
An integrative resource for network-based investigation of COVID-19 

combinatorial drug repositioning and mechanism of action 

 

 

AKM Azad1§, Shadma Fatima1§, …, Fatemeh Vafaee1* 

 

1School of Biotechnology and Biomolecular Sciences, University of New South Wales, 

Sydney, Australia 

 

§ Equal contribution 

 

* Correspondence to: 

Fatemeh Vafaee, PhD 

Email: f.vafaee@unsw.edu.au 

Telephone: +61 (2) 9385 3281 

  

mailto:f.vafaee@unsw.edu.au


Abstract  
Repurposing of the existing medications has become the mainstream focus of anti-COVID-19 

drug discovery as it offers rapid and cost-effective solutions for therapeutic development. 

However, there is still a great deal to enhance efficacy of repurposing therapeutic options 

through combination therapy, in which promising drugs with varying mechanisms of action are 

administered together. Nonetheless, our ability to identify and validate effective combinations 

is limited due to the huge number of possible drug pairs. Yet, there is no 

available resource which can systematically guide to identify or choose the effective 

individual drugs or best possible synergistic drug combinations for the treatment of SARS-

CoV-2 infection. To address this resource gap, we developed a web-based platform that displays 

the network-based mechanism of action of drug combinations, thus simultaneously giving a 

visual of the cellular interactome involved in the mode of action of the chosen drugs. The 

platform allows the freedom to choose two or more drug combinations and provides the options 

to investigate network-based efficacy of drug combinations and understand the similarity score, 

primary indications, and contraindications of using these drugs combinations. In a nutshell, the 

platform (accessible via: http://vafaeelab.com/COVID19_repositioning.html) is of the first of 

its type which provides a systematic approach for pre-clinical investigation of combination 

therapy for treating COVID-19 on the fingertips of the clinicians or researchers. 

Introduction 
The global pandemic caused by a novel coronavirus, SARS-CoV-2/COVID-19 has posed a 

grave threat to public health along with an unprecedented loss to countries economy  [1]. 

Although considerable scientific attention has been focused on identifying a cure for COVID-

19, yet there is no licensed/specific treatment available to prevent or treat the disease [2]. One 

of the hurdles in identifying one drug solution to cure this pandemic disease-causing virus is 

because of the plethora of symptoms it induces in human body. In critical patients in addition to 

neurological symptoms ranging from a loss of sense of smell to outright seizures, it can also 

lead to highly erratic  gastrointestinal problems, elevated liver abnormalities, damage to the 

kidneys, and a likely fatal deranged immune system [3, 4]. The disease can also mess with a 

person's blood leading to the formation of clots, potentially leading up to the stroke, heart attack, 

lung damage and so on [5]. Indeed, these are far more detrimental than a typical respiratory 

virus [6] and thus, difficult to be treated with one single antiviral drug.  

http://vafaeelab.com/COVID19_repositioning.html


In the absence of approved therapeutics, clinicians rely on using repurposed drugs that is to use 

the drugs indicated for other diseases with some symptomatic similarity to COVID-19. 

Previously, repositioning of existing drugs based on drug-drug similarity, side-effect prediction, 

drug-drug interaction prediction [7-11] and drug target prediction  has received an escalated 

interest as an innovative drug development strategy offering a quick solution for treatment for 

various diseases  along with the additional benefits of reducing cost, saving time and avoiding 

risk as few phases of de-novo drug discovery can be bypassed for repositioning candidates [12]. 

Similarly, in the current situation, repositioning existing drugs seems to be the only timely 

solution for treating COVID-19. While using these repurposed drugs individually may yield 

clinical benefit, because of high virulence and complex pathological mechanism of COVID-19, 

carefully combined cocktails could be highly effective [13, 14]. In addition to increased 

therapeutic efficacy, repurposed combination therapy can also provide reduced toxicity of high 

dosing, thus providing a safer approach towards patients. However, due to a large number of 

possible drug pairs and dosage combinations our ability to find and verify effective 

combinations is limited by this combinatorial explosion [15].  Hence, the big question remained 

is how to identify effective drug combinations which can suppress  viral replication and its 

mitigated life threatening symptoms at multi-level  and can help in quick recovery of the patients 

[16].  To determine  efficacious drug combinations as the choice of the treatment in the current 

pandemic situation, clinicians and the researchers need to have quick and easily accessible tool 

outlining the mechanism of the action of these drugs and importantly providing a systematic 

insight of dense biological networks, disease-related pathways, and drug-altered complex 

cellular processes, but no such tool is available yet. 

To overcome this obstacle, we have developed a novel integrative computational platform, 

COVID-CDR (COVID-19 Combinatorial Drug Repositioning), which can visualize and analyze 

a range of potential repurposed drug combinations so to identify possibly efficacious multi-drug 

combinations for COVID-19 treatment and may help in the timely discovery of 

multicomponent therapy for the novel coronavirus disease.  In this platform, we have utilized a 

systems pharmacology approach combined with a multitude of drug similarity measures to offer 

a rational multi-level, multi-evidence solution for investigation of drug combination strategy 

against COVID-19.  

Systems pharmacology is a holistic network-centric view of drug actions which include network 

analyses at multiple scales of biological organization and provides additional insights into the 

mechanism of drug actions to explain both therapeutic and adverse effects of drugs. [17].  



