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21

Abstract We present a methodology for defining and optimizing a general force field for classical molecu-22

lar simulations, and we describe its use to derive the Open Force Field 1.0.0 small molecule force field, code-23

named Parsley. Rather than traditional atom-typing, our approach builds on the SMIRKS-native Open Force24

Field (SMIRNOFF) parameter assignment formalism, which handles increases in the diversity and specificity25

of the force field definition without needlessly increasing the complexity of the specification. Parameters26

are optimized with the ForceBalance tool, based on reference quantum chemical data that include torsion27

potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These quantum ref-28

erence data are computed and are maintained with QCArchive, an open-source and freely available dis-29

tributed computing and database software ecosystem. In this initial application of the method, we present30

essentially a full optimization of all valence parameters and report tests of the resulting force field against31

compounds and data types outside the training set. These tests show improvements in optimized geome-32

tries and conformational energetics and demonstrate that Parsley’s accuracy for liquid properties is similar33

to that of other general force fields, as is accuracy on binding free energies. We find that this initial Parsley34

force field affords accuracy similar to that of other general force fields when used to calculate relative bind-35

ing free energies spanning 199 protein-ligand systems. Additionally, the resulting infrastructure allows us36

to rapidly optimize an entire new force field with minimal human intervention.37

38
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1 Introduction39

Molecular mechanics (MM) force fields are empirical models of molecular potential energy surfaces, which40

yield the potential energy and atomic forces as a function of the atomic positions. Force fields are a crucial41

component of molecular simulations in many domains of chemistry and biophysics. In particular, force42

fields are used in simulations of biomolecular systems that may include biopolymers, aqueous solvent, and43

small molecules such as metabolites and therapeutics. They are also fundamental to technologies used in44

computer-aided drug design, such as molecular docking1–7 and simulation-based calculations of protein-45

ligand binding free energies.8–1546

Decades of work have led to relatively refined force fields for proteinsmade up of the 20 common amino47

acids.16–24 However, it is more difficult to develop a high quality general force field, i.e., one that applies to48

the wide range of small, organic molecules of interest in biology and drug discovery, due to the high diver-49

sity of the chemical space that must be considered. For example, the nearly 100 million compounds in the50

PubChem database25 embody many different combinations of varied functional groups and heterocycles.51

Moreover, some of themost important applications of force fields involve the simulation of as-yet undiscov-52

ered compounds, such as those under investigation for small molecule drug development, which may lie53

in new regions of chemical space. Small molecule force fields in wide use today include the general AMBER54

force field (GAFF),26 the CHARMM general force field (CGenFF),27 and the optimized potentials for liquid sim-55

ulations force field (OPLS).28 These important tools have undergone continuous development, and current56

generations are applicable to a wide range of small molecules. Nonetheless, calculations of hydration free57

energies, partition coefficients, and other properties show that there is room for improvement in current58

general force fields.29–32 In addition, weaknesses in the small molecule component of the potential func-59

tion likely account for some of the errors in calculations of noncovalent binding free energies relevant in60

host-guest chemistry33 and drug design.3461

Improvements in force fields may come from the use of more and/or better reference data to optimize62

force field parameters, changes in the chemical typing rules used to assign parameters to atoms, and/or63

changes in the functional form of the force field. Exploring such improvements has traditionally involved64

considerable human input, and limitations in available computer power havemade it difficult or impossible65

to carry out systematic explorations and optimizations. This has led to uncertainties in how exactly to go66

about attaining greater accuracy. For example, until it is clear how much accuracy can be achieved with67

a given functional form, it is impossible to ascertain whether or in what cases more accuracy is achieved68

by adding more detail and hence greater computational cost, e.g., by accounting explicitly for electronic69

polarizability. In addition, it is often unclear how the specific types and parameters of a given force fieldwere70

arrived at, and this condition poses obstacles to reproducing and building on prior work. There is thus a71

need not only for improved force fields, but also for an infrastructure that will enable systematic exploration,72

optimization, and evaluation of new simulation force fields. Today, advances in software technology and73

increasing compute power make it possible to move toward the systematization and automation of force74

