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Abstract: Pentacoordinate carbon atoms are theoretically pre-
dicted here in a ferrocene dication derivative in both staggered-
[Fe(SisCsHs)2]*T (15 Cap) and eclipsed-[Fe(SioCsHa)a]* (25
C,,) forms for the first time. The barrier between these two
ranges from -38.11 to 4.90 kJ mol ™! at different levels. The
planar tetracoordinate carbon atom in the ligand Si,C5H, be-
comes a hypervalent pentacoordinate carbon upon complexa-
tion.

Carbon showing hypervalent behavior - either penta or
hexa - is rare but not very new to chemists. v Non-planar
pentacoordination to carbon has already been well estab-
lished in systems such as CHZ "®? CLij,"° C(CHg,);r,l1
[(Ph3PAu)5C]+,12 and SiQ(CHg,)}F.lS Likewise, non-planar
hexacoordination to carbon has been proven in CLig,m’14
[(PhsPAu)C)*","® and C4(CHs)at. "' Carbon atom hav-
ing heptavalency is theoretically predicted in trophylium tri-
cation, C,H:".'® Ferrocene, Fe(n5—05H5)2, is an eminent
molecule over the last seven decades.'® % Tt opened a new
avenue called organometallic chemistry, which is continu-
ously growing since 1951, 192324 Here, using Si,CsH, as a
ligand, two ferrocene derivative dication structures are the-
oretically identified — staggered—[Fe(SiQC5H2)2]2+(1; Cop)
and eclipsed—[Fe(SiQCE)Hg)Q]2+ (2; Cs,,) — that shows hyper-
valent nature (pentacoordination) to its ligand carbon atom
(see Figure 1). The latter was previously a planar tetraco-
ordinate carbon (ptC) atom ?52% in the absence of Fe’" ion.
Both 1 and 2 exhibit two hypervalent pentacoordinate car-
bon atoms due to the formation of a metallocene complex.

In our earlier theoretical work, various isomers of
Si,CsH, have been theoretically identified and it was
concluded that the molecule with a ptC atom, 2,7-
disilatricyc10[4.1.0.01’3]hept—2,4,6—trien—2,7—diy1, is the most
stable structure thermodynamically. 2T The global minimum
geometry for Si,CsH, has also been theoretically verified
elsewhere through search algorithms. 8 The kinetic stability
of the latter through appropriate dissociation pathways has
been analyzed by us in detail recently. 2 1t was proven the-
oretically that the global minimum isomer of Si,CsH, with
a ptC atom is not only thermodynamically stable but also
kinetically stable. 2

Considering the fact that both 1 and 2 are dications with
a net charge of 2+, it was speculated that Fe is in +4 oxida-
tion state ([Ar] 3d") as in decamethylferrocene dication.*
However, the electronic ground states in both 1 and 2 are not
triplets and they are rather singlets. Moreover, the triplets
are 70.98 and 16.46 kJ mol™ ' above singlets in 1 and 2,
respectively, at the wB97X—D31/6—311++G(2d,2p)32—SDD
(Fe)® level of theory. Thus, the oxidation state of Fe in
both 1 and 2 is +2 ([Ar] 3d°) and the ligands (Si,CsH,)
are neutral. Overall, these complexes do follow the effective
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Figure 1. Optimized structures of (a) staggered- and (b)
eclipsed-[Fe(SiQC5H2)2]2Jr (Fe:orange; Si:bisque; C:gray;
H:white). Bond lengths are indicated in A.  Wiberg bond
indices are given in (c) and (d), respectively. Calculations are
done at the wB97X-D/6-3114++4G(2d,2p)-SDD (Fe) level of
theory.

atomic number (EAN) rule (EAN = 36) and attain the elec-
tron configuration of Kr. Therefore, we believe that these
complexes could effectively be identified in the laboratory
sooner than later provided if Si,CsH, ligand could be pre-
pared.

The C-C bond length in 1 range from 1.41 to 1.46 A (see
Figure 1 (a)) whereas in 2 it varies from 1.42 to 1.47 A (see
Figure 1 (b)). Compared to ferrocene,?" where the mean
C-C bond length is equal to 1.431 A, these bond lengths are
slightly varied, which is reasonable due to the ionic charac-
ter (dication) in these complexes apart from the presence of
silicon atoms. Likewise, the Fe-C bond length in 1 range
from 2.08 to 2.12 A whereas in 2 it varies from 2.07 to 2.10
A. In ferrocene, the mean Fe-C bond length is equal to 2.059
A and here they are slightly longer. The Si-C bond length
connected to the hypervalent carbon is 2.00 A in 1 and 1.99
A in 2, which reflects its single bond characteristics whereas
the Si-C bond on the sides are shorter with a bond length of
1.79 A in both the cases. This shows its double bond char-
acteristics. In principle, the isolated Si,CsH, ligand almost
behaves like cyclopentadienyl anion (CsHjs ) with a slight
exception that the former contains 3c-2e o bond around Si-
C-Si region.%’29 That is evidently seen even when it makes
complexation with Fe>™. The zero-point vibrational energy
(ZPVE) corrected-relative energies and Gibbs free energies
obtained for 1 and 2 at different levels are shown in Table



Table 1. ZPVE-corrected relative energies (AFE,) and thermally corrected Gibbs energies (AGoygg 15) of 1 and 2 at various levels”
isomer 1 isomer 2
Functional AEO AG298‘15 AEO AG298‘15
wB97X-D 0.00 0.00 5.61 6.54
B3LYP 0.00 0.00 4.90 6.44
B3LYP-D3BJ 0.00 0.00 -5.63 -3.11
TPSSh 0.00 0.00 -29.08 -26.52
TPSSh-D3BJ 0.00 0.00 -30.44 -29.44
MO06-L 0.00 0.00 -38.11 -38.02
® All values are in kJ mol ™.
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