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Abstract
With ever-growing numbers of metal–organic
framework (MOF) materials being reported,
new computational approaches are required
for a quantitative understanding of structure–
property correlations in MOFs. Here we show
how structural coarse-graining and embedding
(“unsupervised learning”) schemes can together
give new insight into the geometric diversity of
MOF structures. Based on a curated dataset
of 1,262 reported experimental structures, we
automatically generate coarse-grained and re-
scaled representations which we couple to a
kernel-based similarity metric and to widely
used embedding schemes. This approach allows
us to visualize the breadth of geometric diver-
sity within individual topologies, and to quan-
tify the distributions of local and global sim-
ilarities across the structural space of MOFs.
The methodology is implemented in an openly
available Python package, and is expected to be
useful in future high-throughput studies.

Introduction
A cornucopia of experimentally determined
crystal structures is described in continually ex-
panding databases.1,2 These databases are now
reaching sufficient sizes to provide an opportu-
nity for extracting structure–property relation-
ships based on data mining and machine learn-
ing (ML), in principle.3–5 Establishing these re-
lationships, however, is a non-trivial task be-
cause there are multiple ways by which crystal
structures can be represented, compared, and
analyzed. This challenge is particularly acute
for metal–organic frameworks (MOFs) where
the diversity of both the metal centers (“nodes”)
and the organic linkers gives rise to considerable
structural complexity.6–9
One of the ways in which MOFs are com-

monly described is in terms of their topology;
that is, the connectivity between nodes and
linkers. Topological analysis routines are well-
established and are implemented in automated
computer packages, such as ToposPro 10 and
Systre,11 and have been found to be useful pre-
dictors for a number of material properties. For
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example, by considering the deformability af-
forded by a given topology (i.e., the ability of a
framework to distort geometrically without dis-
rupting the net connectivity), one may predict
the rigidness of a framework,12 the tendency
to interpenetrate,13 and elastic properties.14,15
Ultimately, by exploiting knowledge of how a
given choice of node and linker will give rise to
a particular topology, one can hope to design
new MOFs.16–18
Yet, two MOFs with the same topology may

have very different network geometries. By the
latter term, we mean the spatial arrangement
of local atomic environments in a MOF, in-
cluding variations in bond lengths, angles, and
longer-range ordering — all of which may affect
material properties. For example, positive and
negative thermal expansion can be switched in
MOFs of a given topology simply by varying
their geometry.19 By their very nature, how-
ever, each of the established geometric descrip-
tors will cover only individual aspects of the
structure; two MOFs with similar metal–linker
distances might have different porosities, for ex-
ample.
Atom-density-based representations offer an

alternative means of quantifying the geometric
similarity of crystal structures.20–22 One class
of such metrics originated in the field of ML
for physics and chemistry applications, where
the development of structural descriptors for
atomistic structure is one of the central research
tasks.23–27 In particular, the Smooth Overlap of
Atomic Positions (SOAP) descriptor was devel-
oped initially in the context of fitting machine-
learned interatomic potentials.28 Subsequently,
it was shown how similarity kernels based on
the SOAP formalism may be used to analyze
the structural similarity for molecular and bulk
periodic structures.29
By coupling to ML techniques such as di-

mensionality reduction and data clustering,
one can begin to navigate complex configura-
tional spaces,30–32 and search for underlying
structure–property relationships.33–38 We have
recently demonstrated that a combination of
coarse-graining, re-scaling, and SOAP analy-
sis enables geometric comparison between very
different classes of materials, exemplified us-

ing a database of AB2 hybrid and inorganic
networks.39 Other studies have emphasized the
usefulness of unsupervised31 and supervised5

ML for MOFs, and very recently local coordi-
nation environments were used as features for
predicting oxidation states in these materials.40
Here, with a view to facilitate further quan-

titative studies of geometric structure and
structure–property relationships in MOFs, we
describe a generalized coarse-graining approach
for such purposes and its Python implemen-
tation — expanding widely on initial work
in ref 39. Using a curated test set of four-
connected, AB2 coordination networks, we vali-
date structure outputs of our implementation
using the well-established ToposPro topology
analysis, and then discuss examples of struc-
tural and chemical analysis that are enabled by
our approach.

Methodology
The computational methodology can be sepa-
rated into two stages: structure processing and
structure analysis (Figure 1). Each stage will be
discussed in turn in the following subsections.
References to functions contained within the
code will be highlighted in typewriter type-
face throughout.

