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ABSTRACT: Organic azides are still in the center of click chemistry connecting two molecules. However, taming the conjuga-tion selectivity of azides is difficult without the help of the bulky groups. We report herein the unique reactivities of α-azido secondary acetamides (α-AzSAs) as minimal and unhindered azide structures. The NH–azide interaction in the α-AzSAs, sup-posed by DFT calculation, allowed selective conjugation in the presence of other azido moieties. With Staudinger-Bertozzi ligation, α-AzSAs proceeded the conjugation prior to the other primary alkyl azides. On the other hand, in propargyl cation-mediated triazole synthesis, other alkyl azides, including tertiary alkyl azides, underwent the conjugation faster than α-AzSAs. We also demonstrated discriminative integration of the functional components onto the diazide modular hubs. 

 
Figure 1. Multi-click Modular Hub Strategy Toward Multifunc-tional Materials, and Issues of Multi-Azides as Modular Hubs. In a broad range of scientific areas, including chemical biol-ogy and polymer synthesis,1,2 click chemistry3 represented by organic azides4 received much attention, which conju-gates two molecules concisely. Beyond this established one-on-one conjugation,5 a multi-click modular hub strategy can integrate multiple compounds onto one scaffold molecule (Figure 1). Owing to the high reactivity with sufficient sta-bility and small steric influence, multi-azides, compounds possessing multiple azido groups, have sparked interest in click scaffolds of multicomponent integration. In addition, multi-azides are easily accessible multi-click substrates, for example, by late-stage global azidation and polymerization of monoazides.6,7 For these reasons, multi-azides could 

serve so-called functionalized element-block materials8 such as cross-linking, energetic, Janus-type polymers in pol-ymer chemistry,9,10 chemical probes, and pharmaceuticals in chemical biology and life sciences.11,12 However, although global azide-click conjugation of the same components has been well-documented, site-specific conjugation remains limited in multicomponent integration.13,14 Especially, the similar reactivities among alkyl azides give difficulty on site-specificity. 

 
Figure 2. Molecular Designs of Distinguishable Organic Azides Toward Multicomponent Integration. For discrimination of each azido position in multi-azides, suitable molecular structures have been studied (Figure 2). Along with the different nature between alkyl and aryl (alkenyl) azides,13,15 steric influence,16,17 metal coordina-tion,18,19 and electron-poor aryl groups20 are often utilized 



 

along with recently developed azide-protecting strategy.21 However, discrimination of the azides mostly relies on the bulky substituents such as aromatic rings and tert-alkyl groups, and these could negatively impact the physiochem-ical properties and dynamics of the materials.22,23 Thus, a new azide-discrimination strategy free from the help of the bulky substituents should be investigated. Focusing on multi-azide chemistry, we recently reported the site-selective conversion of azido groups at carbonyl α-positions to diazo or oxime click groups with retention of another azide moieties and the one-pot multi-component conjugation onto the triple-click scaffold converted from the tris(alkyl azide) compound.14,24 Although our methods allow multiple alkyl azido groups distinguishable, extra conversion step is undesired for conjugation. Inspired by metal-coordination18 and α-azido carbonyl strategy,14 we envisioned that the intramolecular azide-NH interaction in α-azido secondary acetamides (α-AzSAs)25,26 could serve unique reactivity without bulky substituents. Herein, we re-port α-AzSAs as minimal and unhindered azido units, which allow selective conjugation in the presence of other organic azides. We also showcase the discriminative integration of the functional components onto the diazide modular hubs. 
Chart 1. General Reactivity of Organic Azides and Work-
ing Hypothesis on α-AzSAs. 

 In general, unlike alkyl azides, electrophilic addition reac-tions of aryl (alkenyl) azides are favored because of the sta-bilized triazene intermediates (Chart 1).27 In contrast, nu-cleophilic reactions with aryl (alkenyl) azides are sup-pressed due to the low nucleophilicity by the delocalization. We hypothesized that intramolecular hydrogen bonding28 in α-AzSAs could change the reactivity of alkyl azides. In other words, by the hydrogen interaction, α-AzSAs could be supposed to promote electrophilic reactions,29,30 but to sup-press nucleophilic reactions. Although α-AzSAs, also de-scribed as secondary amides of azidoglycine, are general in click chemistry, their specificity has not been mentioned to the best of our knowledge. 
Table 1. Calculated Stable Conformations of Organic Az-
ides and Charge Distribution on their Azido Groupsa 
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 Entry Compounds/ Confor-mations Mulliken Charge Distribution (a.u.) N1 N2 N3 1 1a -0.284 +0.253 -0.167 2 1b -0.310 +0.258 -0.151 3 1c -0.268 +0.259 -0.154 4 1d -0.295 +0.270 -0.140 5 1e -0.333 +0.256 -0.145 6 1e’ -0.275 +0.260 -0.145 7 1e” -0.312 +0.265 -0.144 8 1f -0.329 +0.266 -0.147 9 1g -0.292 +0.285 -0.093 10 1g’ -0.351 +0.274 -0.086 11 1h -0.261 +0.255 -0.168 12 1h’ -0.319 +0.253 -0.148 13 1i -0.272 +0.251 -0.184 14 1j -0.261 +0.270 -0.129 
aThe DFT calculations performed with the Gaussian09 suite of programs using the dispersion-corrected B3LYP-D3 density functional with the 6-311G** basis set. To prove our hypothesis, we began our study from DFT calculation (Table 1, see also Supporting Information).31,32 From the obtained stable conformations, the direction of C-N3 bonds of ketone, ester, and secondary amide of α-azido carbonyl compounds 1b–d are in s-trans. In contrast, ter-tiary amide 4 is eclipsed conformation for its steric repul-sion between azido and N-methyl groups. Alongside these s-trans conformations, we found that charge density on N1 atom of azido group in α-AzSA 1e gained compared to other compounds, especially among the amides. In the case of its conformers (1e’ and 1e’’), the charge distribution value on N1 atom of non-s-trans 1e’ is much decreased, whereas s-

