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Abstract

The performance of polymer electrolyte fuel cells decisively depends on the

structure and processes in membrane electrode assemblies and their components,

in particular the catalyst layers. Essential structural building blocks of catalyst

layers are formed during processing and application of catalyst inks. Accelerat-

ing the structural characterization at the ink stage is thus crucial to expedite

further advances in catalyst layer design and fabrication. In this context, deep

learning algorithms based on deep convolutional neural networks (ConvNets)

can automate the processing of the complex and multi-scale structural features

of ink imaging data. This article presents the first application of ConvNets for

the high throughput screening of transmission electron microscopy images at

the ink stage. Results indicate the importance of model pre-training and em-

ployment of data augmentation that works on multiple scales in the training of

robust and accurate classification pipelines.

Keywords: High Throughput Screening, Catalyst Layers, Fuel Cells,

∗Corresponding author
Email addresses: m.eslamibidgoli@fz-juelich.de (Mohammad J. Eslamibidgoli),

k.malek@fz-juelich.de (Kourosh Malek)

Preprint submitted to ChemRxiv July 10, 2021



Microscopy Characterization, Deep Learning, Convolutional Neural Networks

1. Introduction

Despite decades of research, the rapid improvement of the effective electro-

catalytic activity and durability of catalyst layers (CLs) remains a foremost

challenge in efforts to drive forth the commercialization of polymer electrolyte

fuel cells (PEFCs). Accelerating the fabrication process and the evaluation5

of CLs are crucial in view of two major goals in PEFC development: drasti-

cally reduce the Pt loading and enable operation at high current and power

density.[1, 2, 3, 4, 5, 6]

Conventional catalyst layers are fabricated from ink-based recipes that include

a solid-state catalyst of Pt nanoparticles supported typically on a high-surface10

area carbon (Pt/C), an ionomer dispersion (e.g., Nafion or Aquivion), and a

water-alcohol mixture as the solvent.[7, 8, 9] Ink-based methods allow for the

rapid and reproducible manufacturing of membrane electrode assemblies. In

the ink, Pt/C particles assemble into porous agglomerates, with small intra-

agglomerate pores (primary pores, ¡ 10 nm) and larger pores (secondary pores,15

30-150 nm) being formed in the inter-agglomerate space.[10, 11] Ionomer molecules

assemble into a network of skin-type films that partially encapsulate agglom-

erates, with a thin proton-conducting water film formed between agglomerate

surface and ionomer films. The resulting bi-modal pore size distribution as well

as the heterogeneous wettability of pore surfaces determine the liquid water20

saturation in the CL as well as other porous fuel cell media, thereby exerting a

major impact on PEFC performance.[12]

Ink-based fabrication affords variations in Pt loading, ionomer content, carbon

content and type of carbon, size distribution of Pt and C particles, wetting prop-

erties of pore walls, thickness of the applied CL, dielectric properties of the ink25

solvent, ink processing conditions, temperature, and stirring rate. In the past

two decades, optimization in this multidimensional parameter space has been

extensively pursued.[13, 14, 15, 16] Following ink fabrication, the ink is applied
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to the membrane or deposited onto a substrate by a wet-coating technique to

prepare a catalyst coated membrane (CCM) or membrane electrode assembly30

(MEA). The properties of the starting ink, in combination with the CL de-

position process, determine structure, properties and performance of resulting

MEAs.[17, 18, 19, 20, 21] The correlations among fabrication parameters, ink

ingredients, intrinsic materials properties, microstructure, and operating condi-

tions are difficult to unravel. Large uncertainty and controversy thus remain35

regarding the key descriptors that must be monitored and controlled in the

manufacturing process of MEAs to deliver cells with optimal performance.

Electron microscopy is the most widely employed characterization method in

nanoscience. It provides images at (sub-) nanometer resolution, which con-

tain quantitative information about particle and pore size distributions, crystal40

structure, materials morphology, and composition.[22, 23] Transmission elec-

tron microscopy (TEM) has become a standard imaging technique to study the

microstructure of MEA components, prior to cell assembly or post-testing.[24,

25, 26, 27, 28] High resolution imaging techniques such as high resolution TEM

(HR-TEM), high-angle annular dark field – scanning transmission electron mi-45

croscopy (HAADF-STEM), 3D electron tomography or high-resolution atomic

force microscopy (HR-AFM) have yielded 2D or 3D images of catalyst layer

microstructures in both inks and deposited layers.[29, 30, 31, 32, 33, 34, 35]