field generation.75

The present study describes a significant step in this direction, the optimization of a small molecule76

force field using an automated and reproducible procedure, with all software, data, and workflows made77

freely available to the maximum extent possible. The result, OpenFF 1.0.0, code-named Parsley, is the78

first optimized force field using the SMIRNOFF format, with direct chemical perception.35 To create Parsley,79

we started with an initial force field called SMIRNOFF99Frosst consisting of direct chemical perception typ-80

ing rules and parameters adopted from the Parm@Frosst force field.36 We then optimized nearly all 50081

of the valence parameters to improve agreement with quantum chemical optimized geometries, energet-82

ics, and vibrational frequencies, while largely retaining the Lennard-Jones and electrostatic parameters of83

SMIRNOFF99Frosst. In keeping with the Open Force Field Initiative’s core philosophy, the Parsley force field84

and the software tools and data sets used to develop it are released under permissive open source licenses.85

We also report here on the initial benchmarking of Parsley to show its improved accuracy relative to86

its predecessor for a wide variety of properties, especially energetics and geometries relative to gas phase87

quantumchemical calculations. Thequantumchemical benchmarks, which covermore than 2,000molecules88
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and probe the quality of optimized geometries and relative conformer energies, show substantially better89

performance relative to SMIRNOFF99Frosst. For the condensed-phase properties, which span density, di-90

electric constant, heat of vaporization, excess molar volume, and enthalpy of mixing, no dramatic perfor-91

mance differences relative to SMIRNOFF99Frosst were noted in this release, and the overall accuracy is92

similar to that of GAFF; this was expected as nonbonded parameter optimization was not included as part93

of this work. In addition, as a reality check for the critical application area of computer-aided drug design,94

we report Parsley’s favorable performance in benchmark protein-ligand binding free energy calculations95

covering 199 protein-ligand pairs, along with comparative results for other small molecule force fields. Im-96

portantly, the infrastructure described here establishes a foundation for going far beyond Parsley, through97

the the ongoing creation of a series of continually improving, open, small molecule force fields. The process98

reported here in the OpenFF 1.0.0 release continues in subsequent releases (OpenFF 1.1, 1.2 and 1.3)37–4199

which will be described in follow-up work.100
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Figure 1. Open Force Field infrastructure and data flows during force field development. The OpenFF toolkit (left) sets upan MM simulation system from a given force field definition and parameters, and the OpenMM simulation code (top) iscalled to evaluate target physical properties. ForceBalance (middle) iteratively optimizes the parameters by least-squaresminimization of an objective function constructed from the differences betweenMM simulated properties and referencedata. QCArchive (bottom) is a distributed computing environment and database for generation and storage of quantumchemistry reference data. See text for further details.

2 Methods101

The infrastructure used to generate Parsley takes an initial force field as its starting point and optimizes102

it against reference training data to create an optimized force field, which in turn is benchmarked against103

test-set data prior to release (Figure 1). The software part of this infrastructure comprises a toolkit that104

assigns force field parameters to molecules of interest (openff toolkit); a component that computes a set105
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of target properties for a set of input molecules (openff evaluator); and the ForceBalance code, which uses106

the openff evaluator to optimize force field parameters against the selected reference data. In general, the107

reference dataset can include both quantum chemical and experimental data. The Parsley force field was108

generated by refitting the parameters in the valence terms of the initial SMIRNOFF99Frosst35 force field109

against an extensive new set of high-level quantummechanical data, which include energies, gas-phase ge-110

ometries, and other properties. Note that the starting parameters in SMIRNOFF99Frosst in turn originated111

from two parent force fields, AMBER parm9942 andMerck’s parm@Frosst,36 which had been parameterized112

to reproduce gas phase geometries and energetics computed at lower levels of QM than that used here,113

for selected molecules. Here, Section 2.1 details the force field parameters that were optimized, the QM114

dataset used to drive the optimization, and the application of ForceBalance43 to carry out the optimization115

from the SMIRNOFF99Frosst35 starting point. Section 2.2 then describes how the resulting Parsley force116

field was tested against benchmark data outside the training sets, comprising gas phase properties from117

