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Double excitations, which are dominated by a Slater-determinant with both electrons in the
highest occupied molecular orbital promoted to the lowest unoccupied orbital(s), pose significant
challenges for low-cost electronic structure calculations based on density functional theory (DFT).
Here, we demonstrate that recent advances in ensemble DFT [Phys. Rev. Lett. 125, 233001 (2020)],
which extend concepts of ground-state DFT to excited states via a rigorous physical framework based
on the ensemble fluctuation-dissipation theorem, can be used to shed light on the double excitation
problem. We find that the exchange physics of double excitations is reproducible by standard DFT
approximations using a linear combination formula, but correlations are more complex. In passing,
to analyze correlation, we extend the random-phase approximation to ensembles. We then show,
using selected test systems, that standard DFT approximations may be adapted to tackle double
excitations based on theoretically motivated simple formulae that employ ensemble extensions of
expressions that use the on-top pair density.

I. INTRODUCTION

Within molecular orbital theory, a double excitation
refers to a many-electron state that is dominated by
a doubly excited Slater determinant. [1] This definition
somewhat depends on the single-particle basis being used
as a reference, but it is sufficiently evocative to point out
that this type of excitation entails a double challenge for
present-day low-cost electronic structure methodologies
based on density functional theory (DFT).

DFT [2, 3] is exact in principle but almost always ap-
proximated in practice using exchange-correlation energy
models. Still, sophisticated density functional approxi-
mations (DFAs) are sufficiently accurate to power many
studies of ground states due to an excellent quality to cost
ratio. [4, 5] The first challenge for double excitations is
that, unlike some triplets which may be regarded as a
naturally “constrained” ground state, [6] doubly excited
target states must be lowest in energy and orthogonal
both to the actual ground state and any lower excited
singlet. This places them beyond the reach of ground
state functional forms. DFT’s time-dependent counter-
part [7] (TDDFT) does provide a theoretically rigorous
way to deal with excitations. However, the second chal-
lenge for double excitations is that their prediction using
TDDFT requires a highly non-trivial frequency depen-
dence in the “kernel” DFA, which is extremely difficult
to obtain in practice. [8–10] In contrast, ensemble DFT
for excited states (EDFT) [11–13] has shown promise on
model double excitations [14–17] and as a useful frame-
work for wavefunction-based methodologies. [18–21]

In this manuscript, we employ recent theory advances
concerning the structure of exact ensemble function-
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als [22–26] with the goal of building high-quality general
purpose ensemble DFA (EDFA) that can predict double
excitation energies. Firstly, we show that exact ensem-
ble exchange (‘x’) expressions acquire unexpected forms
on double excitations. Importantly, this reveals that ex-
change can be tackled via straightforward re-use of stan-
dard DFAs. Secondly, we extend the random-phase ap-
proximation (RPA) to ensembles, to scrutinize limitia-
tions of existing correlation (‘c’) DFAs and to provide a
strategy to re-use them. Thirdly, we put together all the
gained insights to generate approximations for the over-
all ensemble ‘Hxc’ as a functional of the ensemble par-
ticle density and, explicitly, of the corresponding ensem-
ble on-top pair-correlation function. Lastly, we demon-
strate that EDFAs based on these results are competitive
against prominent wavefunction-based alternatives.

II. ENSEMBLE DENSITY FUNCTIONAL
THEORY

We begin by listing the singlet states, |Sk〉, we are
interested in: a ground state, |S0〉, a singly excited state,
|S1〉, and a doubly excited state, |S2〉. [27] We mix these
three states in an ensemble,

Γ̂ =wS0
|S0〉〈S0|+ wS1

|S1〉〈S1|+ wS2
|S2〉〈S2| . (1)

whose average energy E [v] = minΓ̂ Tr[Γ̂(T̂ + Ŵ + v̂)] =
wS0ES0 +wS1ES1 +wS2ES2 can be determined variation-
ally, for any weights obeying wS0 ≥ wS1 ≥ wS2 ≥ 0. [11]