Many useful descriptors from TEM images of catalyst layer inks are difficult to

distinguish upon visual examination. These features, however, can be automat-50

ically determined by machine learning algorithms. Moreover, recent advances in

autonomous materials fabrications using lab-scale stationary or mobile robotic

arms[36, 37, 38, 39, 40] demand a bidirectional and rapid data flow from cata-

lyst fabrication to ink preparation, CCM fabrication, MEA assembly, and half

or full cell design, including testing and in situ/ex situ characterization steps.55

The focus of this article is on the subsection of the discovery pipeline from

the fuel cell ink to device. In this area, data workflows are lacking algorithms

for extracting information from imaging data.[41] An AI-driven algorithm for

rapid image processing could assist materials discovery-on-a-chip by improving
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the data workflow. This approach, complemented by data acquisition units60

and physical modeling, as well as by high-throughput communication with AI-

driven processes during the primary materials design stage, can be utilized for

optimization purposes at all levels from ink, to CCM and further to complete

cell or stack.

2. Methods65

Our methodical pipeline for TEM image recognition of catalyst layer inks con-

sists of three steps: (1) data sampling and data augmentation at multiple scales;

(2) making use of a network model pre-trained on large generic natural images

dataset, ImageNet, for transfer learning; and (3) training a classifier for ink

recognition. In the first step, the model performance is evaluated against the70

prepared fixed-scale datasets. In the second step, a comparison of model per-

formance is made with a custom ConvNet model trained from scratch. Finally,

in the last step we present a fast and accurate approach for ink classification by

training a logistic regression model on extracted features obtained from transfer

learning.75

2.1. Microscopy characterization

For the purpose of our investigation, we used TEM imaging data provided by

Automotive Fuel Cell Cooperation (AFCC) from two independent experimental

studies of catalyst powder agglomeration with Nafion and Aquivion ionomers

employed as hinders. Three ink powders were studied with Nafion ionomer,80

EA50 I33 ink, F50 I33 ink and V50 I33 ink (EA - graphitized, F - stabilized and

V - Vulcan carbon support with Pt from TKK, and 33 wt% Nafion ionomer),

and three with Aquivion ionomer, EA50 I33 ink, F50E I33 ink and V50 I33

ink. The inks were sonicated for 30 minutes before deposition of a few drops

onto a lacey carbon 300 mesh formvar coated TEM grid (TedPella). All samples85

were imaged using a FEI Tecnai G2 200 kV Transmission Electron Microscope.

Further information about the raw images and initial processing are provided

in the Electronic Supporting Information (ESI).
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2.2. Dataset preparation

The ink agglomerates encompass multi-scale structural features which are in fact90

highly relevant to the physical descriptors of CL performance and lifetime. As

exemplified in Figure 1 (a) at different levels of magnification, these descriptors

include the size, morphology and distribution of carbon particles as well as of

catalyst nanoparticles, the size and distribution of ionomer aggregates, or the

pore networks. As TEM images display structural features at different length95

scales and resolution, the main objective for a ConvNet model would be to

effectively extract these features from the input data. Such features should

make it possible for instance, to accurately identify the optimal vs. non-optimal

samples or to reliably sort large databases in terms of the type of material.

Therefore, during the training, the input dataset should be diverse enough to100

enable the emergence of such multi-scale structural features in the network.

To prepare a diverse input data space, we employed data augmentation techniques[42]

via deploying region proposal algorithms - primarily designed for the object de-

tection problems.[43] Two different region-specific approaches were employed:

1. A näıve and rather inefficient Sliding Window (SW) technique, and 2. the105

more efficient Selective Search (SS) algorithm.[43] By comparing the two ap-

proaches, we aim to demonstrate the effectiveness of using the latter. Given

the high-resolution TEM ink data at large length scales (200-500 nm), these

methods also generate a large number of examples for training and validation

purposes required in the deep learning model development. Before applying the110

region-specific approaches, the images in each class were split into training and

hold out sets; this ensures no leakage between the two sets (see ESI for details).