Mapping drug-target networks onto biological networks (host-pathogen interface), can not only 

help in prioritizing candidate drugs based on their network effects but can also help predict a 

drug's side-effects and efficacy. Network-based approaches have been effectively applied to 

numerous areas in pharmacology, comprising new target prediction for well-known drugs [8, 9, 

11], identification of drug repurposing and combination, and inferring prospective drug-disease 

pathways [18-20]. Understanding that protein-protein interactions (PPIs) contain information of 

the inherent combinatorial complexity of cellular systems, we have incorporated direct drug 

targets (viral or human), and further overlaid with their associated protein-protein interactions 

from human interactome. We then quantified the topological interplay between the virus-host 

interactome and drug targets in the human PPI network following recent observations that 

network-based drug-drug and drug-disease proximities shed lights on the therapeutic efficacy 

of drug combinations [21, 22]. 

Further, we complemented the network-based measure of drug efficacy with a drug-disease 

functional proximity measure that quantifies the interplay between biological processes induced 

by drug targets with those impacted by SARS-COV-2 infection.  This novel and intuitive 

functional proximity measure adjust for the limitations of existing studies which overlook the 

functional biological correlation of drug and disease targets. 

Furthermore, pharmacological and biological similarities of drug pairs have been widely 

investigated to identify the efficacy of the compound pairs [23]. Accordingly, we evaluated 

drug-drug chemical similarity, drug target structural similarity, drug-induced pathway similarity 

and drug-target functional similarity to offer a resource for multi-modal, multi-evidence 

investigation of drug combinations in the context COVID-19.  In addition to the network 

proximity measure, pharmacological and biological similarities of drug pairs have been widely 

investigated to identify the efficacy of the compound pairs [23]. Accordingly, we evaluated 

drug-drug chemical similarity, drug target structural similarity, drug-induced pathway similarity 

and drug-target functional similarity to offer a resource for multi-modal, multi-evidence 

investigation of drug combinations in the context COVID-19.  Within few months of COVID-

19 outbreak, an exceptionally large number of clinical trials commonly based on structurally 

different and often functionally unrelated drug combinations were launched to evaluate the 

safety and efficacy of these newly repurposed anti-COVID-19 therapies. We have listed some 

of these famous clinical trial combination (36 trials, accessed from ClinicalTrials.gov) on our 

platform with the focus to explain their molecular mechanisms and the foundation of the 

scientific rationale for their empirical use and evaluation in clinical trials. Further, to elucidate 



the probability of drug combinations as synergistic or antagonistic, we utilized the results from 

high-throughput screening (HTS) of drug combination on 124 human cancer cell lines 

developed  by Liu and colleagues [24].  

Our web-based platform can automatically construct a PPI network for a given two or more set 

of drugs and build a drug-target/s, target-human and viral-human interactome and estimate drug-

drug and drug-disease network proximity as well as multitude of drug-drug similarity measures. 

Such information has been complemented with drug side-effect, indications, and literature 

evidence, which together form a unique starting point for COVID-19 combinatorial drug 

repositioning. We have demonstrated the utility of the tool for bicombination of LY2275796 

and cyclosporine and explained the mechanism of action and potency of such combination. To 

the best of our knowledge, this is the first computational tool to integrate COVID-19 drug 

information in the context of virus and human interaction networks, which may facilitate a better 

understanding of the molecular mechanisms of drug actions, for the identification effective drug 

combinations and can help in identifying better therapies of COVID-19 infection worldwide. 

Results and discussions 

COVID-CDR overview and statistics 

COVID-CDR presents a computational workflow to choose candidate drugs combinations 

against COVID-19 and analyze their primary targets and associated human host and SARS-

CoV-2 PPIs to provide a holistic view of the drug-target interactome and possible insights about 

the mechanism of action of drugs chosen. To this end, 867 drugs with reported evidence in 

treating COVID-19 symptoms or under investigation in trials were compiled (Supplementary 

Table 1), of them, 57% were approved for an indication, 41% are investigational, and >2% were 

vet-approved, nutraceutical or withdrawn. Compiled drugs cover a wide range of therapeutic 

classes (>200 categories) such as antivirals, antibiotics, anticancer, anti-inflammatory, 

immunomodulatory, immuno-suppressive, and anticoagulant agents, among others. Multiple 

drug-related information sources including drug's chemical structure, physiochemical and 

pharmacological properties, side effects, protein targets and their associated pathways were 

compiled from diverse resources (Table 1) and are accessible to explore from the web interface.  

To enable network-based exploration of drug targets and their associations with SARS-CoV-2 

proteins on human PPIs, we constructed a multi-dimensional network—i.e., a network 

representing multiple kinds of relationships—comprising drug-target interactions (867 drugs, 

2,228 protein targets, and 4,866 interactions) and high-confidence binding associations between 



SARS-CoV-2 and human proteins (28 viral proteins, 340 human proteins, and 414 interactions) 

overlaid on a comprehensive experimentally-validated human protein-protein interactome 

(469,515 PPIs). This multi-dimensional interactome (Supplementary Table 2) has been used 

to estimate the topological proximity of drug targets to COVID-19-related proteins and quantify 

the separation of drug targets on human protein-protein interactome for network-based 

exploration of efficacious drug combinations (see methods). In addition to network-based 

topological metrics, the functional relevance of drug targets with COVID-related cellular 

biological processes were estimated. Furthermore, for each drug pair, multiple structural and 

pharmacological similarity measures were estimated (Supplementary Table 3), and whenever 

available, complemented with results of drug combination screening studies on multiple cell-

lines. Figure 1 shows the COVID-CDR platform content and construction [25].  