Here, T̂ is the kinetic energy operator, Ŵ is the electron-
electron interaction operator and v̂ =

∫
v(r)n̂(r)dr is

the external potential operator defined using the den-
sity operator n̂. Note that Eq. (1) easily generalizes to
ensembles mixing degenerate states, where an essential
general condition is to work with totally symmetric en-
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sembles. [28] Note further that single and double excita-
tion energies of the system can be computed by varying
the weights, e.g. ES2

= ∂wS2E .
Analogous to conventional DFT, we may equivalently

write,

E [n] = Ts[n] + EHx[n] + Ec[n] +

∫
n(r)v(r)dr , (2)

where Ts, EHx and Ec are the ensemble Kohn-Sham (KS)
kinetic energy, Hartree-exchange (‘Hx’) and correlation
density functionals, respectively. Note, the dependence
of the functional on the ensemble weights is implicit in
the use the calligraphic letters. In the following we fur-
ther shorten our notation by dropping the obvious de-
pendence on the ensemble particle density n.

As usual, the KS potential is given by

vs(r) ≡ v(r) +
δEHx

δn(r)
+

δEc
δn(r)

. (3)

Because we work with totally symmetric ensembles, vs,
[eq. (3) or generalizations [29]] has the same symmetry as
the external potential, v. Thus, the corresponding single-
particle states are not only automatically orthogonal to
each other but also symmetry adapted. [28]

Our goal in this work is to devise DFAs for EHx and
Ec that are accurate for double excitations. To this
end, let us first recall the ansatz-free definitions of these

functionals: [23] Ts = F0, EHx = limλ→0+
Fλ−Ts
λ , and

Ec = F1 − Ts − EHx. [24] Here, we introduced the uni-

versal functional, Fλ[n] = minΓ̂w→n Tr
[
Γ̂w(T̂ + λŴ )

]
,

which adiabatically connects the non-interacting (λ = 0,
|Ss,k〉) and interacting (λ = 1, |Sk〉) limits. [30]

A major advantage of EDFT over DFT is that the
ensemble KS states are non-interacting configuration
state functions (CSFs) rather than single Slater deter-
minants; [23] i.e., minimal linear combinations of Slater
determinants which are symmetry adapted both w.r.t.
spin and spatial degrees-of-freedom. [31] Thus, interact-
ing and KS states can be labeled by the same quantum
numbers. For our initial example [see eq. (1)] we obtain,

Γ̂s =wS0
|Ss,0〉〈Ss,0|+ wS1

|Ss,1〉〈Ss,1|+ wS2
|Ss,2〉〈Ss,2|

(4)

with: |Ss,0〉 := |[c2]h2〉 for the ground state; |Ss,1〉 :=
1√
2
[|[c2]h↑l↓〉 + |[c2]h↓l↑〉] for the state produced via a

single excitation, h → l, from the HOMO (h) to the
LUMO (l); and |Ss,2〉 := |[c2]l2〉 as the double excitation
on h→ l. Here, [c2] ≡ 12 · · · (h− 1)2.

We stress that spin-restricted orbitals, φi↑ = φi↓, are a
direct consequence of preserving symmetries within the
EDFT formalism. [23, 28] They appear because Eq. (3)
preserves both spatial and spin symmetries even in states
(e.g. doublets or triplets) that are usually treated by un-
restricted orbitals (UKS). One may say that a restricted
KS (RKS) formalism is used throughout. But it is more

appropriate to say that a symmetry-adapted KS formal-
ism is used throughout.