Structure Processing
The main structure-processing routines of our
implementation are handled by a Python class
called Structure. It uses Pymatgen 41 to parse
and store information in the Crystallographic
Information File (CIF) format. All subsequent
structure-processing tasks are then callable as
attributes of the Structure class, as follows.

getSites()

Initially, the atomic species are classified into
two categories: A (metal) sites, and “other”
sites. In the absence of user-specified cate-
gories, elements are sorted according to the IU-
PAC International Chemical Identifier classifi-
cation:42 metals are assigned to A sites, non-
metals to “other”. In the present work, we
focus on the geometric structure of the un-
derlying nets (as opposed to also considering
the energetic stability provided by guest ions
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Figure 1 Methodology for processing and analyzing MOF structure datasets using a cg-SOAP-based
approach (cf. ref 39). Left : Structures from the experimental literature may first need to be “cleaned-up”
for analysis. Here, as in ref 39, ZIF-8 is used as an example: the H-disorder is resolved using average
positions of half-occupancy sites, and guest atoms in the pores are removed. The structure is then re-
duced to its constituent building blocks, viz. 12 Zn2+ A sites (purple) and 24 methyl imidazolate B sites;
the latter are coarse-grained using connectivity graphs (here, identifying the five-membered imidazolate
rings as the B-site centers; yellow). Right : The SOAP kernel is used to determine the similarity between
all coarse-grained and rescaled structures in the database, and the result is visualized using dimension-
ality reduction. The resultant 2-D structure map (sketched here in a purely schematic way) may then be
interpreted by correlating the locations of data points with structural and physical properties.
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and molecules), and therefore we remove non-
framework species. Accordingly, exceptions are
made for the alkali and alkaline-earth metals
(excluding Li and Be) during the species sort-
ing algorithm; they are often found as non-
framework species, and are therefore removed
from the structure. B, Si, and P are also sorted
separately, because there are many instances in
which they behave as either A or “other” sites
(e.g. boron is an A site in boron imidazolate
frameworks,43 but a non-framework-site atom
when a part of a BF−4 anion). Therefore, if the
element is bound to O or N — indicative of
Lewis-acidic-type behavior — it is assigned as
an A site.

repairDisorder()

Site disorder occurs frequently in MOFs,
and it is commonly modeled crystallograph-
ically using split sites with partial occupan-
cies.44 To enable structure-processing tasks
that require discrete atomic positions, par-
tially occupied (or disordered) sites are sim-
plified using three algorithms, callable with the
Structure.repairDisorder() method. First,
atoms of the same species found within a given
distance range (0–0.7 Å by default) are replaced
by an atom of the same type, situated on the
average of their positions. The remaining two
routines deal with delocalized electron density
associated with guest species within framework
pores, which is often modeled by clusters of
(fictitious) oxygen atoms. These clusters are re-
moved by identifying either oxygen atoms that
only have oxygen nearest neighbors, or oxygen
atoms that have no neighbors at all within a
set cut-off radius. Not all disorder needs to be
resolved for the general coarse-graining proce-
dure to work; the minimum requirement is that
individual molecules (e.g. organic ligands) do
not overlap. However, unresolved disorder may
affect the placement of the discrete place-holder
atoms (e.g. by skewing the centroid of a given
molecule).

reduce()

Each unique building block fragment, or ligand,
is then identified by a “nearest-neighbor crawl”
algorithm by calling the Structure.reduce()

method. The default neighboring-sites routine
used is CrystalNN ,45 as implemented in Py-
matgen.41 In short, CrystalNN uses Voronoi
decomposition to assign weights to an initial
list of neighbors within a hard cut-off radius,
and then normalizes and assigns probabilities
to each unique weighting according to a smooth
cut-off function. With this definition, a build-
ing block fragment list is initialized with a given
atom from a given building block type, and if
another atom is both a nearest-neighbor and of
the same building block type, it is added to the
list. These neighbors are then searched for their
respective nearest-neighbors, and the process is
iterated (thereby “crawling” round the ligand)
until the list size converges. Once converged,
the atomic species, positions, and connectiv-
ity (in the form of a connectivity graph) of the
fragment are stored as a buildingUnit class
instance, and appended to the Structure.BUs
class attribute. The algorithm repeats until all
atoms have been classified.

coarseGrain()

To coarse-grain the building blocks, a dis-
crete bonding center must first be defined.
There is often not one unique choice for this.
The simplest definition is to take the geomet-
ric centroid of all of the atomic positions in
the building unit (i.e., not weighted by the
atomic masses). This parallels methodology
used in both crystal net determination (often
referred to as “equilibrium” or “barycentric”
placement),11 and coarse-grained molecular dy-
namic simulations.46 The buildingUnit class
stores the connectivity of a given building unit
as a graph object using the NetworkX pack-
age.47 This will enable the class to be extended
to include alternative definitions of bonding
centers, to which we will dedicate future work.
The building unit connectivity is defined as

the number of nearest-neighbor atoms of a dif-
ferent site-type that are connected to it. All
fragments with connectivity > 1 (thereby dis-
tinguishing non-framework species, such as sol-
vents, from the B sites) are coarse-grained by
placing a dummy atom at the chosen bonding
center, and removing all other atoms. Finally,
all atoms of a given building-block type are as-
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signed to the same atomic species. The pro-
cessed structures can then be output in CIF
format.

