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Abstract

Nanoporous materials (NPMs) could be used to store, capture, and sense many different
gases. Given an adsorption task, we often wish to search a library of NPMs for the one with the
optimal adsorption property. The high cost ofNPMsynthesis and gas adsorptionmeasurements,
whether these experiments are in the lab or in a simulation, often precludes exhaustive search.

We explain, demonstrate, and advocate Bayesian optimization (BO) to actively search for the
optimal NPM in a library of NPMs– and find it using the fewest experiments. The two ingredients
of BO are a surrogate model and an acquisition function. The surrogate model is a probabilistic
model reflecting our beliefs about the NPM-structure–property relationship based on observa-
tions from past experiments. The acquisition function uses the surrogate model to score each
NPM according to the utility of picking it for the next experiment. It balances two competing
goals: (a) exploitation of our current approximation of the structure-property relationship to
pick the highest-performing NPM, and (b) exploration of blind spots in the NPM space to pick
an NPM we are uncertain about, to improve our approximation of the structure-property rela-
tionship. We demonstrate BO by searching an open database of∼ 70000 hypothetical covalent
organic frameworks (COFs) for the COFwith the highest simulatedmethane deliverable capacity.
BO finds the optimal COF and acquires 30% of the top 100 highest-ranked COFs after evaluating
only∼120 COFs. More, BO searches more efficiently than evolutionary and one-shot supervised
machine learning approaches.

1 Introduction

The selective gas adsorption properties of nanoporous materials (NPMs) endow them with many
possible applications in the storage [1, 2], separation [3], and sensing [4] of gases. As examples,
promising applications of NPMs include (i, storage) densifying hydrogen (H2)—a clean fuel—for com-
pact storage onboard vehicles [2, 5], (ii, separation) capturing carbon dioxide from flue gas of coal-
fired power plants; subsequently sequester it to prevent global warming [6], and (iii, sensing) detect-
ing toxic compounds and explosives [7,8].
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(a) (b) COF-366 (c) COF-66
Figure 1: Illustrating the modular synthesis of covalent organic frameworks (COFs) [9–11]. (a) The sql
(square lattice) network topology specifies the connectivity of tetratopic (green) and diptopic (blue)
building units. (b, c) Two examples of COFs in the sql topology are (b) COF-366 and (c) COF-66 [12].
(top) the crystal structures. (bottom) the building blocks: a planar, tetratopic building unit and a
linear, diptopic building unit. The building units are stitched together with covalent bonds, through
a condensation reaction, to form 2D COF sheets in the sql topology. The sheets stack into layers to
form 3D channels. Owing to the rational design and modular synthesis of COFs, on the order of one
hundred COFs have been experimentally synthesized and reported [13].

Several classes of NPMs, such as metal-organic frameworks (MOFs) [14], metal-organic polyhedra
(MOPs) [15], covalent organic frameworks (COFs) [9], and porous organic cages (POCs) [16], are syn-
thesized modularly by stitching together molecular building blocks via coordination (MOFs, MOPs)
or covalent (COFs, POCs) bonds to form ∼ crystalline (MOFs, COFs) or molecular (MOPs, POCs) ma-
terials. Fig. 1 illustrates the modular synthesis and rational design of COFs in the sql topology [12].
The many topologies [9, 17, 18], abundance of molecular building blocks, and post-synthetic mod-
ifiability [19, 20] permit an unlimited number of possible structures exhibiting diverse adsorption
properties.
A common goal is to find, among a large set of candidate NPM structures, the NPM structure(s) with
the optimal adsorption property for a given application. As opposed to an exhaustive search, our
goal is to search for the optimal NPM efficiently, by consuming minimal resources (computational
and/or physical) in the process. In the laboratory setting, synthesizing an NPM and measuring its
property costs labor and rawmaterials, and throughput is limited by the capital equipment in the lab.
In the computational setting, constructing a high-fidelity computational model of an NPM structure
[21–25] and predicting its gas adsorption property through molecular simulations [26,27] consumes
electricity, and throughput is limited by computing resources. Thus, both in the bona fide laboratory
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and on the computer, our goal is to find the optimal NPM(s) for a given adsorption task using the
fewest experiments (experiment = constructing an NPM and evaluating its adsorption property).
In this article, we explain, demonstrate, and advocate Bayesian optimization (BO) to actively and ef-
ficiently search for NPMs with an optimal property for a given adsorption task. Active, because each
BO iteration performs three consecutive steps: (a) conducting an experiment on an NPM, (b) up-
dating our belief about the structure-property relationship, and (c) selecting the NPM for the next
experiment. See Fig. 2 for a high-level illustration. Efficient, because BO makes a data-informed de-
cision on the NPM to select for the next experiment, while balancing: (a) exploitation of our current
(uncertain!) data-driven belief about the structure-property relationship to pick an NPM that might
have the optimal property and (b) exploration of regions of the NPM design space where our belief
about the structure-property relationship is weak to pick an NPM we are uncertain about.

Figure 2: Illustration of a single iteration of active search in Bayesian optimization (BO) of nanoporous
materials. First, we conduct an experiment that measures the property f (xn) of the material repre-
sentedby xn. Second, using the newobservation, weupdate our belief about the underlying objective
function f (x), reflected by the surrogate model. Third, we use the acquisition function to pick the
next material for an experiment. BO is an active search method to find the material x that optimizes
the black-box function f (x).
The two key components of BO are a surrogate model and an acquisition function. The surrogate
model, with “surrogate” hinting at “substitute for the experiment”– is a probabilistic model for the
structure-property relationship. It is trained on all observations from past experiments. The sur-
rogate model cheaply predicts the properties of the unevaluated NPMs and, critically, quantifies
the uncertainty in its predictions. The acquisition function is used to make the decision of which
NPM to select for the next experiment. It uses the surrogate model to score the utility of selecting
each unevaluated NPM for the next experiment by striking a balance in the exploitation-exploration
trade-off. The acquisition function is maximal in regions of the NPM design space where (i) we be-
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lieve high-performing materials will reside and/or (ii) we are uncertain about the structure-property
relationship. The acquisition function relies on the surrogate model to give a resource-efficient, in-
telligent, active search for optimal NPMs in a wide variety of contexts.
We demonstrate BO of NPMs by efficiently searching an open database [28] of ∼70000 hypotheti-
cal COFs, represented by vectors of hand-designed features based on domain knowledge, for those
with the highest simulated methane deliverable capacity to store natural gas onboard vehicles [2].
BO recovers the optimal (COFs) using fewer experiments than incumbent strategies including ran-
dom search, evolutionary algorithms, and one-shot supervised machine learning. In the outlook,
we discuss several active research areas in BO that are likely to apply to several problems in NPM
discovery: (i) batch BO where experiments are parallelized, (ii) multi-fidelity BO, where NPMs can
be evaluated using multiple methods which vary in accuracy and resource cost, (iii) multi-objective
BO, where we aim to find a Pareto optimal set of NPMs to optimize multiple properties, and (iv)
constrained BO, where our goal is to find high-performing NPMs which can be synthesized.