In fact, the symmetry adaptation is even more com-
prehensive. Not only are the single-particle orbitals
spin-orbitals, but the many-particle KS states, |Ss,k〉,
are proper (multi determinant) spin eigenstates (singlets,
triplets, etc). Symmetry adaptation is also useful to
deal with the structure of the multiplets related to the
spatial degrees of freedoms: we use this feature later
when we study Be and BH. Thus, the KS states, |Ss,k〉
have a transparent and direct spectroscopical meaning
with well-defined quantum numbers and appropriate de-
generacies. The employed symmetry-adapted formalism
out-performed both UKS DFT and TDDFT in predict-
ing single excitations. [32] In O2, for example, the error
in predicted triplet–singlet energy gaps using symmetry-
adapted EDFT was reduced by a quarter from a similar
UKS-based ∆SCF calculation.

We then use eq. (4) to obtain ensemble kinetic and
Hartree-exchange energies [23],

Ts = Tr[Γ̂sT̂ ] =

2∑
k=0

wSk〈Ss,k|T̂ |Ss,k〉 , (5)

EHx = Tr[Γ̂sŴ ] =

2∑
k=0

wSk〈Ss,k|Ŵ |Ss,k〉 , (6)

where both involve sums over the weighted contributions
of KS-CSFs. EHx is thereby free from spurious self and
ghost interactions. But, it represents a conjoint ‘Hx’,
which makes it difficult to reuse standard exchange(‘x’)-
DFAs directly. For example, the PBE0 hybrid func-
tional approximation [33] sets EPBE0

Hxc := EH +0.25EHF
x +

0.75EPBE
x +EPBE

c = EHx+0.75(EPBE
x −EHF

x )+EPBE
c us-

ing Hartree-Fock (HF) exchange, with PBE [34] exchange
and correlation DFA.

Recently, a fluctuation-dissipation theorem (FDT) was
extended and used to further resolve EHx := EFDT

H +EFDT
x

into ‘H’ and ‘x’ energy expressions that are compatible
with existing DFAs. [25] The same extension also offers
insights into correlations, discussed further below. The
key arguments of Ref. 25 may be summarized as follows:
i) DFAs work because they capture universal and essen-
tial features of pair correlations; ii) one way to “ensem-
blize” these pair correlations from first principles is via
the density-density response function χ of the ensemble;
iii) the KS response, χs, allows us to define EFDT

x in a
way which is formally consistent with existing ‘x’-DFA.
EFDT

H then includes all the remaining CSF terms; while
state-driven correlation [24] can be handled by relating
the KS to the interacting response function.

III. APPROXIMATIONS FOR EXCHANGE
ENERGIES

Using the above principles, we obtain EFDT
H :=∑

kk′ min(wSk , wSk′ )
∫

drdr′

2|r−r′|n
SkSk′
s (r)n

Sk′Sk
s (r′) with
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n
SkSk′
s := 〈Ss,k|n̂|Ss,k′〉 for the ‘H’ functional; and

EFDT
x :=− 1

2

∑
ij

fmax(i,j)(ij|ji) (7)

for ‘x’, where the expression given above is a convenient
corrolary of a result from Ref. 25 that is derived in Sec-
tion I of the supplementary material [35] [SM-I]. Here,

fi =
∑
k wSkθ

Sk
i are the average occupations of orbital,

φi, with occupation θSki ∈ {0, 1, 2} in state Sk. This
gives, fc = 2 for all core (c < h) orbitals, fh = 2wS0

+wS1

for the HOMO and fl = wS1
+ 2wS2

for the LUMO.

(ij|kl) :=
∫

drdr′

|r−r′|φ
∗
i (r)φj(r

′)φk(r)φl(r
′).