Structure Analysis
Studying large, complex datasets requires gen-
eralized analysis routines. At the core of our
analysis class, structureMap, structures are
compared using SOAP28 which we apply to
coarse-grained structural models (indicated by
“cg-SOAP”).39 Using dimensionality reduction
algorithms, configurations can be visualized
and the relationships between them analyzed.

cg-SOAP

The SOAP kernel measures the similarity of
pairs of atomic environments.28 Formally, for
each atom, α, an atomic density, ρα(r), is con-
structed with a sum of Gaussians of broadness
σ, centered on each neighbor, β, of α (as well
as on α itself):

ρα(r) =
∑
β

exp

(
−(rα − rαβ)2

2σ2

)
. (1)

The SOAP kernel is then defined as the over-
lap integral of any two neighbor densities, inte-
grated over all three-dimensional rotations R̂,28

k(α, β) =

∫
dR̂

∣∣∣∣∫ ρα(r)ρβ(R̂r)dr

∣∣∣∣n (2)

where the exponent is typically set to n > 1
to retain angular information.29 In practice, it
is computationally more efficient to expand the
atomic density in a set of orthogonal radial ba-
sis functions and spherical harmonics up to a
given nmax and lmax. The resulting combina-
tion coefficients on their own do not yet en-
sure rotational invariance (because all spherical
harmonics with l > 0 depend on the angular
orientation) and are therefore collected into a
power spectrum vector. The SOAP kernel may
then be calculated by taking the normalised dot
product of the two power spectrum vectors as-
sociated with each atomic environment, raised
to an exponent ζ which serves to accentuate the
distinction between the two environments.28
As shown in ref 48 for elemental structures

and in ref 39 for a range of inorganic and hybrid

materials, geometric similarity may be assessed
using SOAP for uniformly re-scaled structures,
enabling direct comparison irrespective of char-
acteristic A–B distances. We have implemented
two scaling approaches: either scaling to a uni-
form minimum r(A–B) distance or scaling to a
uniform average r(A–B) distance.
To extend the similarity measure beyond

comparing individual atomic environments,
similarities between pairs of atoms in each of
the crystal structures are calculated:

k̄(Ai,Aj) =
1

NAi
NAj

NAi∑
α∈Ai

NAj∑
β∈Aj

k(α, β), (3)

where α (β) runs over all atomic sites, A, in
the unit cell of structure i (j), respectively.
Variations of this method are also implemented
where the atomic sites considered are restricted
to a given site-type (e.g. A sites), thereby shift-
ing the focus of the similarity analysis towards
those particular sites. (In this case, information
regarding the other site-types is still implicitly
encoded through the neighbor densities.)

Dimensionality Reduction and Visualiza-
tion

To interpret (cg-) SOAP analysis results, the
dataset is often visualized as a two-dimensional
projection.29,32,39 A large number of algorithms
are available to carry out this projection (or
“embedding”), and a central aspect of the
present work will be to compare different widely
used embedding schemes. Our implementa-
tion stores the similarity of all structures with
one another in the form of a symmetric sim-
ilarity matrix, K, which we construct using
the per-cell averaged similarity (Eq. (3)), viz.
Ki,j = k̄(Ai,Aj). A corresponding geometric
distance matrix, D, may also be defined with
elements

Di,j =
√

2− 2Ki,j (4)

to satisfy the triangle inequality.29 We currently
provide interfaces to the following dimension-
ality reduction algorithms implemented in ex-
ternal code packages: multi-dimensional scaling
(MDS),49 t-distributed stochastic neighbor em-
bedding (t-SNE),50 and the uniform manifold
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approximation and projection (UMAP).51

Bonding and Properties

During the reduction of MOF structures to
their coarse-grained representations, a dictio-
nary of bonds between building units is stored,
as recently defined in the IUCr topology dic-
tionary (topoCIF). This enables the CIF out-
put to contain the requisite information to
readily construct the underlying net,52,53 i.e.
the net of building units, as well as to cal-
culate its topological descriptors (e.g., using
ToposPro). It also enables the calculation of
local-environment properties, including bond
lengths, angles, and order parameters. We
use a module, referred to as bonding, to ex-
tract this geometric information and calcu-
late Chau–Hardwick tetrahedral order parame-
ters and Steinhardt bond order parameters.54–56
This module might also be extended for other
custom analyses.
Two global structure properties are also in-

cluded in the routine structure analysis. The
first is A-site density, an important material
descriptor when considering the potential void
space present in a framework. The second prop-
erty is the A-site SOAP heterogeneity intro-
duced in previous work,39 which measures the
diversity of the A-site environments in a given
structure. A value of zero means that all A-
site environments are geometrically equivalent
(up to the SOAP cut-off radius); a higher value
indicates greater diversity. It is calculated as