Network-based drug repositioning and quantification of potentially efficacious drug 

combinations for SARS-COV-2 

In this study, we present a comprehensive SARS-CoV-2-host protein-protein interaction 

network (Supplementary Table 2) that is curated based on the known SARS-CoV-2 protein 

interactions [26, 27] in the literature and some important interaction databases [28]. We have 

also incorporated the SARS-CoV virus-host protein-protein interaction network which can serve 

as a  valuable reference due to the close similarity between SARS-CoV and SARS-CoV-2 

proteins [29-31].  The basis for this network-based drug repurposing methodology rests on the 

notion that for a drug with multiple targets to be efficacious, its target proteins should be within 

or in the immediate neighborhood of the corresponding subnetwork of the disease-related 

proteins in the human interactome, as demonstrated in multiple studies previously [15, 22, 32-

35]. Using the network proximity framework, we  measured the shortest distances of all drugs 

to SARS-CoV-2-related proteins using the existing knowledge of the drug-target interactions 

and the global map of the SARS-CoV-2-human interactome on the comprehensive human PPI 

network (see Methods). SARS-CoV-2-related proteins considered in this study include viral 

proteins, human proteins interacting with SARS-CoV-2, and virus entry factors. To quantify the 

significance of the shortest distances between drug targets and disease proteins, drug-disease 

proximity measures were then converted to z-scores (z) based on permutation tests as previously 

explained [21, 36], and the corresponding p-values were estimated. For z < 0, the drug–target 

subnetwork (i.e., drug module) and the SARS-CoV-2-related proteins (i.e., disease module) 

overlap; while for z ≥ 0, the drug module and the disease module are separated. Overall, 543 

drugs topologically overlap with SARS-CoV-2 module (z < 0), 118 of them show significant 



exposure with the disease module (z < 0 and p-value < 0.05, permutation test, Supplementary 

Table 3).  

Next, we used a recently-proposed network-based methodology to identify clinically efficacious 

drug combinations which relies on the assumption that a drug combination is therapeutically 

effective if follows complementary exposure pattern (Figure 1C) indicating that targets of the 

drugs overlap with the disease module but target separate neighborhoods on the interactome 

[15]. Accordingly, for each drug pair A and B, a network separation measure, 𝑠𝑠𝐴𝐴𝐴𝐴, was estimated 

as the mean shortest distance within the interactome between the targets of two drugs (Equation 

3, Methods). For 𝑠𝑠𝐴𝐴𝐴𝐴< 0, drug target subnetworks overlap topologically, while for 𝑠𝑠𝐴𝐴𝐴𝐴 ≥ 0, they 

are topologically separated on the interactome. Hence, complementary exposure implies that 

𝑠𝑠𝐴𝐴𝐴𝐴 ≥ 0, 𝑧𝑧𝐴𝐴 < 0, and 𝑧𝑧𝐴𝐴 < 0. 

Functional proximity of drugs to COVID-19 biological processes  

The network-based topological proximity of drug module to the disease module measures the 

immediate vicinity of drug targets to SARS-CoV-2 proteins on cellular interactome. However, 

it falls short in capturing the effect of drug’s downstream changes in biological processes 

perturbed under the impact of the SARS-CoV-2 infection.  To address this limitation, we 

complemented topological proximity with a measure of drug-disease functional proximity to 

quantify the relationship between biological processes induced by drug targets with those 

affected by SARS-COV-2-related proteins. We first performed Gene Ontology enrichment 

analysis to identify biological processes associated with drug protein targets and SARS-CoV-2-

related proteins. Then, we estimated the similarity between drug- and disease-associated 

biological processes using Gene Ontology-based semantic similarity measure which leverages 

on the ontology graph structure and information content to estimate similarities among gene 

ontology terms [37]. Supplementary Table 4 shows biological processes enriched by SARS-

CoV-2 related proteins (FDR < 0.05). Drug-disease functional proximities are ranged between 

0 and 1 with the mean value of µ = 0.29 (Supplementary Figure 1A). Overall, the higher the 

similarity is, the greater the effect of the drug would be in perturbing disease-related 

mechanisms. Similarity measures were standardized to z-scores and the corresponding one-

tailed p-values (i.e., 𝑃𝑃[𝑋𝑋 > 𝑥𝑥]) were estimated; 306 drugs hold z-score > µ, among them 82 

have p-value < 0.05.  SARS-CoV-2 functional proximities of drugs while inversely related to 

the corresponding topological proximities, hold weak linear relationship (Pearson’s correlation 



coefficient =  −0.413) which indicates that these two measures are complementary rather than 

being redundant (Supplementary Figure 1B).     