QM calculations, measured liquid-state properties, and measured protein-ligand binding free energies.118

2.1 Training the Parsley force field119

2.1.1 Parameters that were refit120

We reoptimized 481 out of 500 of the valence parameters present in SMIRNOFF99Frosst; the 19 not opti-121

mized are rare in drug-like compounds. All 481 parameters were fitted simultaneously against all QM data122

(Section 2.1.2). Each parameter definition is uniquely identified by an interaction type (e.g. bond stretch)123

and a SMIRKS pattern (e.g. [#6X4:1]-[#6X4:2]), and can contain one or more physical values (e.g. the bond124

length and the force constant). The full list of parameter definitions, which can be viewed in the published125

force field XML file, openff-1.0.0.offxml,44 may be summarized as follows:126

• Harmonic bond stretch: 86 equilibrium bond lengths and force constants.127

• Harmonic angle bend: 35 equilibrium angles and 39 force constants. These two numbers differ128

because four angles are linear and were kept linear during fitting.129

• Proper torsions: Each of the 154 torsion types is associated with an N-term Fourier series of potential130

energy contributions, whereN ≤ 6, and each term, i, is of the formEi = ki cos
(

i� + �i
). Weoptimized all131

of the amplitudes that were defined in SMIRNOFF99Frosst, comprising 154, 62, 26, 5, 4 and 3 values of132

k1, k2, k3, k4, k5, and k6 respectively, for a total of 254 parameters. Parameters t156, t157, t158 represent133

torsion angles containing a linear angle, and their values of k1 were kept at 0.0 during fitting. The134

phase parameters, �i and the selection of Fourier terms used for each torsion were not optimized in135

this release.136

• Improper torsions: The four improper terms were kept unmodified, to avoid overfitting.137

2.1.2 Compound sets used in training138

Two sets of small organic molecules were used to generate the quantum chemical datasets used in fitting.139

The first, termed the Roche Set, contains 468 fragment-sized molecules, most containing one to three rotat-140

able bonds, that were provided by Roche as a collection of important and/or interesting chemistries. This141

data set was prepared using the MOE software.45 Representative compounds from this set are illustrated142

in Figure 2, and the full set can be found in Supporting Information section 1.1.1. The second, termed the143

Coverage Set, contains 80 molecules selected from eMolecules46 using a greedy algorithm aimed at provid-144

ing parameter coverage for themaximumnumber of parameters using theminimum number of molecules.145

Figure 3 illustrates representative compounds, and a full list of SMILES can be found in Supporting Informa-146

tion section 1.1.1.147
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Figure 2. An illustrative subset of small fragment-like molecules from the Roche Set.
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Figure 3. An illustrative subset of molecules from the Coverage Set.

Initial automated selection of the Coverage Set is described in a subdirectory of the openforcefields148

GitHub repository, and details of the additional molecules added manually to cover remaining gaps can be149

found in Supporting Information section 1.1.1.150
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2.1.3 Selection of quantum chemistry methodology151

Quantumchemical calculations (geometry optimizations and torsion scans)were performedonadistributed152

set of high-performance computing clusters using the MolSSI QCFractal47 distributed quantum chemistry153

engine, with results deposited in the public MolSSI QCArchive Server (MQCAS)48,49 to allow open public ac-154

cess to all data. We used a single level of theory for all QM calculations, B3LYP-D3(BJ) / DZVP.50–53 This155

choice was based on two benchmark studies of conformational energies 54,55 and our own initial studies156

that aimed to balance accuracy against computational cost. Themolecules in both of these studies included157

amino acids, small to medium-sized peptides, and macrocycles. Geometries were optimized at the MP2/cc-158

pVTZ level, and reference energies were computed using explicitly correlated focal point analysis methods159

considered to be equivalent to complete basis CCSD(T) in accuracy. Both studies found that B3LYP-D3(BJ)160

reproduces the reference energies with RMSEs of < 1 kcal/mol when very large basis sets (e.g.def2-QZVP56)161

are used; the empirical D3 dispersion term played a major role, as the errors were typically 2-4x larger162

without it.163

Notably, Řezáč et al. 201854 reported that the double-zeta quality DZVP basis set50 gave nearly the same164