HA =

(
NA
2

)−1 ∑
(α,β)∈P

k(α, β), (5)

where P is the set of (unordered) pairs of dis-
tinct A-site environments in the structure, NA
is the number of A-site atoms in the structure,
and k is the SOAP similarity kernel defined in
Eq. (2).

Database Details
Primary data were selected from the sample
that was prepared for ref 13, filtering for all
structures in which the coordination formula
was AB2 and the ligand (B) was two-connected.
The sample contained 1,160 crystal structures,

to which 102 structures from the CSD 5.42 up-
date 1 (Feb 2021) were added. A complete list
of the 1,262 crystal structures and their topo-
logical descriptors is provided in the Support-
ing Information (see file CF_A_B2_1262.xlsx).
The “Experimental literature” to be processed
was exported as CIFs from the CSD using the
1,262 entry refcodes and processed unchanged.

Results and Discussion
Visualizing Geometric Diversity
We begin by visualizing the geometric diver-
sity in the AB2 MOF dataset, here embedding
cg-SOAP similarities for all (uniformly scaled)
structures in two dimensions. Dimensionality
reduction is an unsupervised ML task, aiming
to extract information from unlabeled datasets,
e.g. by clustering the data into groups. We
start by visualizing the dataset using one of the
simplest algorithms, MDS (as used in ref 39),
in Figure 2. The structure map carries the intu-
itive interpretation that structures that are sim-
ilar appear close together, and structures that
are dissimilar are further apart. In the con-
text of MOFs, structures are generally reported
with their topological identifier which uniquely
identifies the underlying net. We highlight the
distribution of the three most commonly occur-
ring topologies in the dataset — the diamond-
like dia net (189 structures), the sodalite-like
sod net (136 structures), and the four-fold in-
terpenetrated 4#dia net (116 structures) — to
investigate the degree to which topological vari-
ation is represented in the cg-SOAP represen-
tation. Strikingly, all three topological families
have structures dispersed over the map, with
the dia topology being most widely distributed
among the three (light blue). There are re-
gions of overlapping points, particularly for dia
and sod in the lower part of Figure 2, indicat-
ing that topologically dissimilar MOFs might in
fact show similarities in terms of their geomet-
ric structure.
We quantify the relative distributions of each

topology in the map based on how far, on av-
erage, the structures of that group are from
its respective centroid. These relative distribu-
tions are 0.771, 0.386, and 0.441 for dia, sod,
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and 4#dia, respectively. For ease of compari-
son, we normalize the relative distributions such
that the value for dia is unity (Table 1).

Figure 2 Geometric diversity within isoreticular
groups of AB2 MOFs. The graph shows a two-
dimensional visualization of the cg-SOAP-based
structural distances using an MDS embedding:
generally, the closer two points are, the more sim-
ilar their coarse-grained and re-scaled geomet-
ric structures. The distribution of the three most
commonly occurring topologies within our dataset
(dia, sod, and fourfold-interpenetrated dia, de-
noted 4#dia) is emphasized by lines that originate
from the respective centroid. Dataset entries with
different topologies than the three aforementioned
ones are all represented by gray points.

We see that dia networks can be formed with
a much larger variety of geometries compared
to sod; this is in accordance with the conclu-
sions derived from an analysis of the natural
tiles (cages).13 This reflects a larger deformabil-
ity of the diamondoid structures and adaptabil-
ity to building blocks with geometries spanning
a wide range of volumes, lengths, and angles.
This feature promotes the dominance of the dia
topology in coordination networks.13 The fold-
ing of the dia networks into interpenetrating
arrays, however, significantly restricts the di-
versity of acceptable network geometries.
Cluster analysis can assist the interpreta-

tion of complex datasets by grouping data and
identifying representative examples, from which
patterns can be more readily identified. Affin-