Structural and functional similarity of pairwise drug combinations   
The use of structural and functional similarities is a common target-based approach for drug 

repurposing.  Many studies  suggest that  synergy increases when targeting proteins with either 

strong functional similarity or dissimilarity [38, 39]. Multiple pairwise similarity measures for 

all the drug combinations were compiled were estimated as detailed in methods as being 

associated with COVID-19 treatment. COVID-CDR assesses drug–drug similarities derived 

from variety of direct and indirect sources of evidence and brings together the structural and 

functional drug similarity measures with molecular network analysis for combinatorial drug 

repurposing. Distinct drug-drug similarity matrices were generated estimating measures based 

on similarities of chemical structures, target protein sequences, induced pathways, and target 

protein function—i.e., cellular components, biological processes, and molecular functions (see 

Methods). The size of each matrix is 867 by 867, i.e. 751,689, and values range from 0 to 1. The 

individual similarity matrices were then mean-aggregated to form a combined-score similarity 

matrix and z-transformed for significance assessment (Supplementary Table 3). Overall, the 

network proximity of drug-drug pairs holds negative but insignificant correlation with structural 

and functional similarities (Supplementary Figure 2) 

Drug combinations in trial for COVID-19 or FDA-approved for other indications 

The existing COVID-19 outbreak lead to the rise of many COVID-19 clinical trials across the 

globe. Drug repurposing of existing antivirals drugs and the identification of a new antiviral 

activity for already known drugs, including approved, and discontinued one, is a key idea behind 

the design of large number of clinical trials launched for COVID-19. More than 500 different 

clinical trials were launched worldwide with multiple drug combinations with the hope to 

identify a promising treatment for this disease [40]. In order to provide in-action examples of 

studies likely to influence clinical practice, we incorporated in our platform 36 different drug 

combinations in various clinical trials designed for treating COVID-19 from clinicaltrials.gov 

database involving more than 20 medicines, e.g., human immunoglobulin, interferons, 

chloroquine, hydroxychloroquine, arbidol, remdesivir, favipiravir, lopinavir, ritonavir, 

oseltamivir, methylprednisolone, and bevacizumab (Supplementary Table X). The most 

common therapeutic agent being trialed currently is hydroxychloroquine (24 trials with potential 

sample size of over 25 000 participants), followed by lopinavir–ritonavir (7 trials) and 

remdesivir (5 trials). Additionally, we compiled 150 pairs of COVID-19-related drugs approved 



by FDA for other indications (Supplementary Table 5). Table 2 provides statistics and details 

of external drug combinations included in this platform.  

Hight-throughput screening of drug combination synergy scores on cancer cell lines  

Furthermore, in order to enable a better understanding and investigation of synergistic drug 

combinations on different cell types, we have incorporated the high-throughput screening results 

related to drug combinations assessed on more than 124 immortalized human cancer cell lines 

assembled by Liu and colleagues [24]. Cancer cell lines have been used in high-throughput drug 

screens against hundreds of compounds (both approved and experimental) to test their effect on 

cell viability.  Given the minimal size of viral genome, all viruses including SARS-CoV-2 relies 

on host machinery to facilitate their replication, assembly, and release. It has been shown that 

the viruses interfere with multiple host cell-cycle components, metabolic pathways, epigenetic 

regulators and translational/posttranslational machinery via mechanisms co-opted by tumour 

cells [41]. It has recently been shown that infection of SARS-CoV-2 of lung cell lines induces 

metabolic and transcriptional changes consistent with epithelial mesenchymal transitions which 

is a key phenomenon observed in cancer cells implying a  common  mechanisms of SARS-CoV-

2 pathogenesis and cancer cell proliferation and invasion [42]. This underlines the fact that 

cancer cell lines may make a novel model for understanding SARS-CoV-2 pathogenesis and 

identifying the drugs combination synergy/antagonism. 

Database access and usage notes 
Figure 2 shows the COVID-CDR web interface. The user can query drug combinations simply 

by using search option and can start with two drugs of the choice (Figure 2A).  If required, 

additional drugs can be added on the top of the built network to explore a combination of three 

or even larger combinations (Figure 2B). When displaying the drug-targets network, each node 

type is highlighted with a specific color: pink nodes indicates drugs, blue nodes are human 

proteins directly targeted by the drug while green nodes are other human host proteins, and red 

nodes indicates SARS-CoV-2 proteins. Purple nodes indicate other viral proteins. Users can 

simply hover on the individual drugs to check the information link to the drugs such as drug’s 

therapeutic class, primary indication, and disease topological and functional proximities. Details 

of drugs-target information can be assessed by clicking a small brain tab in the top right (Figure 

2B) which displays physiochemical properties of the queried drug, its chemical structure in an 

interactive 3D view, and its pharmacological properties providing an all-in-one view for further 

investigation of the drug of interest. The platform also provides the flexibility of including or 



not including the SARS-CoV network and drug-target and their PPI neighborhood via changing 

the “minimum distance” and” PPI hop” parameters. 

Upon completion of network rendering, user can observe pair-wise multi-modal drug similarity 

information and their network separation score by interacting with the tab at the bottom of GUI 

(Figure 2B). The induced sub-network of the queried drug(s) in the network-view is also 

interactive and query-able, and upon selecting an edge, a PubMed query is made with its incident 

drugs, and the search results are displayed as a table in a modal window. Under the curated 

combination tabs user can also check the network for clinical drug combinations by clicking the 

clinical trial tab at top left, these 40 selected bi- or tri-drug combinations are currently under 

ongoing clinical trials for COVID-19 treatment (Figure 2C). Additionally, the network-based 

MOA of FDA approved potential COVID19 drug combinations can be explored. The  

sensitivities of the various cancer cell lines to the chosen drugs combinations can be viewed as 

well with the 'ranking' function of the tabular viewer, users can easily identify drug combinations 

with high sensitivity toward the specific cell lines with respect to certain types of synergy scores, 

such as Bliss, Loewe or ZIP.  All these files can be downloaded from the download tabs at the 

top front page of GUI.   