Therefore, as a first step to work out a useful approx-
imation we may use the disjointed ‘x’ to obtain,

EPBE0
Hx := EHx + 0.75(EPBE

x − EFDT
x ) . (8)

The details may, of course, be varied to cover other DFA
including range-separated hybrids. The next crucial step
is to break EFDT

x :=
∑
k wkE

FDT
x,Sk

into individual state
contributions so that we can replace exact ‘x’ expressions
by existing ‘x’-DFA expressions. For this important task,
we follow Fromager [26] to rigorously define,

EFDT
x,Sk

:=
∂EFDT

x

∂wSk
= −1

2

∑
ij

θSkmax(i,j)(ij|ji) , (9)

where we used fmax(i,j) =
∑
k wSkθ

Sk
max(i,j) in eq. (7)

to derive the second expression. Note that apply-
ing the same principle to Eqs. (5) and (6) yields,

Ts,Sk = 〈Ss,k|T̂ |Ss,k〉 =
∑
i fi
∫

1
2 |∇φi|

2dr and EHx,Sk =

〈Ss,k|Ŵ |Ss,k〉 as expected. We expand on EHx,Sk below,
near Eq. (12).

It follows from (9) that, EFDT
x,S0

= −
∑
i,j∈{c,h}(ij|ji) ≡

EHF
x,S0

, adopts its conventional HF form for the ground

state – by construction. [25] Further algebraic manipula-
tion of the above equations [SM-II] yields,

EFDT
x,S1

=EHF
x,T0

, EFDT
x,S2

=2EHF
x,T0
− EHF

x,S0
6= EHF

x,S2
, (10)

where both are defined in terms of conventional HF ‘x’
energies for lowest energy singlets, EHF

x,S0
, and triplets,

EHF
x,T0

= 〈[c2]h↑l↑|Ŵ |[c2]h↑l↑〉 = 〈[c2]h↓l↓|Ŵ |[c2]h↓l↓〉 =

− 1
2 [
∑
i,j∈{c,h,l}(ij|ji) +

∑
i,j∈{c}(ij|ji)]. Importantly,

both Ex,S0/T0
have existing DFA counterparts. Also

note that the corresponding ‘H’ energies, EFDT
H,Sk

:=

∂wSkE
FDT
H = ∂wSk [

∑
k wSkE

HF
H,Sk

+ (wS1 + wS2)EST ], in-

volve EHF
H,Sk

:=
∫

drdr′

|r−r′|n
SkSk
s (r)nSkSks (r′) and EST :=

2(hl|lh) [SM-II]. Thus, EFDT
H,S1/S2

= EHF
H,S1/S2

+ EST ,

contain the singlet-triplet splitting terms, EST , that
are absent in EFDT

x,S1/S2
but required by EHx,Sk =

〈Ss,k|Ŵ |Ss,k〉 = EFDT
H,Sk

+ EFDT
x,Sk

.

Eq. (10) states two key results of this work. The first
expression shows that single excitations have the same

TABLE I. (Pair-)coefficients for x and Hx with different
degeneracies, Dl, of the LUMO. Here fh = 2wS0 + wS1 ,

fl =
wS1+2wS2

Dl
is equal for all LUMO, and Flh = Fhl. Note,

‘arb.’ (arbitrary) means the result applies to any value of Dl.

State Dl Example fh fl F Jhh F Jhl F Jll FKhh FKhl FKll

S0 arb. all mol. 2 0 4 0 0 -2 0 0

S1 arb. all mol. 1 1
Dl

1 fl fl -1 fl −fl
S2 1 CH2, nit. 0 2 0 0 4 0 0 -2

S2 2 BH 0 1 0 0 1
2

0 0 0

S2 3 Be 0 2
3

0 0 1
5

0 0 1
15

exchange formula, regardless of spin character, (S1 vs any
of T0) – this result was previously used successfully, [32]
but without derivation. The second expression is specific
to this work and highlights the importance of ansatz-free
procedures. Despite |S2〉 being a single Slater determi-
nant, the FDT ‘x’ of the lowest double excitation is not
the same as HF ‘x’ energy. Rather, it is equivalent to the
ground state HF ‘x’ of twice a triplet minus a singlet.

