624 750 

Intercept β0 ≠ 0 

β0 [µg m-3] 3.26 3.52 3.77 4.05 

β1 0.50 0.50 0.50 0.49 

R2 0.89 0.88 0.87 0.85 

RMSE [µg m-3] 11.5 12.2 12.7 13.5 

NRMSE 0.46 0.49 0.51 0.53 

No intercept (β0 = 0) 

β1 0.53 0.53 0.51 0.52 

R2 n/a n/a n/a n/a 

RMSE [µg m-3] 11.8 12.6 13.1 13.9 

NRMSE 0.47 0.50 0.52 0.55 
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Table S3. Median prices of homes with PurpleAir sensors compared to Home Value Index in cities 

with at least 10 buildings with valid indoor sensors in the NC 2020 case, as of December 2020. 

Prices were rounded to nearest thousand. 

 
Median price of 

homes with 
PurpleAir sensors 

Number of 
buildings with 

PurpleAir sensors 

Zillow Home Value 
Index of that city 

Price Difference a 

Alameda $1,143,000 18 $1,119,000 2% 

Albany $1,257,000 14 $1,170,000 7% 

Atherton $7,306,000 10 $6,579,000 11% 

Belmont $2,240,000 13  $1,902,000 18% 

Berkeley $1,616,000 93 $1,411,000 14% 

Campbell $1,344,000 11 $1,441,000 -7% 

Davis $666,000 19 $759,000 -12% 

El Cerrito $1,045,000 14 $ 1,006,000 4% 

Emeryville $822,000 11 $ 583,000 41% 

Lafayette $1,992,000 33 $ 1,499,000 33% 

Los Altos $3,653,000 35 $ 3,429,000 7% 

Los Gatos $2,264,000 22 $ 2,142,000 6% 

Menlo Park $3,645,000 32 $2,417,000 51% 

Mill Valley $1,911,000 18 $1,746,000 9% 

Moraga $1,886,000 11 $1,726,000 9% 

Mountain View $2,317,000 44 $1,851,000 25% 

Oakland $1,300,000 104 $851,000 53% 

Orinda $1,941,000 24 $2,292,000 -15% 

Palo Alto $3,594,000 47 $3,151,000 14% 

Portola Valley $3,523,000 17 $4,099,000 -14% 

Redwood City $2,196,000 35 $1,628,000 35% 

Richmond $807,000 12 $635,000 27% 

Sacramento $469,000 39 $400,000 17% 

San Carlos $2,248,000 16 $2,003,000 12% 

San Francisco $1,696,000 193 $1,400,000 21% 

San Jose $1,460,000 49 $1,141,000 28% 

San Mateo $1,919,000 28 $1,461,000 31% 

San Rafael $1,447,000 15 $1,214,000 19% 

Santa Rosa $713,000 21 $637,000 12% 

Saratoga $3,109,000 11 $3,053,000 2% 

Sunnyvale $1,654,000 31 $1,771,000 -7% 

Walnut Creek $1,414,000 21 $958,000 48% 

aPrice difference = (Median price of homes with PurpleAir sensors - Median City Home Value)/ 

Median City Home Value 
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Table S4. Mean ± standard deviation of fire-day infiltration ratios and the number of buildings with 

fire-day infiltration ratios below 0.14 or above 0.40 in cities with at least 10 buildings with valid 

indoor sensors in the NC 2020 case. 

 

City 
Number of 

buildings with 
PurpleAir sensors 

Mean ± SD of Fire-
day infiltration ratio 

No. of Buildings 
with Fire-day 

infiltration ratio < 
0.14 

No. of Buildings 
with Fire-day 

infiltration ratio > 
0.40 

Alameda 18 0.19±0.09 5 1 

Albany 14 0.31±0.11 0 3 

Atherton 10 0.31±0.12 1 3 

Belmont 13 0.27±0.08 1 1 

Berkeley 93 0.27±0.10 10 13 

Campbell 11 0.24±0.13 0 2 

Davis 19 0.17±0.16 11 2 

El Cerrito 14 0.27±0.10 2 1 

Emeryville 11 0.26±0.16 3 1 

Lafayette 33 0.23±0.11 5 4 

Los Altos 35 0.33±0.19 7 12 

Los Gatos 22 0.34±0.15 2 7 

Menlo Park 32 0.27±0.12 3 5 

Mill Valley 18 0.36±0.18 1 6 

Moraga 11 0.16±0.10 4 0 

Mountain View 44 0.25±0.14 12 5 

Oakland 104 0.25±0.12 14 11 

Orinda 24 0.24±0.19 11 5 

Palo Alto 47 0.28±0.17 12 15 

Portola Valley 17 0.27±0.12 2 3 

Redwood City 35 0.30±0.15 8 11 

Richmond 12 0.25±0.16 4 2 

Sacramento 39 0.29±0.19 10 10 

San Carlos 16 0.20±0.10 5 1 

San Francisco 193 0.28±0.12 24 35 

San Jose 49 0.26±0.14 14 10 

San Mateo 28 0.26±0.11 3 2 

San Rafael 15 0.31±0.16 3 5 

Santa Rosa 21 0.31±0.15 4 6 

Saratoga 11 0.30±0.18 0 2 

Sunnyvale 31 0.22±0.15 8 7 

Walnut Creek 21 0.21±0.14 9 1 
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Table S5. Weibull parameters of the concentration indoor/outdoor ratios for buildings with PurpleAir 

sensors in August-September 2020 in the San Francisco Bay Area (35 µg m-3
 daily average PM2.5 

concentration measured at the nearest EPA measurement site was used as the threshold for fire 

days and non-fire days). N = 1274. Unhealthy days are defined as days with daily average EPA 

PM2.5 concentration above 55.4 µg/m3.  

 Mean indoor conc µg m-3 Indoor/outdoor ratio Infiltration ratio 

 γ β γ β γ β 

Non-fire 
days 

4.65 1.82 1.00 1.35 1.00 1.35 

Fire days 12.4 1.50 0.45 1.26 0.30 2.00 

Unhealthy 
days 

14.9 1.40 0.34 1.19 0.26 1.74 

 

Quantile-quantile plots (SI Appendix, Fig. S4) show the mean concentration of indoor PM2.5 in all 

the buildings can be satisfactorily described by the Weibull distribution. The scale parameter and 

shape parameter of the Weibull fit are γ and β, respectively. The probability distribution function for 

x is 
1 ( / )( ) ( ) xx

f x e
 

 

− −= , where x > 0. Parameters of the SC 2020 and NC 2018 cases are not 

shown here due to the small sample sizes, which are less representative of all the buildings in these 

areas at that time. 
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