ity propagation is a clustering algorithm that
views each data point as a node in a network,
and recursively minimizes the edge weights be-
tween nodes; the magnitude of each edge at a
given time reflects the current affinity the point
has for selecting the second point as its “ex-
amplar”.57 Figure 3a shows the dia structures
(light blue data points in Figure 2) now divided
into four clusters, with the exemplar coarse-
grained structures visualized. From these clus-
ters, we investigate the distribution of struc-
tural properties in different regions of the map
in order to appreciate the geometric diversity
available within the dia topology. In the con-
text of MOFs, low metal densities are the sim-
plest indication for the presence of void space:
an important feature for catalytic applications.
We define the geometric density as the (unit-
less) density of the structures that have been
coarse-grained and scaled (to unity minimum
r(A–B) bond length). The geometric density
is related to the experimental metal density
by the characteristic framework bond length.
We plot the distribution of the geometric den-
sity, average angular component of the Chau–
Hardwick order parameter, Sg (a value of zero
corresponds to ideal tetrahedral bond angles; a
value of unity would correspond to the extreme
case where all four bonds are superimposed),
and the average A–B–A angle in Figure 3b–d,
respectively.
Figure 3b shows the distribution of geometric

density for each cluster. There is a relatively
clear separation between each group, with clus-
ter 2 (orange) containing notably more dense
frameworks. It is interesting to note that clus-
ters 2 and 4, which have higher average geomet-
ric density, also seem to have a broader distribu-
tion across the MDS map, relative to the narrow
distributions of clusters 1 and 3. This could, in
part, be explained by the relatively high devi-
ation away from ideal tetrahedral bond angles
about the A sites, as evident from the plot of
the angular Chau-Hardwick tetrahedral order
parameter, Sg (Figure 3c). Figure 3d shows the
distribution of the average A–B–A bond angle;
again, clusters 2 and 4 demonstrate broad dis-
tributions with lower average values.
We extend the analysis of the dia subset
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Table 1 Characteristics of the Ten Most Commonly Occurring Topologies in the Dataset

Geometric densitya Relative distribution
Topology Occurrences (mean ± SD) MDS t-SNE UMAP
dia 189 124 ± 55 1 (reference)
sod 136 79 ± 25 0.50 0.45 0.59
4#dia 116 260 ± 77 0.57 0.47 0.40
5#dia 95 270 ± 87 0.67 0.48 0.50
3#dia 88 206 ± 75 0.71 0.48 0.42
2#dia 79 181 ± 81 0.91 0.66 0.50
cds 41 221 ± 87 0.81 0.51 0.45
qzd 38 156 ± 15 0.12 0.22 0.26
6#dia 36 335 ± 136 0.74 0.53 0.47
3#dmp 33 292 ± 48 0.38 0.23 0.31
aThe geometric density is here defined as n(A) × 1000 / Vscaled, where n(A)
is the number of A sites in the unit cell, and Vscaled is the volume of the
scaled unit cell.

Figure 3 Geometric diversity within MOFs of dia topology. (a) From the dataset characterized in Fig-
ure 2, we isolate the dia entries, and analyze their distribution using a clustering algorithm, viz. affinity
propagation.57 For each cluster, the algorithm selects an “examplar” datapoint, and the corresponding
coarse-grained structures and their CSD refcodes are shown. Distributions of local properties for each
cluster are presented on the right-hand side: (b) the geometric density; (c) the average angular com-
ponent of the Chau–Hardwick order parameter, Sg, and (d) the average A–B–A angle. Throughout this
paper, box plots are drawn such that boxes range from the 25th to the 75th percentile, with the median
indicated by a horizontal line; whiskers span ± 1.5 times the interquartile range, and points outside this
range are plotted with circle markers.
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of structures using parameters extracted using
ToposPro;53 in particular, the tile average dis-
tortion13 supports the results illustrated in Fig-
ure 3. Clusters with higher average geometric
density have larger distortions in the tetrahe-
dral coordination of the A sites, correspond-
ing to a collapse of the tiles. Conversely, the
most porous structures have A site coordina-
tion environments closer to an ideal tetrahedron
and the largest proportion of tiles close to the
adamantane tile of the ideal dia net. Analo-
gously, structures with A–B–A angles less than
150° also correspond to denser structures due
to the collapse of tiles.
Figure 2 emphasizes that a single topological

classification may give rise to a geometrically di-
verse set of structures; that is to say, one cannot
necessarily predict the geometric features of a
structure from its topological label alone. From
Figure 2, we therefore infer that the study of the
latent geometric configurational space may pro-
vide insight into a different set of material prop-
erties (e.g., bulk modulus) compared to those
which are accounted for by the topology (e.g.,
porosity13).