Finally, using eq. (10) in eq. (8) yields EDFA
Hx :=

EHx+ᾱ[(wS0
−wS2

)(EDFA
x,S0
−EHF

x,S0
)+(wS1

+2wS2
)(EDFA

x,T0
−

EHF
x,T0

)] for the ‘Hx’ part of general hybrids [SM-II], where
ᾱ = 1− α is the complement to the Fock exchange frac-
tion, α. The above analysis means we can now reuse any
existing EDFA

x,S0/T0
in EDFA

Hx . Previous work on single ex-

citations successfully assumed [32] that EDFA
c,Sk

and EDFA
x,Sk

obey the same combination laws. If we extend this to
double excitations, we then obtain an ‘Hxc’ functional,

EDFA
Hxc := EHx + (wS0

− wS2
)
[
ᾱ(EDFA

x,S0
− EHF

x,S0
) + EDFA

c,S0

]
+ (wS1

+ 2wS2
)
[
ᾱ(EDFA

x,T0
− EHF

x,T0
) + EDFA

c,T0

]
. (11)

We revisit the extension below.
The above results can also be generalized to systems

with Dl-fold degenerate LUMOs, such as Be, using en-
sembles of the form Γ̂ = wS0

|S0〉〈S0|+wS1
Γ̂S1

+wS2
Γ̂S2

,

where Γ̂S1 and Γ̂S2 are themselves ensemble over an equal
mixture of all degenerate excited states, to yield densities
and effective potentials that preserve fundamental spatial
symmetries. [28] In general,

EHx,Sk :=
1

2

∑
ij

[F J,Skij (ij|ij) + FK,Skij (ij|ji)] , (12)

and EFDT
x,Sk

:= − 1
2

∑
ij f

Sk
max(i,j)(ij|ji), where F Jij = fifj

and FKij = − 1
2F

J
ij except for pairs, hh, hlq, lqh, lqlq′ , in-

volving the HOMO, h, and/or one of the LUMOs, lq.

Values for F J/K,Sk and fSk are reported in Table I and
derived in SM-II.

Although eq. (11) is only slightly more complex than
its ground state equivalent, evaluating it self-consistently
for real molecular systems is much more difficult than
the ground state problem, for practical reasons outlined
in Ref. 29, and because of errors introduced by density-
driven correlations, [24] which come from a failure to
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FIG. 1. Errors in excitation energy gaps (in eV) for the double
excitation of Be, CH2, BH and nitroxyl computed using FDT-
derived PBE energy expressions [eq. (11)] with (PBE/PBE0,
red/yellow) and without (xPBEα, navy) PBE correlations in-
cluded. Reference values are provided as text.

properly account for differences between KS and interact-
ing excited state densities. To obtain the present results,
we: i) set wS1

= 0 in all calculations to restrict to mix-
tures of ground and doubly excited states only; [36] ii)
optimize orbitals (mostly) via minimization over unitary
transformations; [29] iii) Use the extrapolation procedure
described in Ref. [32] to approximately remove density-
driven correlation errors [24]. Full details in SM-III.

Figure 1 shows errors, ∆EEDFA
S2

−∆Eref
S2

in the resulting
EDFA double excitation energies, ∆ES2

:= ES2
−ES0

, of
Be (where S2 is five-fold degenerate), CH2, BH (two-fold
degenerate) and nitroxyl (ONH). Reference data is from
Ref. 1 (Be and nitroxyl) and FCI results (CH2 and BH)
computed for this work. Energies are evaluated using
eq. (11) for PBE [34] (red, α = 0) and PBE0 [33] (yellow,
α = 0.25). Tests using other functionals [37, 38] are of
slightly worse quality. Further technical details are given
in SM-III. Despite the rigorous theory behind the ‘Hx’
components in eq. (11), the results are uninspiring. This
stands in contrast to the success of similar ensemblized
DFA in predicting triplet and single excitations [32].