RMSE as def2-QZVP, which we were able to reproduce in our own tests. When similar-sized and better-165

knownbasis sets such as 6-31G* and def2-SV(P) were used, the RMSEs increased significantly but therewere166

onlyminor differences in computational cost. Our results are largely consistentwith Řezáč et al. 201854 even167

though we did not use the custom empirical dispersion parameters they derived for the DZVP-DFT basis set.168

A scatter plot of RMSE vs. calculation time for a representative molecule, labeled as FGG114 in Řezáč et al.169

2018.,54 is shown in Figure 4; the results confirm that the DZVP-DFT basis set gives the best compromise170

between accuracy and computational cost.171

Although we believe our choice of QM method is appropriate for gas-phase conformational energies172

for the neutral compounds comprising our training set here, we did not conduct benchmark studies on173

optimized geometries and vibrational frequencies which were also part of our parameterization dataset.174

We did not include charged molecules in the current training or test sets, so the accuracy of this force field175

for charged species is presently unknown. More comprehensive benchmarks are planned to inform future176

force field generations. However, the present level of theory is superior to the HF/6-31G* approach used in177

parameterizing the parm99/parm@Frosst force fields from which SMIRNOFF99Frosst descended, and thus178

should afford greater accuracy.179

Figure 4. Tradeoff between speed and accuracy in selecting quantum chemical basis set. Computational time (forsingle conformer) versus RMSE to benchmark-quality relative energies for 15 conformations of a representativemoleculefor several choices of basis set. The benchmark relative energies are MP2/CBS with a CCSD(T) correction and were ob-tained from Ref. 54.

2.1.4 Generation of quantum chemical data for compound datasets180

Prior to running quantum chemical calculations, the input molecules were subjected to protonation state181

and conformer expansion, using the Fragmenter software package.57 After the expansion, each protonation182

state was identified as a new molecule, so the number of distinct molecules increased; and each molecule183
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Roche Set Coverage Set
Compounds 468 80
Cmpds × Prot. States 468 233

Opt. Geom.
Geometries 936 831
Dataset Name OpenFF Optimization Set 1 SMIRNOFF Coverage Set 1

Vib. Freq.
Frequency Sets 660 235
Dataset Name OpenFF Optimization Set 1 SMIRNOFF Coverage Set 1

Tors. Scans
Energy Profiles 669 417
Dataset Name OpenFF Group 1 Torsions SMIRNOFF Coverage Torsion Set 1

Table 1. Summary of quantum chemical calculations used to fit the force field valence parameters in this work. Thesepublicly available datasets are stored on the MolSSI QCArchive Server (MQCAS)

could have one or more conformers. Each conformer provided one optimized geometry used in fitting.184

Three classes of gas phase quantum chemical data were generated for both the Roche and Coverage com-185

pound sets: optimized geometries, vibrational frequencies, and torsional energy profiles. The methods186

used are detailed below. The results of all quantum chemical calculations are stored as DataSet objects on187

the MQCAS48 and are freely available to the public. Examples of working with several MQCAS datasets can188

be found in Supporting Information section 1.1.2.189

Optimized geometries190

We used the MolSSI QCArchive Server (MQCAS) to store and distribute geometry optimizations with the191

geomeTRIC optimization driver58 and the Psi4 quantum chemistry package59,60 as backends. OptimizedQM192

geometries were downloaded from the MQCAS, then filtered to remove cases where the bonding pattern193

changed onoptimization, aswell as issueswhich pose other problems for the openforcefield toolkit v0.4.1,61194

e.g. undefined stereochemistry, missing torsion terms, or inability to assign AM1-BCC charges. Details can195

be found in Supporting Information section 1.1.2.196

The objective function that measures deviations of MM fromQM geometries is designed in the following197

way: MM geometry optimizations are first locally minimized starting from QM optimized structures, then198