Case study: LY2275796 and cyclosporine combination therapy 

We sought to use our platform in identifying drug combinations that may provide effective 

synergistic therapy in potentially treating SARS-CoV-2 infection along with displaying well-

defined mechanism-of-action by the implemented functional and network-based analyses. The 

utility of COVID-CDR and its integrated network-based system medicine approaches is 

showcased by LY2275796 and cyclosporine combination: As shown in Figure 3, our network 

analysis indicates that LY2275796 and cyclosporine synergistically target SARS-CoV-2-

associated host protein subnetwork by “Complementary Exposure” pattern, offering potential 

combination regimens for the treatment of SARS-CoV-2.  The targets of both drugs hit the 

SARS-CoV2 host subnetwork (overlap with the disease module), but the targets separate 

neighborhoods in the human interactome network. Briefly, the negative value of topological 

network proximity for both the drugs suggests proximity with the disease module (LY2275796: 

z-score= –1.68, p-value = 0.01; cyclosporine: z-score=–2.24, p-value=0.01). Simultaneously, 

the higher positive value for functional proximity for both drugs (LY2275796: z-score=4.42, p-

value=4.86E-06; cyclosporine: z-score=2.40, p-value=0.008) indicated significant similarity 

between the biological processes targeted by these drugs and the perturbed cellular processes in 



SARS-CoV2–infection implying potentially very high effectiveness each drug. Besides, the two 

drugs denote positive separation score (𝑠𝑠𝐴𝐴𝐴𝐴=0.46) between the sub-modules suggesting no 

overlap between the targets of LY2275796 and cyclosporine, and thus the efficacy of the 

combination therapy.  

All viruses enter and infect host cells to use the cell’s protein-making machinery to make 

multiple copies of themselves before escaping to infect neighboring cells. Numerous promising 

antiviral therapies against SARS-CoV-2 are being investigated with the hope to stop the virus 

from utilizing host machinery, and thus preventing its replication and spread. The translation of 

most of the viral (sub-genomic) mRNAs is believed to be cap dependent which displays a 

requirement for eukaryotic initiation factor 4F (eIF4F), a heterotrimeric complex consisting  of 

eIF4E, the cap-binding protein; eIF4A, an RNA helicase; and eIF4G, a large scaffolding protein 

needed for the recruitment of 40S ribosomes [44]. LY2275796 is a drug that inhibits eukaryotic 

initiation factor-4E, or eIF-4E, and is currently in Phase 1 development as the second antisense 

anti-cancer drug [45]. Inhibiting eIF4A or eIF4FE, the catalytic subunits of eIF4F is shown to 

lead apoptosis in selected cancer models. EIF4E, F and G proteins are involved in tumour 

progression, angiogenesis, and metastases. It inhibits eIF4E complex and its activating kinases, 

MNK1/2 [44, 46]. Inhibiting eIF4E inhibits Ras-Mnk and PI3-AKT-mTOR pathways, which 

are key nodes where the RAS and PI3K pathways come together and control the production of 

multiple oncoproteins [47] also shown to be important in SARS-COV2 infection. Targeting this 

translational pathway could lead to the development of new, more effective antiviral therapies 

to fight COVID-19.  

 

In combination with LY2275796 we have added cyclosporine, an inhibitor of calcineurin 

inflammatory pathway via NF-κΒ, which has been used mainly for prophylaxis of organ 

rejection. Importantly, cyclosporine has demonstrated to improve outcomes in patients with 

severe H1N1 pneumonia and acute respiratory failure in SARSCOV2 infection via NF-κΒ [48] 

and mTOR signaling which plays an essential role for coronavirus infection in general [49]. 

Some studies have shown that cyclosporine may dramatically limit the severity of sepsis and/or 

inflammation-induced acute lung injury and post-cardiac arrest AR in SARS-COV-2 patients 

[43]. It has been consistently reported to improve lung function via mitochondrial processes, 

including PTP inhibition [50, 51].  Altogether our, network analyses and scientific data 

suggested that combining LY2275796 and cyclosporin can offer a potential therapeutic 

approach for SARS-CoV-2. 



Materials and methods 

COVID-19 drug collection and drug-related data sources 

Drugs with reported evidence in treating COVID-19 symptoms or in clinical trials for COVID-

19 were manually collected from the literature [ref], Clinicaltrials.gov, and DrugBank [44]. This 

list was further enriched with drugs from DrugBank whose protein targets physically interact 

with the SARS-Cov-2 proteins based on the recent report of SARS-CoV-2 protein interaction 

map [27]. For each drug, multiple drug-related data were then collected from different sources:  

drug identifiers, chemical structures (SDF format), physiochemical and pharmacological 

metadata, protein targets and their primary structure (FASTA format) were retrieved from 

DrugBank, version 5.1.56. Drug-induced pathways and their constituent genes were obtained 

from ‘Kyoto Encyclopedia of Genes and Genomes’ (KEGG), release 90 [45]. Gene ontology 

(GO) annotations (cellular components, biological processes and molecular functions) of protein 

targets for gene-set enrichment analysis were obtained from the EnrichR libraries which 

provides up-to-date annotations for gene-set enrichment analyses [46].  Information on recorded 

marketed drug side-effects were obtained from SIDER, version 4.1 [47]. Drugs’ therapeutic 

class and indications—i.e., drug to disease mapping—were retrieved from Therapeutic Target 

Database (TTD), June 2020 update [48].  