2 Review of previously used NPM search methods

TheNPM research community has adopted several approaches to efficiently search a library of NPMs
for the optimal NPM(s) [29,30]. We define the efficiency of a search strategy with respect to two naive
baselines: (i) exhaustive search, where we conduct the high-fidelity experiment on every NPM in the
library, and (ii) random search, where we conduct the high-fidelity experiment on a (uniform) ran-
dom sample of the NPMs in the library.
Supervisedmachine learningmodels. A supervisedmachine learningmodel can serve as a cheaper,
albeit lower fidelity, surrogate for the high-fidelity experiment [29,31–35], thereby reducing the cost
of an exhaustive search. Amachine learning approach is predicated upon cheaply computed (relative
to the experiment) (i) vector representations of the NPMs– hand-engineered [36,37] or learned [38]–
that encode structural features and are correlated to the property or (ii) kernels that capture the ten-
dency for any given pair of NPMs to exhibit similar properties [39]. Training examples are gathered
by selecting a small (random or diverse [40,41]) subset of the library of NPMs and labeling them with
the property values using the high-fidelity experiment. Using the training examples, the supervised
machine learning model learns to predict the property of any given NPM from e.g., its vector repre-
sentation. The trainedmodel is then used, as a surrogate for the high-fidelity experiment, to cheaply
predict, from their vector representations, the properties of the remaining NPMs in the library. Fur-
ther high-fidelity experiments may be directed on the NPMs predicted to be optimal by the machine
learning model. See Refs. [40,42–51] as examples.
Genetic algorithms. Genetic algorithms [52] are iterative, stochastic search methods inspired by
Darwinian evolution. Each NPM is represented by a “chromosome”– a vector of categorical vari-
ables that uniquely specifies its structure. A small initial generation (set) of property-labeled NPMs
is iteratively evolved by applying genetic operations to their chromosomes: mutation, replication,
selection, and recombination. At each generation, we conduct experiments on each newly evolved
NPM to evaluate its fitness. This guides the genetic operations used to evolve to the next generation
of chromosomes (representing NPMs), with the ambition of both exploring NPM space and enriching
future generations with high-fitness NPMs. See Refs. [53–55] as examples.
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Monte Carlo tree search. When the NPM search space can be framed as a tree, Monte Carlo tree
search [56] is more efficient than random search. Starting at the root node, a policy to select a child
node is iteratively applied, giving a path through the tree, culminating at a leaf node. The experi-
ment is then conducted on the NPM represented by the leaf node. Its measured property, viewed as
a reward, is back-propagated through the tree to update the statistics of each node along the path
to it. Both the visit counts and reward allocations of the nodes are used in the tree policy to balance
exploration of new branches of the tree that have not been visited often (or at all) and exploitation
of current knowledge to follow branches of the tree that appear likely to lead to optimal NPMs. See
Refs. [57,58] as examples.
Each of these prior approaches suffer from drawbacks. The supervised machine learning approach
selects training data to learn a goodpredictor of the property from the structure representation, then
uses the predictor to greedily acquire the COFs with the highest predicted property. This passive ap-
proach can be viewed as one round of exploration and one round of exploitation. Active learning [59]
can be used to reduce the number of training examples to learn the structure-property relationship
but is not geared towards finding the optimal NPM using the fewest experiments. In BO, we will
actively collect training examples according to the goal of finding the optimal NPM with the fewest
experiments. Genetic algorithms are sequential, active search procedures aimed at quickly find-
ing the optimal NPM. However, the genetic operations are heuristic and do not balance exploration
and exploration rigorously. As a consequence, genetic algorithms can be difficult to tune and could
require many experiments to find the optimal NPMs. MCTS balances exploration and exploitation
more rigorously. But, it requires many NPM evaluations to identify promising regions of the tree
because it does not explicitly leverage the similarity among structures for principled exploitation.
Further, MCTS is limited to NPM design spaces which can be framed as a tree.

3 Problem setup: find the optimal material

Suppose we have a large database of candidate NPM structures, X , for some adsorption task. Let
f : X → R be a black-box objective function that, given a candidate NPM x ∈ X , returns the
relevant adsorption property y = f (x). Each evaluation of f corresponds to performing an expen-
sive experiment—either in the laboratory or in a molecular simulation—to measure the adsorption
property y of NPM x. Our goal is to find the highest-performing NPM x∗ fromX that maximizes the
objective function f ,

x∗ = arg max
x∈X

f (x), (1)
while conducting the fewest number of expensive experiments.
We can interpret f (x) as the [unknown] structure-property relationship [60, 61] since x [abstractly,
at this point in our discussion] represents the structure of a unique NPM and evaluating f means
conducting an experiment to measure its property, y .
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4 Overview of Bayesian Optimization

We explain the key ideas behind the Bayesian Optimization (BO) framework [62, 63] to find the
highest-performing NPM—solve the problem in eqn. 1—efficiently, by using the fewest (expensive)
experiments.

4.1 Defining an NPM feature space

While x as an abstract representation of an NPM suffices for defining the problem in eqn. 1, for BO
we must concretely define a NPM feature space or search space in which each NPM x lies.
Without loss of generality, take x to be a fixed-size (among all NPMs) vector representation of the
NPM that lies in a continuous feature space. The NPM feature vectors {x} should be designed to (1)
encode the relevant structural and chemical features of the NPMs, (2) be rotation-, translation-, and,
if the NPM is a crystal, replication-invariant, (3) be cheap to compute compared to conducting the
experiment (evaluating f ), and (4) ideally, each correspond to a unique NPM (mapping NPM→ x is
injective) [64]. As a result, NPMs close in the feature space should exhibit close values of the property
y .
The simplest example of a representation x of an NPM is a list of hand-designed, based on domain
expertise, descriptors/features of its structure and composition, such as pore volume, surface area,
largest included sphere diameter, density, weight fraction carbon, etc. [65–67]. Alternatively, x could
be learned from a graph [68–70] or 3D image representation [71, 72] of a NPM by a graph neural
network [38] or convolutional neural network [73], respectively. See reviews in Refs. [29, 74] for
defining feature vectors of NPMs and Refs. [40,42,44,75–78] for different examples of NPM feature
spaces. As opposed to dwelling on how to define a good feature space of NPMs, we will instead focus
on BO, a technique to search the defined feature space for the optimal NPM x∗ in an efficientmanner.