As shown in Figure 1 (b), to sample the imaging data using the SW approach,

varying window sizes of 100 × 100, 200 × 200, 300 × 300 and 500 × 500 pixels

were slid over the raw ink images (see ESI). This was performed both on the115

training set and the hold out set. At each stop of the window, the corresponding

fixed-scale image patch was extracted. This window was initiated at the top

left of each image and moved 25-pixel steps to the right before moving back to

the leftmost edge. After these steps, the window was moved down by 25 pixels
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Figure 1: (a) An example of real-world images of catalyst ink agglomerates at different levels

of magnification or resolution. (b) Representation of the Sliding Window technique to sample

fixed-scale patches from high resolution TEM images of catalyst inks. (c) Representation of

the Selective Search algorithm[43] to sample patches from high resolution TEM images of

inks based on hierarchical grouping of similar regions such as color, size, texture and shape

compatibility.

and this whole procedure was repeated. The main drawback of this technique120

is that it does not discriminate between parts of the images that contain the

agglomerates from those that are mostly part of the background which leads

to creating a noisy training set. Moreover, the choice for the aspect ratio of

the sliding window is arbitrary; this may diminish the ability to extract useful

features.125

To address the first issue and filter out images with a high amount of back-

ground, only those images in which the mean grayscale value of the pixels is

lower than 115-155 were saved, depending upon their respective classes (the

possible values for the pixels range from 0 (black) to 255 (white)). This was

performed on the basis that the agglomerates are significantly darker than the130

background, where the lower values of the pixels correspond to a darker tone.

Therefore, a lower mean pixel value of an image generally corresponds to a larger
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proportion of the image being occupied by the agglomerates. After this initial

step, the images were further inspected to remove images containing a large

amount of background. As for the second issue, we used various window sizes135

as described above. Therefore, in our first approach to create the dataset, we

combined several fixed- scale extracted patches using the SW technique, which

is rather an inefficient way.

As shown in Figure 1 (c), as the second approach for data augmentation and

extract patches from the high-resolution ink images, we employed the Selective140

Search algorithm.[43] Selective Search is a region proposal algorithm designed

to localize possible object locations in the input image based on the hierarchical

grouping of features and regions subject to the similarity of diverse factors such

as the color, texture, lighting conditions, and composition - referred to diver-

sification. Selective Search has outperformed several previous region proposal145

algorithms in terms of execution time, repeatability, proposal recall, detection

and mean average precision.[44] On our dataset, it also resolved both issues with

the SW approach, that is the undesired background patches and the lack of vari-

ability in the aspect ratio of the extracted images. This is because SS aims to

select the parts of the image that contain agglomerates at different scales and150

with varying sizes.

A full implementation of the SS algorithm is available in Python, which includes

three modes according to various diversification strategies explained in the orig-

inal paper.[43] For our dataset preparation, the SS in the mode ‘quality’ was

applied to each high-resolution ink image in the initially separated training and155

hold out sets. From this dataset, we discarded patches in which either length

or width were under 100 pixels due to their relatively low resolution. Moreover,

the ratio between the height and the width or between the width and the height

was also calculated; all images where one of these two ratios are greater than 2

were discarded. From these resulting filtered images, about 2000 images for the160

training set and 2000 images for the hold out set were selected for each class

(see Table 1 in the ESI). It was hereby ensured that the selected images were

sourced in roughly equal proportions.
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Figure 2: (a) Architectures of the custom network trained from scratch in this study, (b) that

for the mini-VGG pretrained model on ImageNet dataset employed in this study for transfer

learning for the catalyst ink image classification.

2.3. ConvNets for image classification

In a typical ConvNet architecture for classification,[45] we provide as input an165

image and predict as output the probability distribution over possible classes

which sums up to 1. An image is a 3D tensor (row × column × channel).

The ConvNet performs a set of convolutions by sliding over all spatial locations

of the image and applying learnable kernels (filters, or feature detectors) to

generate transformed representations known as activation maps that can be in-170

terpreted as signaling for particular learned features. Activation maps in hidden

layers are as well organized in 3 dimensions. The activation maps have smaller

spatial dimensions, but larger depth in channel dimension as compared to the

original input image. Each activation map channel learns to respond to certain

features of the image. As we go deeper in convolutional layers, filters become175

more complex reflecting high-level features in the image.[46]. For example, in

the first convolutional layer channels may detect low-level features like edges,

while second layers may detect various edge compositions and so on. For most

ConvNets, the convolution operations are often followed by applying activation

functions, as well as pooling operations. Activation functions, such as Rectified180

Linear Units (ReLU), introduce simple non-linearities into the layer-wise signal
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transformation that are essential for sufficient model expressiveness, while help-

ing to avoid vanishing gradients during model optimization. Pooling constitutes

a down-sampling process that operates over each activation map independently,

creating a smaller activation map. The max pooling operation (pooling the185

maximum pixel value) is a common pooling operation alongside average pool-

ing. Flattening or global average pooling are also applied to convert multiple

feature maps to a single vector representation which is used as an input for a

fully connected layer or classifier in the last step.[46]

After a series of the convolutional layers, fully connected or global pooling layers190

are applied to generate a 1D feature vector. A classifier is then applied to

generate the probability distribution over each class. In order to classify the

image, the class corresponding to the largest probability value is taken. Once the

class probability distribution is generated based on the current ConvNet weights,

loss signaling mismatch between network output and true class assignments is195

computed. Backpropagation is then applied to compute the gradient of loss

function with respect to each weight in every single kernel and the weights are

modified to minimize the loss function.