trans 1e” keeps similar. These should suggest an interaction between the N1 atom in the azide group and the N-hydro-gen atom in the amide group.25 Propanamide of α-AzSA 1f shows similar stable conformation with increased value on 



 

N1. Because a positive interaction with the dipolar azido group is unlikely, the NH-N1 interaction would be observed by the dipolar repulsion-induced stable s-trans confor-mation of the α-AzSA structure. Indeed, α-difluoroazidoa-cetamide 1g, which is known to be isolable,33 is s-trans be-tween carbonyl and fluoride groups. Neither 1h with az-idoalkyl side chains nor β-AzSA 1i show any NH-N1 interac-tion. Unlike amides, sulfonamide 1j does not show specific interactions due to the loss of planarity.34 These results sug-gest the interaction between NH and azide group, which in-fluences the electronic situation of the azido group, and prompted us to use α-AzSAs as uniquely clickable azides. We turned to a feasibility study by both electrophilic and nucleophilic reactions of various azides under competition with a general alkyl azide. First, we examined Staudinger-Bertozzi ligation reaction with 2a as an electrophilic reac-tion (Scheme 1).35 Because the addition of phosphines to the organic azides is a reversible step, stabilization of phos-phazide intermediates can improve the reaction progress. In the case of aryl azides of this reaction, stabilization of phoshazide from aryl azide by hydrogen bonding with NH of amide has been demonstrated.36 With α-AzSAs of alkyl az-ides, as expected, ligation products 4b–e from α-AzSAs 3b–
e were obtained almost predominantly (nearly >20 : 1 ra-tio) in excellent yields, even under competition with 3-phe-nylpropyl azide 3a. α-AzSA 3f of the secondary alkyl azide only showed moderate selectivity due to the steric influence at the stage of aza-ylide formation in Staudinger reac-tion.29,30 The low selectivity of 3g with β-azido group and 3h with azidoalkyl side chain37 revealed the importance of az-ide positioning. Although the values are variable, the down-field chemical shifts of the N-H in 1H NMR25e,38 compared to those without the azido group would also suggest the hy-drogen bonding of α-AzSAs. Despite the same α-azidocar-bonyl structures, tertiary amide, ester, and ketone 3i–k gave 4i–k in only moderate selectivity. Benzyl azide 3l did not show specific selectivity. In the competitive reactions with aryl azides 3m,n, α-AzSA 3b produced the correspond-ing compounds in excellent selectivity (eqs 1, 2). This selec-tivity was also observed in traceless Staudinger ligation (eq 3).39 
Scheme 1. Competitive Staudinger-Bertozzi Ligationsa 

 
a0.1 mmol scale. Yield determined by 1H NMR. bNot observed due to the volatility. Encouraged by the positive reactivity of the electrophilic behaviors, we moved to evaluate the nucleophilic charac-teristics of α-AzSAs (Scheme 2). Previously, we developed propargyl cation-mediated triazole synthesis with organic azides by way of the nucleophilic addition to the propargyl cation followed by cyclization.40,41 With propargyl alcohol 5 and α-AzSA 3a, we examined competitive reaction followed by aqueous quench for introduction of the hydroxy group. As expected, the reactivities of N-benzyl and N-cyclohexyl 



 