To understand why energies are so poor we first per-
form x-only PBE0-like (labeled xPBE0α and defined via
eq. (11) with Ec = 0, navy) calculations to investigate
the contribution of exchange to the error. Two points are
notable: 1) x-only FDT results depend only weakly on
α, and the variation is larger with stronger correlations,
which suggests that exchange physics is treated correctly
at the density functional level. 2) Ensemble Hartree-Fock
(HF) theory (xPBE1) is rather accurate for Be, CH2 and
BH, suggesting that correlations cancel out in these sys-
tems, unlike in the DFA. Nitroxyl has strongly correlated
ground and excited states so both failures and a wider
variation of xPBE are expected. We therefore conclude
that x-DFA (here, PBE) are reliable, and that the error
comes primarily from the correlation functional.

IV. APPROXIMATIONS FOR CORRELATION
ENERGIES

As a natural next step, we seek to replicate the success
of EFDT

x by using the FDT [39] to tackle Ec. Exact eval-

uation is impossible in general, so we instead invoke the
random-phase approximation (RPA), [39–43] that has
found widespread success in modelling difficult ground
states; [41–43] and in providing constraints for popular
DFAs for correlation. [44, 45] We ensemblize the RPA
by using the same KS ensemble density-density response
function used to derive eq. (7), [25]

χ̂s(iω) =
∑
ij

(fi − fj)(εi − εj)
(εi − εj)2 + ω2

ρ̂iρ̂j , (13)

ERPA
c :=

∫ ∞
0

dω

2π
Tr
[

log(1− χ̂sŴ ) + χ̂sŴ
]
. (14)

Eq. (14) thereby inherits an explicit dependence on the
ensemble via the occupation factors, {fi}. Here, εi is the
KS eigenvalue of orbital, i; Tr and log indicate operator
trace and logarithm; and Tr[ρ̂iŴ ρ̂j ] = (ij|ji). Using
(13) in (14) yields well-defined energies for 0 ≤ fl =
wS1 + 2wS2 ≤ 1 and fh = 2 − fl = 2wS0 + wS1 (note,
fl > 1 leads to negative values in the logarithm). Details
of RPA calculations are in SM-IV.

Note that the frequency dependence in eq. (14) is aver-
aged within an integration, rather than appearing point-
wise as in the key linear-response TDDFT equations for
excitations. This fact, together with explicit inclusion of
double excitation effects in the ensemble response func-
tion, χ̂s, overcomes memory-related issues [8] by letting
us extend the RPA to double excitations, as below.

0 1 2
LUMO occupation factor fl: 1 Ec, S1 Ec, S0, 2 Ec, S2 Ec, S0, 

0

0.5

1

1.5

2

RP
A 

co
rr.

 g
ap

 [e
V]

FIG. 2. RPA correlation energy gap, ERPA
c (fl) − ERPA

c (0),
[eV] versus fl for Be, BH and CH2. Computed values are
shown as dots while lines show extrapolated values using the
same relationship as exchange (dashed brown, Be; maroon,
BH; and olive, CH2); and via a quadratic fit (solid lines).

Figure 2 shows the ensemble RPA correlation energies
of Be, BH and CH2 (dots, we exclude nitroxyl because of
its strong correlations) as a function of fl ≤ 1. However,
we are interested in the contribution to the double exci-
tation gap, Ec,S2−Ec,S0 ≈ ERPA

c (fl = 2)−ERPA
c (fl = 0),

which requires extending results to fl = 2 – here done
by fitting and extrapolating. A linear fit (shown in
the figure) between fl = 0 and fl = 1 yields, Ec,S2

=
2Ec,S1

−Ec,S0
, which we recognise as the correlation en-

ergy contribution from eq. (11). However, it also reveals
substantial curvature in the computed (0 ≤ fl ≤ 1) val-
ues. We thus also show a quadratic fit, the simplest
model that can capture the curvature, to better extend
results to fl = 2. Self-interaction errors [46–48] in the
open shell excitations mean RPA correlation gaps are
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not quantitative. Nonetheless, we do expect RPA to of-
fer useful qualitative insights into the structure of Ec as
weights are varied, e.g., as wS2