Virus-host-drug multi-dimensional network construction 

To reveal the interplay between COVID-19 drug targets, and SARS-CoV-2-human protein 

interactions on human protein-protein interactome, a multi-dimensional network was fused from 

different data sources integrating drug-target, SARS-CoV-human, and human protein-protein 

interactions into a single network. Protein–protein interactions (PPIs) in humans were 

downloaded from ‘Interologous Interaction Database’ (I2D), version 2.9 [49].  High-confidence 

protein–protein interactions between SARS-CoV-2 and human proteins were obtained from 

Gordon et al. [27], and Saha et al. [50]. Drug-target interactions were compiled from DrugBank, 

version 5.1.5. Interactions between SARS-CoV-1 and human proteins were collected by 

searching through literature. Across different interaction data sources, protein names/identifiers 

were mapped into UniProt/Swiss-Prot IDs forming a unified multi-dimensional network.   

Drug-drug similarity measures 
Multiple pairwise similarity measures among 867 drugs compiled as being associated with 

COVID-19 treatment were estimated as detailed in our previous study [51]. Accordingly, 

multiple pairwise similarity measures among 869 867 drugs compiled as being associated with 



COVID-19 treatment were estimated as detailed in our previous study [51]. Accordingly, drugs' 

chemical structures, target protein sequences, induced pathways, and target functions—i.e., GO 

term annotations of biological processes, molecular functions and cellular components—were 

used to estimate 6 heterogeneous measures of drug-drug similarities normalized between 0 and 

1. In addition to individual similarities, mean-aggregated similarity score as well as its 

associated p-value (based on standardized z-score) and the corresponding false discovery rate 

adjusted p-value were reported. Missing values indicate no relevant information is available 

about the comparing drugs and were retained for consistency in dimensions. 

Briefly, pairwise compound structural similarities were measured with atom pairs using the 

Tanimoto coefficient. To estimate target sequence similarities, the percentage of pairwise 

protein sequence identities upon global alignment was calculated and then 'best-match-

averaged. In addition to sequence similarity, functional similarity of protein targets was 

estimated by GO term enrichment analysis followed by semantic similarity estimation between 

enriched GO terms. Similarities between pathways associated with each pair of drugs were 

estimated based on the similarity of their constituent genes using dice similarity and then max-

aggregated to get pathway-induced drug-drug similarities. Details of different drug similarity 

estimation are provided in our recent study [51].   

Network-based topological proximity measure 

Disease-related proteins often form a localized region of connections on the protein interactome 

referred to as disease module which follows the frequently documented propensity of disease-

related proteins to interact with each other [52]. As previously proposed [ref], to capture the 

network proximity between drug A and disease C, we used the average shortest path length 

between disease proteins to the nearest target of drug A on human PPI network using Equation 

1, where 𝐴𝐴 = {𝑎𝑎} is the set of targets of drug A,  𝐶𝐶 = {𝑐𝑐} is the set of COVID-19-related 

proteins, and 𝑑𝑑(𝑎𝑎, 𝑐𝑐) is the shortest distance between a target 𝑎𝑎 and a disease protein 𝑐𝑐.  

𝑑𝑑(𝐴𝐴,𝐶𝐶) =
1
‖𝐶𝐶‖

�min
𝑎𝑎∈𝐴𝐴

𝑑𝑑(𝑎𝑎, 𝑐𝑐)
𝑐𝑐∈𝐶𝐶

 

(1) 

The proximity measures were then converted to z-scores (i.e., 𝑧𝑧 = 𝑑𝑑(𝐴𝐴,𝐶𝐶)−𝜇𝜇
𝜎𝜎

) by comparing the 

observed distance to a reference distance distribution (𝜇𝜇 and 𝜎𝜎) obtained by permutation test of 

1000 iterations where at each iteration a randomly selected group of proteins of matching size 



and degree distribution was generated as the disease proteins and drug targets in the human 

interactome.  

Similarly, we measured the proximity of drug target modules of drugs A, B based on their target 

localizations on interactome using the previously introduced separation measure to compare the 

mean shortest distances within targets of each drug, i.e., 𝑑𝑑𝐴𝐴𝐴𝐴, 𝑑𝑑𝐴𝐴𝐴𝐴, to the mean shortest distance 

between targets of 𝐴𝐴 and 𝐵𝐵, i.e, 𝑑𝑑𝐴𝐴𝐴𝐴: 

𝑆𝑆𝐴𝐴𝐴𝐴 = 𝑑𝑑𝐴𝐴𝐴𝐴 −
𝑑𝑑𝐴𝐴𝐴𝐴 − 𝑑𝑑𝐴𝐴𝐴𝐴

2
 

(2) 

 where 𝑑𝑑𝐴𝐴𝐴𝐴 was estimated based on the “closest” distance which basically measures the average 

shortest distance between targets of drug 𝐴𝐴 and the nearest target of the drug B, and vice versa. 