4.2 Active search: exploitation vs. exploration

Even with an NPM feature space defined, in practice, the structure-property relationship f (x) is a
black-box function; analytical expressions for f (x) and/or its gradient∇xf (x) are not known, and it
may be multi-modal.
BO is a derivative-free method to actively and efficiently search the database of NPMsX for the NPM
x∗ that maximizes f (x). Active, because BO sequentially selects NPMs from X for experimentation
(to evaluate with f ), iterating between conducting an experiment andmaking a decision about which
experiment to conduct next. Efficient, because BO makes a data-driven decision to select the next
NPM for an experiment while taking into account all observed (NPM x, property y = f (x)) pairs
from previous experiments. Each decision to select the next unevaluated NPM from X to evaluate
with f must trade off two conflicting goals:
1) Exploitation suggests to use our current, but uncertain, approximation of the structure-property re-
lationship, based on the past observations, to select the NPM that appears to have themost promise
as a high-performing material.
2) Exploration suggests to select the NPM that we are most uncertain about to improve our approxi-
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mation of the structure-property relationship.
So, to balance exploitation and exploration, we must balance visits to regions of NPM feature space
that (i) appear to contain high-performing NPMs and (ii) have not been explored well. A colloquial ex-
ample of the exploitation-exploration dilemma in our lives is, in aiming to maximize our enjoyment
of food, whether to choose a restaurant that we have visited and knowwe like versus a new one [79].

4.3 The ingredients of BO for data-drivendecision-making: a surrogatemodel
and an acquisition function

In the BO framework, the two key components used to make each sequential decision of which
NPM to conduct an experiment on next are (1) a surrogate model that captures our beliefs, based
on past observations, about the structure-property relationship and (2) an acquisition function that
scores each NPM according to the utility of conducting the experiment on it next. The acquisition
function uses the surrogate model of the structure property-relationship f (x) to decide which NPM
to evaluate next while striking a balance between exploitation and exploration.
The surrogate model. The surrogate model is a probabilistic model of the structure-property re-
lationship f (x) trained on all observations1 {(xi , yi = f (xi))}ni=1 from past experiments. Typically,
adopting a Bayesian perspective, the surrogate model treats f (x) as a random variable that follows
a Gaussian distribution:

f (x) ∼ N (ŷ(x), σ2(x)) (2)
with mean ŷ ∈ R and variance σ2 ∈ R. The surrogate model reflects our current beliefs about
f (x) and serves two purposes in BO. First, to guide exploitation, ŷ(x) cheaply estimates the prop-
erties of the remaining, unevaluated NPMs, i.e., ŷ(x) is a cheap-to-evaluate approximation of the
expensive-to-evaluate objective function f (x). Second, to guide exploration, σ2(x) quantifies the
uncertainties in the predicted properties of the unevaluated NPMs. This makes us aware of “blind
spots“ of the surrogatemodel—regions in the NPM feature space we need to explore to improve our
approximation ŷ(x) and reduce the uncertainty in our beliefs about f (x).
The surrogate model is updated in each iteration of BO, after the new observation (xn+1, yn+1 =

f (xn+1)) is gathered, to (i) improve the approximation of f (x) and (ii) account for the reduced uncer-
tainty in the region of the feature space surrounding the newly evaluated NPM xn+1. Consequently,let us denote the surrogate model after iteration n of BO as f̂n : x 7→ (ŷ , σ).
The acquisition function. The acquisition function A(x; f̂ (x)) : X → R scores the utility of, next,
evaluating NPM x ∈ X with the expensive objective function f . Here, “utility” is defined in terms of
our ultimate goal of finding the optimal NPM x∗ in eqn. 1 with the fewest experiments. The acquisi-
tion function employs the prediction of the property ŷ and the associated uncertainty σ2 from the
surrogatemodel f̂ (x) to assign a utility score to the NPM that balances exploitation and exploration,
respectively. Maxima of the acquisition function are located in regions of NPM feature space where
the predicted property is large and/or uncertainty is high.

1Without loss of generality, the observations are assumed noise-less for clarity of presentation.
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The decision of which NPM to evaluate next is made by maximizing the acquisition function:
xn+1 = arg max

x∈X\Xn
A(x; f̂n(x)), (3)

where Xn := {x1, x2, . . . , xn} is the acquired set of n NPMs that have been evaluated already. Im-
portantly, the acquisition function must be cheap to evaluate and optimize (if X is not a finite set).

4.4 Summarizing: BO active search iterations

Fig. 2 illustrates an iteration of BO. At the beginning of iteration n, we conduct an experiment on
NPM xn, i.e., we evaluate NPM xn with the objective function f to obtain a new observation (xn, yn =

f (xn)). Next, we update the old surrogate model f̂n−1(x) to account for this new observation, giving
the new surrogate model f̂n(x). We then select the next (unevaluated) NPM to evaluate, xn+1, as theone that maximizes the acquisition function A(x; f̂n(x)).
We terminate BO after we either (i) expend our budget for experiments or (ii) find a material with
a satisfactory property value. The BO solution to the problem in eqn.1, x∗, then follows from the
evaluated NPM with the highest observed property, arg maxNi=1 yi , where N is the number of BO
iterations (=experiments) performed. Some theoretical work focuses on characterizing how, under
specific assumptions, the quality of the approximate optimum in BO scales with the number of iter-
ations [80].
N.b., typically, the surrogate model is retrained from scratch after each iteration of BO, but some
surrogate models can be trained online [81], reducing the computational cost of the search.

4.5 Remark: BO vs. active learning

We remark on adistinctionbetween active learning [82] andBayesian optimization. Both sequentially
collect training examples for a supervised machine learning model. In active learning, the examples
are efficiently collected with the goal of reducing the uncertainty in the machine learning model. In
Bayesian optimization, the examples are efficiently collected with the goal of, instead, finding the
optimal material. BO is more efficient for finding the optimal material than active learning because
it avoids collecting examples in regions of feature space that contain poor-performing materials,
whereas active learning will do so to reduce the uncertainty of the model in those regions.

5 Surrogate models and acquisition functions

In this section, we explain surrogate models and acquisition functions commonly used in BO.