Embedding Schemes
The universal aim of dimensionality reduction
algorithms is to capture meaningful structure in
high-dimensional data when embedded into low
dimensions. However, it is imperative to con-
sider the algorithm methodology when inter-
preting the structure map. To illustrate this, we
have visualized our dataset with three dimen-
sionality reduction algorithms; namely, MDS,49
t-SNE,50 and UMAP51 (Figure 4). In order to
understand the differences between each repre-
sentation, we color-code the map by the geo-
metric density (Figure 4a), and by the distribu-
tions of dia, sod, and 4#dia topologies (Fig-
ure 4b, cf. Figure 2), and compare side-by-side
how these properties are represented in the re-
sults of different embedding schemes.
All three embeddings demonstrate a strong

correlation of the distribution of points with ge-
ometric density, and qualitatively similar trends
in the relative distributions of topologies within
each structure map (Table 1). The detail, how-
ever, varies. MDS leads to a distinct region in

the center of the map where no structures are
found. This perhaps suggests that this algo-
rithm, which seeks to minimize a relatively sim-
ple loss function, is reaching its limits of useful-
ness for the size and complexity of the dataset
considered here.
The “island-like” features in both the t-SNE

and UMAP representations — or more specifi-
cally, the absence of islands in the MDS repre-
sentation — further emphasize this point. The
most prominent island (right hand-side of the t-
SNE map and upper-right of the UMAP map)
is a family of qzd MOFs, with the smallest
relative distribution, among the ten most com-
monly occurring topologies in the dataset, for
MDS and t-SNE (Table 1). Manual inspection
of the structures reveals a high frequency of
similar CCDC reference codes (refcodes). The
refcode system is designed to group together
structures into families, such as the same com-
pound having been crystallized and character-
ized under different conditions, or polymorphs
of the same compound. There are two fam-
ilies of refcodes within the qzd MOF clus-
ter: LIWDEB (13 occurrences) and UKUVOL
(21 occurrences).58,59 All of these structures
are one of two isomers of [{Cu(succinate)(4,4′-
bipyridine)}n], isolated under different experi-
mental conditions, and thus could be consid-
ered duplicates. The high geometric similar-
ity between duplicates relative to the similarity
between other structures in the dataset skews
the representation towards creating an isolated
cluster.

Islands and Duplicates
The occurrence of “islands” of structures, sep-
arated out near the edge of the t-SNE and
UMAP representations, requires a more subtle
interpretation. For example, one of the islands
to the left (right) of the t-SNE (UMAP) maps,
respectively, corresponds to structures with zni
and coi topologies (α and β polymorphs of
Zn(Im)2, respectively), predominantly classi-
fied within the IMIDZB refcode family. “Dupli-
cates” cannot necessarily be identified as those
with a common refcode; however, cg-SOAP
screening can help to automate this procedure.
To illustrate this point, we isolate the IMIDZB
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Figure 4 Visualizing geometric diversity in MOFs using different embedding schemes. The plots com-
pare the results of multi-dimensional scaling (MDS;49 left), t-distributed stochastic neighbor embedding
(t-SNE;50 center ), and uniform manifold approximation and projection (UMAP;51 right). For each em-
bedding scheme, we show two-dimensional structure maps characterizing the coarse-grained and scaled
AB2 MOF dataset, colored (a) by geometric density, and (b) with the distribution of the three most com-
monly occurring topologies in the dataset, dia, sod, and 4#dia, highlighting the respective centroids as
in Figure 2.
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family of structures from the database, create
a structure map using t-SNE (because this al-
gorithm generally achieves clearer clustering of
data into distinct regions, albeit at the cost of
meaningful inter-cluster distances), and analyze
the representation using affinity propagation, as
shown in Figure 5.

Figure 5 Using cg-SOAP analysis to identify re-
lationships between individual CSD entries with a
single refcode. The example case here is given
by the polymorphs of Zn(Im)2, with CSD refcodes
IMIDZB, suffixed with numbers representing a run-
ning index. The geometric diversity within the
IMIDZB refcode family is visualized using t-SNE
embedding and a cluster analysis by affinity prop-
agation. The structures are labeled according to
topology. The zni polymorphs cluster together; it
could therefore be beneficial to choose a repre-
sentative structure from this cluster. The spread
of the cag topology into two distinct clusters illus-
trates the complexity of “duplicate” detection, as
discussed in the text.