→ 1 (fl → 2).
The most important revelation of the figure is that

the fl = 2 correlation energy from the (more accurate)
quadratic extrapolation is significantly lower than the lin-
ear fit in all cases. We therefore expect that at least some
of the over-estimation of correlation energies comes from
assuming [in eq. (11)] that an exact relationship [eq. (10)]
for exchange also applies to correlations, whereas the
RPA reveals it does not. That is,

EDFA
c,S1

≈EDFA
c,T0

, EDFA
c,S2

6≈2EDFA
c,T0
− EDFA

c,S0
, (15)

where ≈ indicates that any additional ensemble errors are
likely to be similar in magnitude to typical DFA errors,
whereas 6≈ indicates that they are likely to be larger.

To improve approximations for correlation energies, we
exploit this insight from the RPA. To begin, let us con-
sider a formal device which was used by Becke, Savin and
Stoll (BSS) [49] to generate a local density approximation
(LDA) that could preserve the degeneracy of multiplets.

They replaced the spin polarization, ζ =
|n↑−n↓|

n , in the
regular spin-dependent LDA by a function of the on-top
(ot) pair density ζ → ζot (more below) in an otherwise
spinless (restricted) theory. Specifically, they used the

exact relationship, ζ = ζot :=
√

1− 2PHx/n2, for a single
Slater determinant, where PHx is the KS on-top pair den-
sity. This result was elegantly further justified in Ref. 50
as a consistent way to escape the symmetry dilemma in
spin-unrestricted DFT calculations. Crucially, we show
that ζot can also be exploited to mimic the correction
which is required to improve RPA-inspired correlation
energies for double excitations.

Next, let us tailor the BSS replacement for ensembles:
i) use PFDT

Hx,S0
= n2

S0
+ PFDT

x,S0
in ground states to rewrite

ζot = [−2PFDT
x /n2 − 1]1/2 for general states; ii) write

eq. (7) as
∫
nFDT

2,x (r, r′) drdr′

2|r−r′| to obtain −PFDT
x (r) =

−nFDT
2,x (r, r) =

∑
ij fmax(i,j)ni(r)nj(r) where ni = |φi|2

is the density of orbital, i; iii) obtain,

ζot(r) =

[∑
ij(2fmax(i,j) − fifj)ni(r)nj(r)

] 1
2∑

i fini(r)
. (16)

By inspection, one sees that (16) reproduces the usual re-
sults for non-degenerate ground states, (ζot = 0) doublets
(ζot
D0

= nh
n ) and single excitation/triplets (ζot

S1
= ζot

T0
=

nh+nl
n ). Thus, eq. (16) gives “out of the box” DFA results

for singular, doublet and triplet ground states. Impor-
tantly, and unlike other formulae that are equivalent in
ground states, fi ≤ 2 ensures that eq. (16) is always real
so does not require further adjustment to accommodate
negative values in the square root, e.g. eq. (11) of Ref. 51.

An additional complication arises in the case of a
double excitation between non-degenerate HOMO and
LUMO. For regions where the “core” orbital densities
are small (nc<h � nh, nl) we obtain, ζot

S2
≈
√

2nh/nl, by

using fh = 0 and fl = 2 for the double excitation. When
nh(r) ≈ nl(r) this yields a value of ζot ≈

√
2 > 1. A

degenerate LUMO can also yield ζot > 1 in single exci-
tations. As a final step toward utilizing eq. (16) in ap-
proximations we therefore need a way to extend existing
DFA to ζ > 1. One formula that achieves this is,