5.1 Surrogate models: Gaussian processes

Gaussian processes (GPs) [83, 84] are the most commonly used surrogate models in BO owing to
their flexibility as function approximators, principled uncertainty quantification, and compatibility
with the kernel trick. GPs are non-parametric models that can approximate complicated objective
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functions f (x) given labeled training data {(xi , yi)}ni=1. Through a Bayesian probabilistic framework,
GPs provide uncertainty estimates in their predictions and allow incorporation of prior beliefs. GPs
rely on a kernel function k(x, x′) : X ×X → R [85] to capture the similarity between any two NPMs
x and x′. This gives GPs the flexibility to approximate arbitrary, complicated (but well-behaved!)
functions f (x). Moreover, it gives GPs versatility in how to represent the NPMs, e.g., graph kernels
[86] can be used for NPMs represented as crystal graphs (e.g., [39]).
What is aGP? AGP is a stochastic process that treats the value of the objective function at any given
point in feature space, f (x), as a random variable. Specifically, GPs assume the joint distribution of
any finite collection of function values, say at points {x1, x2, ..., xm} on its domain, follows a multi-
variate Gaussian distribution

f ≡ [f (x1), f (x2), ..., f (xm)]ᵀ ∼ N (0,Σ) (4)
whose covariance matrix Σ ∈ Rm×m is given by the kernel function applied pairwise over the points
{x1, x2, ..., xm}, Σi ,j := k(xi , xj). The kernel function k(x, x′) quantifies the similarity of NPMs
x and x′; hence, the idea in GPs is that the properties f (x) and f (x′) of similar (dissimilar) NPMs
x and x′ are highly (un)correlated. [87] GPs effectively model the entire function f (x)— in a point-
wise manner— by assuming eqn. 4 holds for any arbitrary, finite collection of function values on its
domain. The mean of zero in eqn. 4 assumes the measurements are centered.
From a Bayesian perspective, eqn. 4 is a prior assumption about the structure-property relationship
f (x). When we gather new observations, we will update this prior assumption to arrive at the pos-
terior distribution reflecting our beliefs about the structure-property relationships in light of new
data.
Kernel functions. Examples of kernel functions that operate on vector representations of two
NPMs x and x′ include the linear, polynomial, and radial basis function (RBF) kernels:

k(x, x′) = σf x
ᵀx′ linear kernel (5)

k(x, x′) = σf (xᵀx′)d homogeneous polynomial kernel (6)
k(x, x′) = σf e

−||x−x′||22/(2γ2). radial basis function (RBF) kernel (7)
Each kernel possesses the hyperparameter σf , the signal variance, which is a scale factor controllingthe expected range of the functions represented by the GP. The polynomial kernel has a hyperpa-
rameter d that controls the order of the polynomial in the features, and the RBF kernel contains a
length-scale hyperparameter γ that controls how close x and x′ must be in the feature space to be
considered “similar” and the expected roughness of the functions represented by the GP. Implicitly,
each nonlinear kernel maps the two vectors x and x′ into a new, higher-dimensional feature space
through a mapping τ , then takes the inner product of the vectors in the new feature space:

k(x, x′) = τ(x)Tτ(x′). (8)
Interestingly, the feature map τ(x) corresponding to the RBF kernel in eqn. 7 maps vectors into
an infinite dimensional feature space! By implicitly operating in a higher-dimensional feature space,
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nonlinear kernels give GPs more flexibility, or expressiveness, for approximating complicated objec-
tive functions f (x). Notably, graph kernels [86] and image kernels [88] can define similarities of two
NPMs represented as graphs (nodes: atoms, edges: bonds) and images, respectively.
Inference with GPs. In BO, we exploit GPs for regression, with uncertainty quantification, to build
a surrogate model for f (x). We have observations {(xi , yi)}ni=1 from previous experiments (pre-
vious iterations of BO), with yi the measured property of NPM xi . Under the Bayesian view, yi isa noise-free observation2 of the random variable f (xi). We wish to know the distribution of the
random variable f (x) for an unevaluated NPM x, to determine the utility of evaluating it in the next
experiment. Imposing the assumption in eqn. 4 for a specific collection of points on the domain of
f (x) composed of (i) the n evaluated NPMs from the past experiments {x1, x2, ..., xn} and (ii) the
unevaluated NPM, x: [

f

f (x)

]
∼ N

(
0,

[
Σ σ

σᵀ k(x, x)

])
(9)

with f = [f (x1), f (x2), ..., f (xn)]ᵀ the vector of randomvariables representing the properties of the
previously evaluated NPMs, σ = [k(x, x1), k(x, x2), ..., k(x, xn)]ᵀ the vector of the kernel between
the unevaluted NPM and the previously evaluated NPMs, and Σ the kernel matrix for the previously
evaluated NPMs with Σi ,j = k(xi , xj) ∀i , j ∈ {1, 2, ..., n}. However, we have observations of the
random variables in f , y = [y1, y2, · · · , yn]ᵀ. Conditioning the joint distribution in eqn. 9 on the
observations y, we arrive at the posterior distribution for the property f (x) of the unevaluated NPM,
also Gaussian:

f (x)|y ∼ N
(
ŷ(x), σ2(x)

)
. (10)

with mean and variance:
ŷ(x) = σᵀΣ−1y (11)
σ2(x) = k(x, x)− σᵀΣ−1σ. (12)

We can interpret eqns. 11 and 12. The predicted property of the unevaluated NPM, ŷ(x), is a linear
combination of the observed properties of the evaluated NPMs, y with weights σᵀΣ−1. The weight
on eachmeasured property depends on the similarity between that NPM and the unevaluated NPM.
The variance σ2(x) describing the uncertainty associated with the prediction of the property of the
unevaluated NPM x is the prior assumption of k(x, x) reduced by σᵀΣ−1σ, which captures the
similarity of the unevaluated NPM x with the set of previously evaluated NPMs.
Fig. 3 illustrates aGPmodel of a toy function f (x), basedonanRBF kernel, over a toy one-dimensional
NPM feature space X = R, trained on five observations. The mean in the GP, ŷ(x), approximates
f (x), and the varianceσ2(x) expresses uncertainty in the approximation. Generally, the uncertainty
is small close to an observation and large when far from an observation.

2Note that we can pose GPs that relax the assumption that the observations are noise-free [83].
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Figure 3: Illustration of a Gaussian process (GP)model with an RBF kernel over a toy one-dimensional
NPM feature space. The black points are the observed data from a toy structure-property relation-
ship, f (x). The blue line and shaded region visualize the GP model trained on the observed data:
the line is the approximation ŷ(x) of the structure-property relationship, while the shaded region
illustrates the uncertainty by covering ŷ(x)± 2σ(x). The GP model shows large (small) uncertainty
in regions of feature space far from (close to) the observations.