Due to the high amount of training data, time, and computational resources

required to train a ConvNet model from scratch transfer learning is usually200

adopted especially in cases where data is limited, where a pretrained model is

used to extract reasonable generic features from the image and enable learning.

A pretrained model can be for instance trained on a large generic natural image

dataset to solve a classification problem. In our work, we employed the VGG16

model trained on the ImageNet dataset.[47] For our dataset, we found that only205

the first four pretrained convolutional layers of VGG16 in conjunction with the

corresponding max pooling layers are sufficient for accurate classification (mini-

VGG). The employed architectures are shown in Figure 2.
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3. Results and Discussion

The dataset was prepared for the six sample classes, namely, EA, F and V210

supports in Nafion and Aquivion. The overall steps to train and evaluate a

ConvNet model after splitting and preprocessing the data include: 1. choosing

the network architecture, 2. initializing the weights, 3. finding a learning rate

and regularization strength, 4. minimizing the loss function and monitoring the

progress, and 5. evaluating the model on the hold out set.215

To set a benchmark for our study, as a first approach, a relatively shallow

custom ConvNet was constructed the architecture of which is shown in Figure 2

(a). Next, we evaluated various scenarios for the training and the hold out sets.

Figure 3 shows the learning curves (validation accuracy vs. epoch number) of

the different combinations. In the first case, when the network is trained on220

fixed-scale extracted patches of 100 × 100 using SW, it performs poorly on the

hold out set generated using SS. In this case, the validation accuracy did not

increase above ≈ 25% following 200 epochs indicating a significant overfitting

for the model. Training our custom network on the dataset that generated

from SW including 100 × 100, 200 × 200 and 300 × 300 patches, increased the225

validation accuracy to ≈ 70% on the SS generated hold out set. This already

suggests the importance of applying zoom-in and zoom-out data augmentation

in the training phase.[48] Additionally, training on 100 × 100, 200 × 200 and

300 × 300 and 500 × 500 patches, further improved the performance to ≈ 75%.

If we train the network on the latter dataset from SW and test it on the SW230

generated hold out set, the accuracy further increases to 90%. This is expected

because as discussed SS selects patches at a different aspect ratio from that of

SW. Therefore, it is not surprising to see an increased accuracy by ≈ 15% when

both the training and hold out sets have similar aspect ratio. Our best validation

accuracy, on the other hand, was obtained when we trained our custom network235

on the SS generated dataset. In this case, irrespective of how we prepared

the hold out set (using SW or SS), a validation accuracy of ≈ 95%-97% was

achieved. This suggests that, given a set of high-resolution ink images at large
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Figure 3: The learning curves for the validation accuracy of different scenarios of training and

hold out sets considered in this study (SW: Sliding Window, SSA: Selective Search Algorithm).

length scale, SS can be effectively used to prepare training examples for training

of the robust and accurate ink classification models.240

Furthermore, a quicker approach was conducted, in which features were ex-

tracted from the first four convolutional layers of VGG16 (Figure 2 (b)), and

then the feature vectors were used to train a logistic regression model for classifi-

cation. Here, the first four convolutional layers of the pretrained VGG16 model

were extracted along with two corresponding max pooling layers. At the end245

of the last layer, a global average pooling layer was added to obtain a feature

vector. The training and validation images were passed through the network

and the resulting feature vectors (128 entries per vector) were saved into numpy

arrays. The features extracted from the training set were then used to fit a

logistic regression model which is much faster than training neural networks.250

After this training, the labels of the hold out set were predicted and compared

with the true labels for analysis. Figure 4 shows the normalized confusion ma-

trix for the logistic regression classifier trained on the extracted features from

the pretrained mini-VGG model. The x-axis shows the predicted labels and

the y-axis shows the true labels. The nearly diagonal matrix indicates the high255

accuracy of the model in classification of the six considered classes.
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Figure 4: The confusion matrix obtained for classification of inks in 6 different sample cat-

egories using extracted features from the pretrained mini-VGG model followed by logistic

regression as the classifier.