E(ζ̃ot)
Hxc := EDFA

Hx +

2∑
k=0

wSkE
DFA(ζ̃ot)
c,Sk

, (17)

where E
DFA(ζ̃ot)
c,Sk

:=
∫
dr nSkSks εDFA

c (nSkSks ,∇nSkSks , ζ̃ot
Sk

)

uses an heuristic model ζ̃ot := min(ζot, [ζot]−1) ≤ 1 for
the effective polarization. Eq. (17) is constructed to re-
produce “out of the box” DFA energies for ground states
(ζot = ζ̃ot ≤ 1). Crucially, it also mimics the down-
ward curvature of RPA correlation energies for fl → 2
(ζot > 1, ζ̃ot < 1) and thus ensures that correlation en-
ergies for double excitations become more like ζ → 0.

Figure 3 compares results using eq. (17) against re-
sults using eq. (11). We see that the new formula –

denoted DFA(ζ̃ot) – substantially improves on eq. (11)
in all cases. Excepting Be, Eq. (17) also out-performs
both equation-of-motion (EOM) coupled-cluster sin-
gles/doubles (CCSD) calculations [52] and CC3 [53].
Thus, the improved model of correlations fixes the most
egregious failures of ensemblized DFT and produces rea-
sonable results. Technical details in SM-V.

Before concluding, we briefly address the prototypi-
cal “difficult case” of double excitations in dissociating
H2 [8–10, 54–56]. Specifically, we study the transition
formed by double promotion of the lowest σ orbital to
the first unoccipied σ orbital. These two orbitals are
a gerade/ungerade pair: φσg → 1√

2
[φ1s,L + φ1s,R] and

φσu → 1√
2
[φ1s,L − φ1s,R], where → indicates the dissoci-

ation (large distance, D →∞) limit and φ1s,L and φ1s,R

indicate 1s orbitals on the left and right H atoms. Ana-
lytic expressions may be obtained for large D and yield
a double excitation gap energy, 1

2 − 1/D Ha. The disso-
ciation (D →∞) gap is thus 13.6 eV.

Figure 4 compares dissociation curves for σ states
computed using EDFT against exact FCI calculations.
It reveals that, like the H2 ground state [25] and de-

spite strong correlations, both PBE and PBE(ζ̃ot) repro-
duce the correct −1/D asymptotic behaviour, albeit with
an underestimated limit. Inclusion of FDT exchange
in PBE0 worsens results by reducing both the effective
charge and the asymptotic gap. Ensemble Hartree-Fock
theory is even worse, predicting a zero gap for D → ∞.
Full details in SM-VI.

V. CONCLUSIONS

In conclusion, we presented a formal and practical
ensemble density functional approach to double excita-
tions. First, we showed that a rigorous exact exchange
energy expression for double excitations is equivalent
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to that of two triplets minus a singlet [eq. (10)] – this
counter-intuitive result enables practical reuse of stan-
dard exchange-only DFAs. In a second, non-trivial step,
we then showed that the corresponding correlation re-
quires additional sophistications. Guided by first princi-
ples, we developed an ensemble extension of the RPA ex-
pression, which inspired a practical approximation based
on the on-top pair-density [eq. (17)] – thus overcoming a
natural yet inconsistent guess [eq. (11)].

Results using the EDFAs developed here are already
useful for the difficult and varied double excitations stud-
ied. Future work should improve our understanding of
how on-top pair-densities affect correlations, so that we
can devise even better ways to ensemblize conventional
DFAs and deal with excited state correlations. Tests
should also be extended to larger systems.

Our results do not apply directly to the solid state,
due to complexities in their ensemble treatment. They
also do not apply directly to systems that are subject to
an applied magnetic field or spin-orbit interactions. But,
the combination formula follows directly from founda-
tional theories (variational principles [23, 24, 26], group
properties [28] and fluctuation-dissipation theorems [25]),
which may be extended to a larger class of systems. A
first step toward solving these problems would be to de-
rive the necessary analogues of the Gross, Oliveira and
Kohn theorems. [11, 12]
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