Hyperparameters of GPs. GPs are non-parametric models, but most useful kernel functions used
in GPs contain hyperparameters. For example, the RBF kernel in eqn. 7 has the length-scale γ and
the signal variance σf hyperparameters. To learn the hyperparameters of the kernel that give us the
best approximation of f (x), we could perform a grid search over hyperparameter space for those
that minimize the validation loss. A more popular and faster way to estimate hyperparameters of
the kernel is to maximize the marginal likelihood of the observed data as a function of the kernel
hyperparameters. [87] Generally, at each iteration of BO, the hyperparameters of the kernel are
updated to account for the newly acquired observation.
Two further interpretations of GP models of functions. A GP model of the objective function
f (x) can be interpreted as (i, weight space view) Bayesian linear regression in the implicit feature
space of the kernel and (ii, function space view) a distribution over functions [83]. To clarify, the GP
model of f (x) in eqn. 4 is equivalent to the parametric model:

f (x) = wᵀτ(x), (13)
with weightsw onwhich we place a Gaussian prior and τ themap associated with the kernel k(x, x′)

used in the GP. In the weight space view, GP inferencemodels the posterior distribution over weights
w in eqn. 13. In the function space view, GP inferencemodels the posterior distribution over the space
of functions represented in eqn. 13. Though eqn. 13 is helpful for understanding GPs and sampling
functions from the distribution over the function space they describe, we in practice conduct GP
inference using the kernel, through eqns. 11 and 12. E.g. τ(x) is a vector of infinite dimension in the
case of the RBF kernel, making the view of GPs in eqn. 13 unfriendly for computations.
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5.2 Examples of acquisition functions

Weprovide three common examples of acquisition functions and explain how they use the surrogate
model to trade-off exploration and exploitation to select the NPM to evaluate in the next experiment.
Upper confidence bound (UCB). The UCB acquisition function selects the point that maximizes
the upper confidence function:

A(x) := ŷ(x) + βσ(x) (14)
where ŷ(x) and σ(x) are the predicted property of NPM x and its associated uncertainty, respec-
tively, provided by the surrogate model. The parameter β explicitly trades-off exploration and ex-
ploitation. If β is large, the UCB tends to select NPMs with the highest uncertainty to explore the
feature space. If β is small, the UCB tends to select NPMs with the highest predicted property to
exploit our current approximation of the structure-property relationship f (x). To clarify the UCB
terminology, the top boundary of the shaded region that bands ŷ(x) in Fig. 3 is the UCB for β = 2.
Expected improvement (EI). Another acquisition strategy is to select the NPM with the highest
expected improvement (EI) of the property of the best evaluatedNPM so far. Let the random variable
I(x) = max(0, f (x) −maxi yi) denote the improvement in the property of a NPM x over the best
observed NPM thus far. The EI is then:

A(x) :=

∫ ∞
−∞

I(x)N (y |ŷ(x), σ2(x))dy, (15)
which can be written in closed form:

A(x) =

{
(ŷ(x)−maxi yi)Φ

(
ŷ(x)−maxi yi

σ(x)

)
+ σ(x)φ

(
ŷ(x)−maxi yi

σ(x)

)
σ(x) > 0

0 σ(x) = 0,
(16)

with Φ and φ the cumulative and probability distribution functions, respectively, of the standard
normal distribution. The first and second terms in eqn. 16, respectively, capture the exploitation and
exploration component of EI.
Information-theoretic acquisition functions. The principle behind acquisition functions based
on information theory is to select the NPM x that maximizes the mutual information between (i) the
observation of its property y=f (x) and (ii) the location of the NPM x∗ in feature space thatmaximizes
f (x). Viewing both f (x) and x∗ as random variables, the following acquisition function describes
the mutual information between the observation (x, y = f (x)) of the property of a newly acquired
NPM, x, and the location of the optimal NPM, x∗.

A(x) = MI[(x, y), x∗] (17)
= H[p(x∗)]−H[p(x∗|(x, y))] (18)

whereMI[·, ·] is the mutual information between two random variables and H(·) is the entropy of
a probability distribution p(·). The mutual information is the reduction in the entropy of the proba-
bility density function of the location of the optimum NPM, x∗, as a result of observing the property
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Figure 4: Illustration of one iteration of BOwhere (i) the acquisition function is used to select the next
NPMwhilst balancing exploitation and exploration and (ii) the surrogate GPmodel based on the RBF
kernel is updated to account for the newly acquired observation. (a) Iteration n. (b) Iteration n + 1,
after the surrogate model is updated by the new observation (xn+1, yn+1) acquired to maximize the
expected improvement (EI). In both (a) and (b), the top panel shows the surrogate model, and the
bottom panel shows the expected improvement (EI) acquisition function. For comparison, in (a) we
illustrate the NPM xn+1 that would have been selected under a pure exploitation or pure explorationacquisition strategy.

y=f (x) of NPM x and thus conditioned on knowing (x, y). Conceptually, the distribution p(x∗) could
be obtained under a GP surrogate model by sampling functions from eqn. 13 and then optimizing
them. In practice, eqn. 18 is difficult to compute, but there are several acquisition functions based
on instantiations of this idea [89].
Illustrating BO acquisition and the exploration-exploitation tradeoff. Fig. 4a illustrates the EI
acquisition function in a toy one-dimensional NPM space under a GP surrogate model with n = 5

observations. The EI acquisition function exhibits two maxima. The first (global) maximum is in
a region of the feature space where the predicted property ŷ(x) is the largest. The second (local)
maximum is where the uncertainty σ(x) is largest. We select the NPM for the next experiment, xn+1,as the one that maximizes the EI acquisition function. Fig. 4a shows the acquired NPM assuming the
database of NPMs X covers all points on the domain shown. To illustrate how the EI acquisition
strategy balances exploration and exploitation, for comparison, we also show the acquired NPM
xn+1 if the acquisition strategy were purely exploration and purely exploitation. Pure exploration
dictates xn+1 = arg maxσ(x), but this NPM has a poor property. Pure exploitation dictates xn+1 =

arg max ŷ(x), but this NPM is too close to an existing observation. EI balances the trade-off by
picking an NPM with both a high uncertainty and high predicted property.
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6 Experiments and Results

We now demonstrate Bayesian optimization by using it to efficiently search for covalent organic
frameworks (COFs) for vehicular natural gas storage [2]. Our experiments below use the open data
from Mercado et al. [28] and can be fully reproduced on a desktop computer using our computer
code at github.com/aryandeshwal/BO_of_COFs.