𝑑𝑑𝐴𝐴𝐴𝐴 =
1

‖𝐴𝐴‖ + ‖𝐵𝐵‖
��min

𝑏𝑏∈𝐴𝐴
𝑑𝑑(𝑎𝑎, 𝑏𝑏)

𝑎𝑎∈𝐴𝐴

+ �min
𝑎𝑎∈𝐴𝐴

𝑑𝑑(𝑎𝑎, 𝑏𝑏)
𝑏𝑏∈𝐴𝐴

� 

(3) 

Functional proximity measure 

Functional proximity measure between a drug and COVID-19 disease was estimated based on 

the similarity of Gene Ontology-based biological processes enriched by disease-related proteins 

and targets of drug A. The biological processes enriched by the drug targets and disease proteins 

(p-value<0.05) were then compared using the semantic similarity of the corresponding Gene 

Ontology (GO) terms using the topology and information content of the ontology graph [53]. 

Pairwise semantic similarities between any two GO terms associated with the drug and disease 

were then aggregated into a single functional proximity measure using a best-match average 

strategy [53].  

Semantic similarity estimation was performed using the GOSemSim R package [37]. Enrichment 

analysis was performed using the right-sided Fisher’s exact test whose p-value for the null 

hypothesis is computed based on the hypergeometric distribution. Nominal p-values were 

adjusted for multiple hypothesis tests using Benjamini and Hochberg (False Discovery Rate) 

correction and adjusted p-value were used for significance assessment of GO terms associated 

with a drug or the disease.  Enrichment analyses were implemented in R using stats packages. 

System design and implementation 



The complete COVID-CDR framework – including data mining, pre-processing (noise removal 

and quality control), pair-wise drug similarity estimation, functional and network-based feature 

calculation of drugs and their target proteins, and visualization – was implemented in R. This 

unified codebase facilitates ease of reproducibility and ongoing maintenance. HPC (High 

performance computing)-powered parallel processing was leveraged for repetitive processing, 

e.g. similarity matrix, drug-disease proximity, and pair-wise network separation of drugs within 

their target interactome. The highly interactive web interface for COVID-CDR was developed 

using R Shiny [54]. This interface reports and visualizes some of the basic statistics of 

COVID19-related drugs and their reported combinations (as per Clinicaltrials.gov) using  

ggplot2 [55] and DT [56] R packages. The interactive view of queried drug combination – the 

induced subnetwork of the multi-dimensional integrative network is visualized using visnetwork 

package in R, which includes all the features available in vis.js javascript library for R shiny 

applications [57]. For each drug, a three-dimensional visualization of its molecular structure is 

rendered using MolView API [58]. Drugs and their adverse side-effect information were 

retrieved via merging DrugBank [59] and SIDER [47] databases. Pathways induced by drugs 

were estimated via hypergeometric test from stats R package. Protein and their functional 

annotations (GO-terms) were retrieved from QuickGO RESTful API [60].  For any node-pair, 

e.g. drug-protein or protein-protein nodes, their literature co-occurrence in PubMed abstracts 

are sought and processed with easyPubMed R package [61]. All network-related processing is 

done via igraph package in R [62]. Overall, the whole pipeline is hosted in public repository 

aided with proper documentation and usage instruction. While this interface has been tested for 

most of the major internet browser, e.g. Google Chrome, Firefox, Safari, and Internet explorer 

10, we recommend using the one which supports 3D graphs for MolView rendering.  

Code and data availability 

To ensure the reproducibility of COVID-CDR, we have made the whole codebase (including 

any intermediate curation, processing, and the web application) freely available for non-

commercial uses in GitHub (https://github.com/VafaeeLab/COVID-CDR). The code and 

interface are well documented, and the database update is implemented as a HPC-powered and 

parallel processing-enabled, semi-automated pipeline to accommodate anytime system 

upgradation.  

  



Figure legends 

Figure. 1. Schematic workflow for content and construction of COVID-CDR.  

A. Multidimensional network construction. COVID-CDR encompasses a comprehensive 

multi-layer interactome that is curated based on the known SARS-CoV-2 protein-human host 

interactions; interactions of all drugs and their direct targets along with all experimentally 

validated human protein-protein interactions. B. Drug-Drug similarity estimation. A number 

of drug-drug similarity measures were calculated to determine the similarity index of each 

possible drug combinations (drug chemical structures to estimate drug pairwise chemical 

similarity, drug protein targets and protein sequences to estimate sequence-based target 

similarity, drug-induced pathways and their constituent genes to estimate pathway-based 

similarities, and GO annotations of protein targets and protein-protein interactions to identify 

functional similarities). C. Network-based complementary exposure pattern where the targets 

of the drugs both hit the virus subnetwork but target separate neighborhoods in the human 

interactome. D. COVID-19 functional proximity estimation. Functional proximity is an added 

measure which calculates the functional similarity of the COVID-19 related proteins and drug 

targets. E. Curated drug combinations. Users can explore curated drug combinations, i.e., 

drug combinations under investigation in COVID-19 clinical trials or FDA approved potential 

COVID-19 drug combinations. Synergistic scores of specific combinations can be assessed on 

various cell lines derived from HTS assays. F. Comprehensive information on drugs. Multiple 

drug-related information sources were compiled and are accessible to explore from the web 

interface. Abbreviations: GO: Gene Ontology. 

Figure 2. An overview of COVID-CDR web interface and application scenarios.  