The IMIDZB refcode family contains different
polymorphs of Zn(Im)2 with different charac-
teristic geometries and topologies, which there-
fore separate in the cg-SOAP map. By ana-

lyzing the geometric diversity in this smaller
configuration space, we propose an automated
“duplicate” structure identification procedure.
The zni topology is the densest, most stable
crystalline polymorph of Zn(Im)2, and all struc-
tures of this connectivity are found in the same
cluster, labeled as 1. One structure (e.g., the
cluster examplar selected by the affinity prop-
agation algorithm) could be taken as represen-
tative of this particular polymorph. The dis-
tribution of cag frameworks across two clus-
ters (2 and 3), however, is an example where
frameworks with identical composition, con-
nectivity, and space-group display diverse ge-
ometries. Whereas IMIDZB11 corresponds to
the desolvated ZIF-4 framework under ambi-
ent conditions (298 K, 1 atm), IMIDZB12 and
IMIDZB15 are the same framework after de-
creasing temperature (80 K) and increasing
pressure (0.15 GPa), respectively, exemplifying
the “breathing” effect in the frameworks.60,61
With the change of external stimuli, the frame-
works become more dense: the average A–B–A
angle decreases and Sg increases, correspond-
ing to a lowered “tetrahedrality” around the Zn
(A) sites. On these grounds, it may be desir-
able to keep one structure from each cluster,
i.e. IMIDZB10 (cluster 2) and IMIDZB12 or
IMIDZB15 (cluster 3), in order to capture the
geometric diversity fully.
More generally, one could propose an algo-

rithm that classifies duplicates by considering
the refcode, topology, and cg-SOAP similarity
as an automated approach that makes it possi-
ble to preserve the subtle geometric diversity
that arises from varying experimental condi-
tions. The screening of duplicates is expected
to be helpful (and indeed required) for moving
to very large databases in the future, as demon-
strated in a recent analysis of DFT-optimized
datasets of MOFs.62

Quantifying Geometric Diversity
Our approach also enables quantitative investi-
gation of local structural properties, and how
they are distributed for different categories of
structures (e.g., topology). For example, inter-
penetration is commonly found in MOFs, and
it holds implications for the potential function-
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ality of a given compound, because it is closely
related with porosity.63 Generally, porous ma-
terials minimize the energy of the framework
through optimal filling of void space, and thus
in cases where void space is of sufficient size,
interpenetration may be observed. Control-
ling the degree of interpenetration has been ex-
plored using subtle changes to the synthetic
methodology, such as varying reaction condi-
tions, templating agents, and ligand design.64,65
Given the increasing number of MOF crystal
structures reported, the question arises as to
whether we can post-rationalize the extent to
which the local geometry influences the ten-
dency to interpenetrate.
In Figure 6, we show the distributions of lo-

cal properties for each structure, for different
degrees of interpenetration of the diamond-like
net (Z = 1 corresponds to dia MOFs, Z = 2 to
2#dia, and so on). In Figure 6a, we show the
distribution of A-site heterogeneity values (eq
5). Figures 6b and 6c illustrate the distribu-
tions of established local property descriptors:
namely, Sg and the average A–B–A angle, re-
spectively.
We note that the majority of dia MOFs have

locally homogeneous A sites, and this homo-
geneity does not appear to substantially depend
on the degree of interpenetration (Figure 6a).
Similarly, the distribution of the average Sg

does not show a clear correlation with the de-
gree of interpenetration (Figure 6b). There is,
by contrast, a much stronger correlation with
the A–B–A angle: as the degree of interpenetra-
tion increases, the average A–B–A angle tends
toward 180° (Figure 6c). This makes intuitive
sense when one considers that longer, “rod-like”
ligands gives rise to greater void space and
therefore enable a greater degree of interpen-
etration, and is consistent with the synthetic
approach of employing longer spacer ligands to
target higher degrees of interpenetration.66–68 It
may be inferred from these distributions that
the A sites maintain a similar environment,
irrespective of the degree of interpenetration,
whereas the linker geometry plays a crucial role
in determining this property.
Finally, we extend this quantitative analysis

to all topologies that occur at least five times in

Figure 6 Distributions of geometric property indi-
cators for increasing degrees of interpenetration,
Z, of the dia-based MOFs in the dataset. The fig-
ure shows: (a) the A-site heterogeneity (eq 5), (b)
the average angular component, Sg, of the Chau-
Hardwick order parameter, and (c) the average A–
B–A angle.
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Figure 7 Distributions of A-site heterogeneity (eq 5) for all structures in the dataset for which the topology
occurs≥ 5 times. Each bar is colored according to the average A-site heterogeneity within the given topol-
ogy. Three example MOFs are highlighted with coarse-grained structural representations, CSD refcodes,
and the corresponding topology symbol, and are discussed in the text.

the dataset, plotting the distribution of A-site
heterogeneity values in the respective structures
in Figure 7.
The qzd structures have a distinctly nar-

row distribution of A-site heterogeneity values,
which reinforces the hypothesis that the sepa-
ration from the main body of structures in the
t-SNE and UMAP embeddings (Figure 4) is a
skewing of the visualization as a result of du-
plicate structures. It is also interesting to note
that the zni topology has a narrow A-site het-
erogeneity distribution at relatively high aver-
age value, which likely contributes to the sepa-
ration of the zni structures.
Figure 7 highlights examples of topologies

with particularly low (qzd) and particularly
high (4T13, pts, and 2#pts) A-site hetero-
geneity, for which illustrative coarse-grained
and scaled crystal structures are visualized.
The structures with pts and 2#pts topool-
ogy (which are related by increasing from a sin-
gle to two-fold interpenetrated net) all contain
both tetrahedral and square planar geometries
about different A sites, typically by combining