6.1 Experimental problem setup

Our goal is to efficiently search a database of COFs for the one with the largest methane deliverable
capacity.
The database of COFs, X . The database of COFs contains 69840 2D and 3D predicted COF struc-
tures constructed by Mercado et al. [28].
The COF vector representation, x. We represent each COF structure with a vector x ∈ R12 of
structural and chemical features listed in Tab. 1 and computed by Mercado et al. [28]. We Min-Max
normalized each feature3 to lie in [0, 1]. This defines COF feature space as [0, 1]12.
The methane deliverable capacity, y . The COF property we wish to maximize is the simulated
deliverable capacity of methane [L STP CH4/L COF] at 298K under a 65bar to 5.8 bar pressure swing.The deliverable capacity of the COF primarily determines the driving range of a vehicle on a “full”
adsorbed natural gas fuel tank packed with the COF [2].
The expensive objective function, f (x). Evaluating the objective function f to give y = f (x)

involves conducting two grand-canonical Monte Carlo simulations of methane adsorption in the COF
structure represented by x– one at (65bar, 298 K) and one at (5.8 bar, 298K). The deliverable capacity
y then follows from the difference in the simulated methane adsorption at the two conditions. The
function f is expensive to evaluate, as the run time of the molecular simulations is on the order of
hours.
Goal: data-efficient search for the optimal COF, x∗. In an exhaustive search, we would conduct
expensive molecular simulations to predict the methane deliverable capacity of each candidate COF
in the database—i.e., collect {(x, y = f (x)) : x ∈ X}—to find the COF x∗ ∈ X with the highest
deliverable capacity. In contrast to an exhaustive search, instead, our goal is to find the optimal
COF x∗ efficiently– while conducting expensive molecular simulations in only a small proportion of the
candidate COFs.
We hypothesize that BO will provide a simulation-efficient search for the optimal COF, x∗. In re-
ality, Mercado et. al. [28] already simulated methane adsorption in all of the COFs at (65bar, 298

3We used the feature vectors of all COFs for the Min-Max normalization (both acquired and non-acquired COFs). This
does not constitute data leakage because, in our setting, (i) the features are cheap to compute and (ii) we have a finite
library of COFs for which it is feasible to compute all features for all COFs in X.
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K) and (5.8 bar, 298K) and computed their methane deliverable capacities. Thus, (i) we know the
optimal COF x∗ and (ii) as opposed to actually conducting molecular simulations of methane ad-
sorption in a selected COF during the active search, we instead look up the result of the simula-
tions (the deliverable capacity) from the data of Mercado et al. [28]. Each data lookup, conceptually,
represents conducting the two expensive molecular simulations of methane adsorption in a COF
ourselves. N.b., that we look up data as opposed to conducting a simulation ourselves has no im-
pact on the BO search efficiency when defined in terms of the number of COF evaluations needed
to find the optimal COF. The exhaustive search of Mercado et al. [28] allows us to readily evaluate
the simulation-efficiency of different search strategies to find the optimal COF(s). We will compare
the search efficiency of BO to random search, an evolutionary algorithm, and one-shot supervised
learning.
Table 1: Features comprising the vector representation of a COF, x, broken into those that capture
its structure and chemical composition.

structural (geometrical) chemical composition
void fraction density of carbon

density density of flourine
largest included sphere diameter density of hydrogen
largest free sphere diameter density of nitrogen
gravimetric surface area density of oxygen

density of sulfur
density of silicon

6.2 Search strategies

We use several different strategies to search for the optimal COF x∗ exhibiting the highest methane
deliverable capacity y in the database X .
Random search. Random search is a naive baseline. At each iteration, we uniform randomly select
an unevaluated COF from X to evaluate.
Random search does not make a data-informed selection of a COF for the next evaluation, as it ig-
nores the past observations, {(xi , yi = f (xi))}. Thus, random search is expected to performpoorly.
Bayesian optimization (BO). For BO,we employ (1) a Gaussian process (GP) with theMatérn kernel
(ν = 2.5) [83] as our surrogate model and (2) the expected improvement (EI) in eqn. 16 as our acqui-
sition function. To initialize the GP for BO, we first randomly select ten COFs from the database and
evaluate theirmethane deliverable capacity. TheGP surrogatemodel is then trained on {(xi , yi)}10i=1,which count towards the number of evaluations when we report the search-efficiency of BO. At each
iteration of BO, we fit a new GP to all past observations {(xi , yi)}, which includes choosing the hy-
perparameters of the Matérn kernel (length-scale and signal variance) by maximizing the marginal
likelihood of the data under the GP. We implemented our BO procedure in the BoTorch library [90].
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In accordance with the assumption behind GPs, we normalize the deliverable capacities to have
mean zero and unit variance (using the training data only). During the acquisition phase, we evalu-
ate the acquisition function for each COF in the database and select the COF with the highest value,
in contrast to optimizing the acquisition function over the continuous COF feature space.
Evolutionary search (via CMA-ES). As an evolutionary search method, we use Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [91, 92], a state-of-the-art, stochastic optimizer for rugged,
non-convex, black-box objective functions. In CMA-ES, new COFs are stochastically selected from
the search space by sampling from a multivariate Gaussian distribution over the feature space. The
mean and covariance matrix of the distribution are updated over the search process, as COFs are
acquired and evaluated in batches (generations). To update the distribution, with the aim of increas-
ing the likelihood of acquiring and taking search steps towards high-performing COFs, (i) the mean is
updated using a weighted average of the most high-performing COFs in the generation (a selection
mechanism) and (ii) the covariance matrix is updated using a weighted average of the best search
steps (from the mean) towards the high-performing COFs [92].
CMA-ES has two hyperparameters: the initial standard deviation for each feature of the COF repre-
sentation and the number of new candidate COFs acquired in each iteration (the population size).
We initialized the CMA-ES algorithm with a randomly selected COF and set the initial standard de-
viation to 0.5 to cover our COF feature space [0, 1]12. The population size, 11, was determined by a
default heuristic in the cma library in Python.
CMA-ES operates in a continuous search space. When it selects a point in COF feature space for the
next generation, it does not exactly correspond to a feature vector of a COF in the database; to apply
CMA-ES, we select the nearest (in feature space), unacquired COF in the database.
One-shot supervised learning (via RF). While one-shot supervised learning does not constitute
active search like BO, it is the most popular method for circumventing an exhaustive search for the
optimal NPM using the high-fidelity evaluation method. One-shot supervised learning has three
stages. (1) COFs are selected and evaluated to serve as training data for the supervised learning
model. (2) The trainedmodel is used to predict the deliverable capacity of the remaining COFs. (3)We
evaluate the COFswith the highest predicted deliverable capacity. Stages (1) and (3) both incur (costly)
COF evaluations. We compare one-shot supervised learning and active search by comparing the
deliverable capacities of their acquired set of COFs when given the same budget of COF evaluations.
Much like balancing exploration and exploitation, we elect to split the budget of evaluations for one-
shot supervised learning among stages (1) and (3) equally. More, for stage (1), we try two training
set acquisition strategies: (i) uniform random selection of COFs and (ii) a max-min diversity selection
strategy [40, 93], whereby we sequentially acquire COFs for the training set, selecting the COF with
the maximumminimum distance (in COF feature space) to a COF already in the training set (starting
with an initial, random COF).
As the supervised learningmodel, we use commonly-used [40–42,46] random forests (RFs) (100 trees,
default parameters in scikit-learn) as the supervised learning model to approximate f (x) using
the (differently sized) training sets.
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6.3 Results