α-AzSAs 3b,c were very low compared to that of 3a, and most of the starting α-AzSAs were recovered. On the other hand, 3a was converted to triazole 6a in excellent yields. The observed excellent selectivity (1 : >20 ratio) was in-versed to that of Staudinger-Bertozzi ligation (Scheme 1). 
3d with bulky side chain showed moderate selectivity, but the selectivity was improved in toluene. Unexpectedly, N-phenyl α-AzSA 3e did not show selectivity in dichloro-methane, and the reaction suppression by toluene solvent was not satisfactory. Secondary alkyl α-AzSA 3f also exhib-ited good selectivity (1 : 17), whereas β-AzSA 3g or N-az-idoalkyl amide 3h did not. The selectivities of tertiary amide, ester, ketone, and benzyl azides 3i–l were moderate or not observed. The specificity of α-AzSAs was also demonstrated with bulky tertiary alkyl azide 3o (Eq 4). While the reaction with 3a and 3o gave less-hindered 6a from 3a as a major product, bulky 6o from 3o was obtained as a major product under competition with primary alkyl α-AzSA 3b. These re-sults indicate that the α-AzSA skeleton is a primary alkyl az-ide that can exhibit high selectivity by both promoting elec-trophilic reactions and inhibiting nucleophilic reactions. 
Scheme 2. Competitive Carbocation-Mediated Triazole 
Formation Reactions with Propargyl Alcoholsa 

 
a0.1 mmol scale. Yield determined by 1H NMR.  bReaction in toluene. cNot determined due to the volatility.  dIsolated yield. On the other hand, unlike the tested stepwise reactions, strain-promoted azide-alkyne cyclization (SPAAC) of peri-cyclic reaction42 with 7 showed no selectivity (Scheme 3).25e This result indicates that the azido groups in α-AzSAs retain the same 1,3-dipolar reactivity to general alkyl azides. In-deed, the reaction with 3a and a bulky 3n gave 8n in a sim-ilar ratio to the reported values.17a,b 

Scheme 3. SPAAC Reactionsa 



 

 
a0.1 mmol scale. Yield determined by 1H NMR except for 8n (isolated yield). Having identified the unique reactivities of α-AzSAs, we examined the site-selective conjugation of diazides contain-ing α-AzSA structure (Scheme 4). A diazide of aryl and α-AzSA 9a, Staudinger-Bertozzi ligation occurred at the α-AzSA moiety selectively. With a 2,6-dichloro azido benzene unit forming stable aza-ylides,20e one-pot double Staudinger reaction was also successful to give 10ac. Next, bis(al-kylazido) compounds were investigated, which have been difficult for discriminative conjugation. α-AzSA-selective li-gation of 9b was accomplished in 70% yield with 11% of overreacted 10bb. On the other hand, alkyl azide-selective triazole synthesis was achieved to give 10bc without the overreaction byproduct, although the azide close to tert-amide was also unreactive. With 9c consisted of primary and tertiary alkyl azides, SPAAC42 occurred only at the α-AzSA moiety by following the steric hindrance (Scheme 3). Nevertheless, by our method,40 we could reverse this selectivity to obtain 10cb of the bulky azide-reacted triazole in 43% with the recov-ered 9c in 47% yields. Longer reaction time decomposed 9c and 10cc by the generation of tertiary carbocation. Alt-hough not perfect, we demonstrated the way to the prior use of the sterically hindered azide even in the presence of unmasked and unhindered azide. In all cases, one-on-one adducts at the opposite azide positions were not observed. 

Scheme 4. Site-Selective Use of Azido Groups in α-AzSA-
containing diazidesa 
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aIsolated yield except for recovered 9b (1H NMR Yield) in the reaction to 10ba due to the difficulty of purification. Finally, we sought to showcase the site-selective conjuga-tion of functional groups onto the bis(primary alkyl azide) compound 9d (Scheme 5). The traceless Staudinger liga-tion39 achieved the prior use of α-AzSA moiety to attach the fluorescent azobenzene moiety to give 11aa followed by the conjugation at the benzylic position with biotin 2e. The con-jugation from 9d to 11ab was also successful in one pot. By contrast, selective conjugation at the benzylic azide was demonstrated by three-component coupling with chloroal-kyl propargyl alcohol 5c followed by azidation40a,b to give di-azide 11ba. To the less-hindered α-AzSA moiety in 11ba, 2e was attached selectively. Lastly, CuAAC of the highly hin-dered triarylmethyl azide15b,43 in 11bb with the propargyl ether of fluorescent unit 12 was accomplished to afford 

11bc. In summary, we reported the unique reactivities of the α-AzSA structure as a minimal and unhindered azido unit. The amide-NH–azide interaction in the α-AzSA, supposed by DFT calculation, allowed selective conjugation in the pres-ence of other organic azides. With Staudinger-Bertozzi liga-tion, α-AzSAs could conjugate prior to the other primary al-kyl azides. On the other hand, in the case of propargyl cat-ion-mediated triazole synthesis we have developed, α-AzSAs kept inert, and other alkyl azides, including even ter-tiary alkyl azides, underwent the conjugation. We also demonstrated discriminative integration of the functional 



 

Scheme 5. Site-Selective Integration of Functional Compounds onto the Primary Alkyl Diazidea 

 
aIsolated yield. TBTA: Tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine. components onto the diazide modular hubs. The unique characteristics of α-AzSAs44 would open a new methodology of discriminative azide click reaction free from bulky sub-stituents. We also believe that this work could develop mul-tifunctional chemical probes and polymer materials. Fur-ther research based on this strategy is currently ongoing in our group. 
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