A. The user can query drug combinations simply by using search option and can start with two 

drugs of the choice.  B. Specific queried drug combination and drug-targets network gets 

displayed. Users can add on another drug on the same combination or query a different drug 

using a query or add tabs (top left).  Details of drugs-target information can be assessed by 

clicking a small brain tab (top right) which displays detailed information of the queried drug. 

User can observe pair-wise multi-modal drug similarity information and their network 

separation score using the tab at the bottom of GUI. C. Under the curated combination tabs, user 

can also check the network for COVID-19 clinical drug combinations by clicking the clinical 

trial tab at top (C, top panel). Additionally, the network-based MOA of FDA approved potential 

COVID19 drug combinations can be explored (C, middle panel). The sensitivities of the various 



cancer cell lines to the chosen drugs combinations can be viewed as well with the 'ranking' 

function of the tabular viewer (C down panel).  

Figure 3. Integrated network visualization generated for pairwise combination of 

LY2275796 (Cap independent translation inhibitor-Glycosides) and Cyclosporine 

(Calceinurin inhibitor-immunosuppressant). The top panel indicates possible exposure mode 

of the SARS-CoV2-associated protein module to the drug cyclosporine. The top left plot shows 

pathways significantly enriched by direct and indirect targets of cyclosporine (i.e., proteins 

directly interacting with targets on human PPI). The bottom panel shows the drug-disease 

module for LY2275796 and pathways significantly enriched by direct and indirect targets of 

LY2275796. 

  



Supplementary table legends 
Supplementary Table 1. List of all drugs included in this platform along with all drug 

properties as well as disease topological and functional proximity measures.  

Supplementary Table 2. All types of interactions incorporated into the multi-dimensional 

network constructed in this platform. 

Supplementary Table 3. All possible drug pairs along with network separation measure (𝑠𝑠𝐴𝐴𝐴𝐴) 

and pairwise similarity measures.  

Supplementary Table 4. Gene Ontology based (biological processes) enrichment analysis of 

COVID-19-related human proteins. 

Supplementary Table 5. Curated drug combinations included in this platform.  

  

  

 

 

  



Tables 

Table 1: Data types, statistics and details of data sources used to generate COVID-CDR  

Data type Statistics Details Data source 

Drug Identifiers, 
drug names and 
clinical status 

867 drugs 
including 487 
approved 
drugs 
 

— 

DrugBank [59], 
ClinicalTrials.gov[63], 
Literature 
(Supplementary Table 
X) 

Drug 
physicochemical 
properties 

16 distinct 
properties per 
drug 

Molecular weight, Hydrogen 
bond acceptors/donors, Ring 
count, Molecular Refractivity 
and polarizability, CAS 
number, SMILES, lnChl, 
IUPAC name, etc. 

DrugBank [59] 

Drug 
pharmacological 
properties 

16 distinct 
properties per 
drug 

Description, indication, 
mechanism of action, target 
names, toxicity, 
pharmacodynamics, 
metabolism, half-life, route of 
elimination, etc. 

" 

Drug Chemical 
structures 726 structures SDF format " 

Drug target-
protein 
sequences  

2,393 unique  
protein 
sequences 

FASTA format “ 

Drug-target 
network 

2,228  
and 4,866 drug
-target pairs 

Composed of drugs and their 
targets from human and other 
organisms (e.g. SARS-CoV2, 
SARS-CoV, etc.) 

DrugBank [59] 

Drug-induced 
pathways 

298, 459, and 
226, 1530, 
112, pathways 
from KEGG, 
WikiPathways, 
BioCarta, 
Reactome, and 
Pather 
databases, 
respectively 

Based on the over-
representation analyses of 
drug-targets with pathway 
constituents (Hypergeometric 
test, p-value <= 0.05) 

KEGG [64],  
WikiPathway [65], 
and BioCarta [46], 
Reactome [66], 
Panther [67] 

Gene ontology 
terms and 
annotations 

446 CC, 1,151 
MF, and 5,103 
BP terms, and 
a total of 
250,734 
protein-GO 
term 
associations 

Gene ontology terms across 
categories of Cellular 
components (CC), molecular 
functions (MF) and biological 
processes (BP)  

EnrichR [67]  



Protein-protein 
Interactions 
(PPIs) 

469,515 PPIs Validated and computationally 
predicted human PPIs  I2D [68] 

Drug indications 
and therapeutic 
classes  

  
TTD [69], DrugBank 
[59] 
 

    

Drug side effects 
139,756 drug-
side effect 
associations 

Information on marketed 
medicines and their recorded 
adverse drug reactions 

SIDER [47] 

 

Table 2: Details about external drug-combinations that are used in COVID-CDR interface 

Data type Statistics Combination 
Type 

Details Data source 

Experimental 
Drug-
combinations 

6,181 drug-
combinations 

Dual 
combinations 
only 

Combinations 
experimented in 
various cell-lines 
with different 
settings 

drugCombDB 
[70] 

Combinations 
in clinical 
trials 

36 drug-
combinations 

Dual, tri-, and 
tetra-
combinations  

Combinations that 
are related to 867 
COVID-19 drugs 
found in clinical 
trials in various 
phases 

ClinicalTrials.gov 
[63]  

FDA 
approved 
combinations 

150 drug 
combinations 

Dual, tri-, and 
tetra-
combinations  

FDA approved 
combinations that are 
related to 867 
COVID-19 drugs  

drugCombDB 
[70] 
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