We now execute each strategy to search for the optimal COF x∗ exhibiting the highest methane
deliverable capacity y in the database X .
6.3.1 Search efficiency

The blue curves in Fig. 5 show the search efficiency of BO. Three different search performance met-
rics are shown as the number of COFs evaluated, n, (= the number of BO iterations = the number
of simulations/“experiments”) increases. The first metric in (a) is the maximum deliverable capacity
among the acquired set of COFs, Xn. The second and third metric are, among the acquired set of
COFs Xn, (b) the highest deliverable capacity rank, with the rank defined using the entire data set
X, and (c) the fraction of the 100 COFs in X with the highest deliverable capacity. 95% of the BO
searches acquired the optimal COF x∗ after n = 120 COF evaluations; all 100 BO searches acquired
the optimal COF after n = 174 COF evaluations. After n = 250 COF evaluations, BO acquires 36%
of the top 100 COFs in the data set. This illustrates how BO can provide a simulation-efficient search
for the optimal COF as opposed to conducting an exhaustive search; BO picked out the top COF in
the database of∼70000 COFs while evaluating less than 200!
BO also outperforms random search, evolutionary search, and the one-shot supervised learning
approach. With the same number of COF evaluations (n = 250), a random search (on average)
acquires only the 308th ranked COF and 0.25% of the top 100 COFs. The performance of random
search is poor because it ignores the past observations when it selects the next COF to evaluate. Evo-
lutionary search and one-shot supervised learning (diverse training set) have a much better search
performance than random search, acquiring the 13th/12th ranked COF and the top 11%/15% of the
top 100 COFs on a budget of 250 evaluations. Though, evolutionary search nor the one-shot super-
vised learning strategies recover the optimal COF x∗ after 250 evaluations. Thus, BO outperforms
the baseline search methods of evolutionary search and one-shot supervised learning using both
metrics of (a) the highest deliverable capacity in the acquired set and (b) the fraction of the top 100
COFs in the acquired set given a budget of 250 evaluations. N.b., BO is designed to optimize the
former performance metric, but BO could be tailored to optimize a top-k metric [94,95].
Regarding the random versus diverse training set acquisition strategies for the one-shot supervised
learning approach: Except when the training set is very small (10), the diverse selection of training
data gives better search performance than the random selection of training data since it provides
better coverage of the feature space.
6.3.2 Visualizing the BO acquisition set

To understand the behavior of BO for searching the database of COFs for the optimal COF x∗, we
visualize the acquisition set of COFs in feature space as BO progresses. Given that the feature space
is 12-dimensional, we resort to principal component analysis (PCA) to [approximately] reduce the
dimension of the feature space to two. I.e., we project each COF feature space onto a 2D reduced
feature space through PCA of the data [x1x2 · · · x|X |]

First, we visualize the structure-property relationship f (x). Fig. 6a shows a depiction of f (x) as a
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Figure 5: The search efficiency of BO in comparison with random search, evolutionary search, and
one-shot supervised learning. The curves show search efficiency in terms of (a) the maximum deliv-
erable capacity, (b) the highest ranking (among the entire data setX ) of the COF deliverable capacity,
and (c) the fraction of the top 100 ranked (among X ) COFs– among the acquired COFs, in terms of
the number of acquired/evaluated COFs. The shaded region shows the variance over 100 [stochastic]
runs. To give (a) context, we show the distribution of the deliverable capacities among the COFs in
the entire data set, X , on the right.
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Figure 6: Illustration of the COF acquisition set under BO. Each panel is a visualization of the first
two principal components of COF feature space. (a) A heat map where the color of each hexagonal
voxel indicates the average deliverable capacity of a COF that falls in that voxel. This is an attempt
to visualize f (x). (b) The points represent the acquired COFs at different stages of BO– after 20, 40,
60, and 80 iterations– and are colored according to the deliverable capacity (colorbar in (a) pertains).
The gray background shows the region of the feature space covered by the COFs in (a).

2D heatmap over the reduced 2D feature space. The color of each voxel in the reduced COF space
indicates the average deliverable capacity of COFs that fall in that voxel of COF space.
Fig. 6b shows the acquired set of COFs, colored by deliverable capacity, at 20, 40, 60, and 80 itera-
tions of BO. For reference, the gray background shows the coverage of COF space by all COFs in the
dataset, shown in Fig. 6a. Reflecting the dominance of exploitation, BO concentrates its acquires on
the region containing the COFs with highest deliverable capacities and avoids acquiring COFs from
regions containing COFs with low deliverable capacities. After 40 iterations, we see the exploratory
component of BO acquisition, where it acquires COFs in low-performing regions of the feature space.
6.3.3 Balancing exploration and exploitation

We conceptually illustrated how the expected improvement acquisition function balances explo-
ration and exploitation in Fig. 4. We now show how balancing exploration and exploitation is critical
for BO to recover the optimal COF with the fewest experiments. To do so, we compare the search
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Figure 7: BO search efficiency using three different acquisition functions: expected improvement
(balances exploration and exploitation), the predicted deliverable capacity (full exploitation), and the
uncertainty in the predicted deliverable capacity (full exploration).

efficiency of BO using three different acquisition functions:
A(x) = EI(x) exploration-exploitation balance (19)
A(x) = ŷ(x) pure exploitation (20)
A(x) = σ(x) pure exploration (21)

The expected improvement (EI) acquisition function in eqn. 16, used in Fig. 5, balances exploration
and exploitation; acquiring the COFwith the highest predicted deliverable capacity ŷ is pure exploita-
tion; acquiring the COF with the highest uncertainty σ in the predicted deliverable capacity is pure
exploration (active learning). Fig. 7 shows the search efficiency of BO under these three different
acquisition strategies, in terms of the highest deliverable capacity among the acquired set of COFs.
Both the pure exploitation and pure exploration BO acquisition strategies exhibit subpar search per-
formance compared to the the EI acquisition strategy that trades off exploration and exploitation.
The pure exploration acquisition strategy (active learning) performs the worst, as it acquires COFs
with low deliverable capacities to reduce the uncertainty in the surrogate model’s predictions about
COFs with low deliverable capacities.