Zn (tetrahedral geometric preference) with any
of Ni, Cu, Pt, or Pd (square planar geomet-
ric preference). Some frameworks have Cu in
both the tetrahedral and square planar sites
of the pts framework. When combined with
Au, Cu/Ag occupy the tetrahedral sites in the
2#pts framework. One might consider at-
tempting to target these pts topologies, there-
fore, by selecting metals with the appropriate
geometric preferences demanded by the frame-
work.
The high degree of heterogeneity in the 4T13

frameworks can be attributed to a large dis-
parity between the lengths of, and the flex-
ibility afforded by using two organic link-
ers (cf. DEBWAK in Figure 7). The 4T13
frameworks have a short linker (e.g. isoph-
thalate in DEBWAK) and a long-chain, flex-
ible organic linker (e.g. N ,N ′-bis(pyridin-4-
yl)-2,2′-bipyridine-5,5′-dicarboxamide in DEB-
WAK).69,70 The resultant framework has 1-D
helical chains that cross each other to create
a 2-D molecular braid with geometrically dis-
tinct Zn sites. Automated, quantitative anal-
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ysis such as that exemplified in Figures 6 and
7 should be a helpful part of the methodology
used in future work for understanding the geo-
metric and structural diversity in databases of
materials.

Conclusions
We have studied the structures of AB2 MOFs
containing a diverse set of two-connected or-
ganic linkers. By coupling a cg-SOAP ap-
proach to different embedding schemes, we vi-
sualized and analyzed the geometric diversity in
a database of MOF structures. With the aid of
cluster analysis, the structure maps of the AB2

MOF configuration space can be better under-
stood. Here, we focused on clustering within
the low-dimensional embedding, and demon-
strated how the location of structures in the
map was consistent with the grouping of struc-
tures with similar structural properties. We de-
scribed the cg-SOAP and visualization method-
ology implemented in a Python package, and
validated the routines by confirming the under-
lying net was correct, using the ToposPro soft-
ware. We anticipate that the methodology de-
scribed in this work will be useful in visualizing,
analyzing, and understanding the geometric di-
versity in larger MOF datasets, to which we will
dedicate future work.

Computational Details
Our code imports functionality from Pymat-
gen,41 the Atomic Simulation Environment
(ASE),71 and NetworkX 47 for structure pro-
cessing tasks. The SOAP implementation is im-
ported from DScribe.72 Scikit-learn,73 t-SNE,50
and UMAP51 are used for dimensionality reduc-
tion. The Scikit-learn package implementation
of affinity propagation was used for cluster anal-
ysis.
All structures were uniformly scaled to a min-

imum r(A–B) bond distance of unity. We com-
puted SOAP vectors using the polynomial basis
functions implemented in DScribe, with a radial
cut-off of rcut = 2.5, smoothness of σ = 0.2,
and atomic neighbor density expansion up to
nmax = 10, lmax = 9 (as in ref 39). (Note that
here, we do not include units for rcut and σ be-

cause we have re-scaled all structures.)
In terms of technical comparisons of the dif-

ferent algorithms, it is worth mentioning the
relative times taken for the code to execute. All
three algorithms could be performed on a stan-
dard MacBook Pro (1.4 GHz Quad-Core Intel
Core i5 processor; 8 GB memory). The abso-
lute times for MDS, t-SNE, and UMAP were
103, 479, and 22 seconds, respectively. Hence,
UMAP outperforms the other two embedding
schemes for this particular purpose. It should
be noted that a particularly low learning rate, 5,
was chosen for t-SNE, because this was found to
better capture the structure of the data (based
on visual inspection of the relative “tightness” of
clustering: smeared-out clusters can often be a
sign that the algorithm has ended before reach-
ing convergence). For future work on larger
datasets, UMAP might therefore be preferred
over t-SNE for its faster execution time.
The absolute positions of data points in the

structure maps will slightly depend on the spe-
cific parameters chosen (and numerical issues),
particularly for t-SNE and UMAP; however,
the global trends and interpretation of the vi-
sualizations were found to remain consistent for
different choices of embedding parameters.

Data and Code Availability
The coarse-graining code described in
this work is openly available online at
https://github.com/tcnicholas/coarse-graining.
The full dataset of coarse-grained structures
will be made available via Zenodo upon journal
publication.
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