Table 1 compares the corresponding classification report in each class obtained

from the pre-trained network with that from the custom network. Here, accu-

racy is the measure of true positive and true negative classifications over the

sum of true positive, true negative, false positive and false negative. Precision260

is defined as the number of true positive (correctly labeled) classifications over

the total true positive and false positive classifications. Recall is defined as the

number of true positive classifications over the total number of true positives

and false negatives. F1-score is the harmonic mean of precision and recall,

F1 = 2 × Precision×Recall

Precision + Recall
(1)

Comparing to the first approach of training the ConvNet model from scratch,265

our transfer learning approach not only was found to be swift, but also led to

more accurate prediction, as summarized in Table 1. Thus, we conclude that

preparing the training set with SS followed by employing pre-trained model for

feature extraction and on top of that training the logistic regression model on

for classification was found to be a fast and accurate process for this problem.270

Gradient-weighted Class Activation Mapping (Grad-CAM)[49] was employed to

visualize the important regions based on which our ConvNet model predicts the
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Figure 5: Grad-CAM visualization of the trained custom network[49] indicating the regions

where our model interacts with ink images to classify them into six different sample categories.

Table 1: Inner-class evaluation of the logistic regression classifier on the hold out set; Fea-

tures were extracted by pretrained mini-VGG backbone architecture. Values in parentheses

correspond to the custom model trained from scratch.

type precision recall f1-score num images

Aquivion-EA50 1.00 (0.96) 0.98 (0.96) 0.99 (0.96) 1869

Aquivion-F50E 0.98 (0.96) 0.99 (0.95) 0.99 (0.95) 1890

Aquivion-V50 0.99 (0.95) 0.99 (0.97) 0.99 (0.96) 1921

Nafion-EA50 1.00 (0.96) 1.00 (0.96) 0.99 (0.96) 1863

Nafion-F50 1.00 (0.96) 0.99 (0.95) 1.00 (0.95) 1882

Nafion-V50 0.98 (0.95) 1.00 (0.94) 0.99 (0.95) 1607

class of the ink agglomerates. It employs the class-specific gradient informa-

tion from the last convolutional layer to produce class-discriminative activation

maps. Highlighting these regions makes it easier to interpret how the Con-275

vNet model interacts with ink images for classification. Figure 5 shows samples

from each of the six different classes considered in our study along with their

class-discriminative localization maps. First, it is important to note that the

model does not predict the class based on unwanted features like the noise or

the background color. In fact, it investigates the relevant regions of the image280

such as the edges of agglomerates where ionomer could be localized, the shape

of the carbon agglomerates, the primary pores, and the Pt nanoparticles. As
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these features are highly relevant to the structure-function-property relations

of catalyst layers in PEFCs, ConvNets can be considered highly promising for

identification of optimal ink microstructures.285

Overall, understanding how ConvNets learn from the of catalyst layer imaging

data is a key to develop robust models for swift and accurate materials char-

acterization. In the future, attempts should be made to generate a benchmark

dataset of labelled TEM images of catalyst layer materials. Having a statisti-

cally representative dataset will provide essential input for ConvNets to further290

unravel the complex structure-property-function relations. Once trained over

various fabrication formulations, operating criteria, and testing conditions, the

presented approach based on ConvNet-based models can be used as a practical

guideline for rapid screening and optimization of the catalyst ink compositions.

4. Conclusions295

The presented work demonstrated an application of deep learning models based

on convolutional neural networks for high throughput screening of transmission

electron microscopy images of catalyst layer inks in the polymer electrolyte fuel

cells. Results suggest that convolutional neural networks can significantly im-

prove the efficacy of knowledge mining and analyses of ink imaging data by300

extracting relevant structural features that are difficult to distinguish upon vi-

sual examination. It was shown that robust and accurate models should be built

upon data augmentation techniques to prepare a diverse input data of the ink

images at multiple scales. These features comprise of crucial structural char-

acteristics such as particle and pore size distributions and the ionomer cluster305

size distribution, which are related to the performance and the lifetime of cata-

lyst layers. Indeed, visualizing the activation maps from the last convolutional

layer of the trained models indicated that the class-discriminative features are

extracted from the relevant physical descriptors. This would suggest that the

convolutional neural networks are, for example, capable of rapid discrimination310

between optimal from non-optimal samples.
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While we specifically discussed the results in the context of the catalyst layer

ink for polymer electrolyte fuel cells, the algorithms themselves are generic and

can be trained for the similar fabrication processes, e.g. recognition of the slurry

during fabrication of Li-ion electrodes. In the latter case, the algorithms will315

learn a different set of correlation factors and dependencies that govern the

related structure-function relationships.
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