6.4 Conclusions from experiments

BO is an active search method to find the optimal NPM in a data set whilst evaluating, with some ex-
pensivemethod such as amolecular simulation, only a small fraction of the NPMs in the data set. BO
achieves this bymaking acquisition decisions that take into account all past observations and balance
exploration and exploitation. The adoption of BO could dramatically impact high-throughput com-
putational screenings of NPMs by reducing the computing cost of finding the optimal NPM, allowing
us to screen larger databases of NPMs, and enabling the use of higher-fidelity but more expensive
molecular models and simulation methods. Notably, BO applies to NPM search in the experimental
domain as well.
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7 Outlook

We explained the key ideas behind Bayesian optimization (BO) and advocated for its use to efficiently
search databases of NPMs for the one with the optimal property, whilst synthesizing and evaluating
the fewest NPMs. The ideas of BO, to sequentially, actively make intelligent decisions on which NPM
to synthesize and evaluate based on the past experiments, can be applied to both the laboratory
(driven by humans or robots [96–99]) and computational settings. The two core ingredients of BO
are (1) a surrogate model that approximates the structure-property relationship and describes our
uncertainty in it and (2) an acquisition function that scores the utility of evaluating eachNPMnext, de-
signed to balance exploration and exploitation. We demonstrated BO of NPMs by using BO to search
through a database of ca. 70 000 COFs to find the COFwith the highestmethane deliverable capacity;
all 100 BO searches acquired the optimal COF after evaluating only 174 COFs. While preparing our
article, Donval and Hand et al. [100] also demonstrated BO of MOFs and COFs for the acceleration of
virtual screenings.
There are several extensions to and modifications of Bayesian optimization that are useful for dif-
ferent problem settings in NPM discovery:

• Batch BO. In standard BO, we select a single NPM to evaluate in each iteration. However, we
may have parallel experimental resources to leverage to further accelerate the search for the
optimal NPM. In batch BO [95,101–105], we can select multiple NPMs to synthesize and evaluate
in parallel during each BO iteration.

• Multi-fidelity BO. Often, we have a choice of multiple experimental methods to evaluate the
property of an NPM. These methods usually involve a tradeoff in resource cost and the ac-
curacy of the evaluation. For example, a molecular simulation of gas adsorption in an NPM
is a low-fidelity experiment (cheap, but inaccurate) while measurement of gas adsorption in
an NPM in a physical laboratory is a high-fidelity experiment (costly, but accurate). Intuitively,
it is possible to leverage low-fidelity experiments to prune NPMs with low property values
and to identify promising NPM candidates that can be searched further using high-fidelity ex-
periments. In multi-fidelity BO [106–115], we select both an NPM to evaluate and the fidelity
of the experiment in each iteration. This allows optimization of the overall resource cost of
experiments—of both low- and high-fidelity—for identifying high-performing NPMs.

• Multi-objective BO.We often need to optimize NPMs for multiple property objectives which
are conflicting in nature and cannot be optimized simultaneously. For example, for gas sepa-
rations, we often wish an NPM to have both a high selectivity and a high working capacity for
the gas we wish to capture [53]. For multi-objective optimization problems, we need to find
the Pareto optimal set of solutions. A solution Pareto optimal if it cannot be improved in any
of the objectives without compromising some other objective. The goal ofmulti-objective BO is
to find the optimal Pareto set of NPMs using fewest NPM evaluations [116–122]. Similarly, the
ε-PAL algorithm [123] has recently been used to find the Pareto optimum polymers.

• Constrained BO. Possibly, some NPMs in the search space cannot be synthesized. More,
often we cannot know if an NPM is synthesizable until we attempt its synthesis, which still
incurs a cost. In this context, synthesizability is a black-box constraint over the search space.
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In constrained BO [124–128], we perform BO where the synthesizability of an NPM cannot be
verified without performing an experiment. The typical approach involves learning a statistical
model based on the past evaluations of constraint(s) and selecting high-utility NPMs from the
predicted feasible region (minimal to no constraint violation).

• Cost-aware BO. The evaluation cost can vary from one NPM to another (e.g., cost of synthe-
sizing NPM). We would like to take this cost into account to reduce the overall costs incurred
during the search for the optimal NPM. In cost-aware BO [129, 130], the acquisition strategy
considers not only the information gain of acquiring an NPM but also the cost incurred to
synthesize it and measure its property.

• Robust solutions to BO.Wemay be uncertain about themeasured/computed features of the
NPMs and seek an optimum NPM that is robust to variations in its features. In robust BO, we
account for the uncertainty in the inputs x when optimizing f (x) and seek flat as opposed to
sharp optima [131, 132].

Some popular software packages for BO include BoTorch [133], BayesOpt [134], and SMAC [135].
COMBO [136] is a BO library tailored to materials science.
In addition to efficiently searching for NPMs with optimal properties, BO is applicable to a wide va-
riety of optimization problems in the chemical and materials sciences [137, 138]. BO has been used
to efficiently search for optimal reaction conditions [139, 140], compositions of and processing con-
ditions for materials [98, 141], ligands to dock on proteins [95], crystal structures [142, 143], shape
memory alloys [144], and density functional models [145]. For more general overview, see the re-
views of Coley [146], Tsuda and coworkers [147], Frazier and Wang [148], and Lookman et al. [149].
The effectiveness of BO is predicted upon an accurate surrogate model of the structure-property
relationship. In turn, the accuracy of the surrogate model is predicated on (i) an information-rich
representation x of the NPM that encodes the salient features of its structure and chemical compo-
sition and (ii) a statistical model that (a) is sufficiently flexible/expressive to approximate the under-
lying objective function and (b) learns in a data-efficient manner. This gives important and currently
active directions for future research. Particularly, engineering useful vector representations x of
NPMs, using domain knowledge, is a very active research area [150, 151]. The representation should
be invariant to rotations, translations, replications (if a crystal), and permutations of the list of atoms
comprising the structure. Moreover, the mapping from NPM structures to feature vectors should
be injective. Graph neural networks can, instead, learn vector representations of NPMs from their
crystal structures represented as graphs with node labels.
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