MM and QM Cartesian coordinates are converted to lists of bond lengths, bond angles, and both proper199

and improper torsion angles. The difference between QM and MM optimized internal coordinates for a200

single molecule contributes to the objective function as:201

Loptgeo(�) =
∑

i∈ICs

(

xMM
i (�) − xQM

i

di

)2

(1)
where � stands for the force field parameters used in the MM calculation, di refers to scaling factors of 0.05202

Å, 8 degrees and 20 degrees for bond lengths, bond angles, and improper torsion angles, respectively. Proper203

torsion angles were not considered here, but instead are fitted based on comprehensive torsional energy204

profiles, as detailed below.205

Vibrational frequencies206

For each optimized geometry in the Roche and Coverage molecule sets, Hessian calculations were both ex-207

ecuted and stored in the MQCAS. From the calculations that were completed, the Hessians for the lowest-208

energy conformation of each compound / protonation state were kept. After screening the dataset for209

topology changes and other errors, normal mode analysis was performed to obtain harmonic vibrational210

frequencies and Cartesian displacements for the internal degrees of freedom. Details can be found in Sup-211

porting Information section 1.1.2.212

The corresponding force fieldHessianswere computedby locallyminimizing theQMgeometrieswith the213

force field, followed by evaluating forceswith numerical displacements (0.001 Å). Normalmode analysis was214

carried out and theQMand FF frequencies were sorted from lowest to highest to yield the sorted sequences215
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�QM,i and �FF ,i, respectively. The objective function contribution for each set of normalmodeswas computed216

as the sum of squared differences of corresponding frequencies, scaled by a factor of dvib = 200cm−1, as:217

Lvib(�) =
∑

i

(�QM,i − �FF ,i
dvib

)2 (2)
Because the objective function sorts the QM and MM vibrational frequencies in simple ascending order,218

it does not account for possible differences between the QM and FF normal modes; i.e., the eigenvectors.219

This approachwas taken primarily for computational efficiency, but it carries the risk of creatingmismatches220

between the MM and QM vibrational modes. To test for this possibility, we also carried out single-point221

comparisons of vibrational frequencies where the MM frequencies and normal modes are permuted to222

maximize overlap with the QM normal modes. The permutation was carried out by computing the mass-223

weighted overlap matrix between each pair of QM and MM normal modes followed by solving the linear224

sum assignment problem. The objective function was then computed using the resulting matched pairs of225

QM and MM frequencies.226

2.1.5 Torsional potentials227

Figure 5. Example torsions selected for 1D torsion scans in the Roche TorsionDrive dataset. H, white; C, gray; N, blue; O,red; S, yellow; F, green (lower middle); Cl, green (lower left).

Quantum mechanical energy profiles were generated for dihedral angles in the Roche and Coverage sets.228

All calculations were carried out on the MQCAS, which employs the TorsionDrive software to compute each229

torsion energy profile using a wavefront propagation procedure,62 described briefly here. Multiple initial230

geometries were generated for each molecule via fragmenter and provided as input at the start of the pro-231

cedure. Each input structure was energy-minimized with the selected torsion angle constrained to values232

on a 15◦ resolution grid, with QCArchive managing parallel job execution, and individual constrained opti-233

mizations handled by geomeTRIC/Psi4 as described above. At the conclusion of the constrained minimiza-234

tions, the lowest-energy structure at each grid point was used to initiate new constrained minimizations at235

neighboring grid points. This cycle was repeated until the grid was fully populated with constrained mini-236

mization results and no new lowest-energy structures were found. In order to avoid pathologies such as237

bond-breaking that may occur when driving torsions into sterically hindered or high-energy regions, an238

upper energy limit was applied such that no constrained minimizations were started from structures with239

energies greater than 0.05 Hartrees (31.3 kcal/mol) above the minimum.240

The set of lowest-energy constrained minimized structures for each grid point was downloaded from241

the MQCAS and checked for bonding topology changes; calculations that contained such changes were dis-242

carded. In addition, any scans that included a frame with an internal hydrogen bond were discarded to243

avoid having strong intramolecular nonbonded interactions in the gas-phase QM energy, as they would244
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lower the accuracy of the fitted parameters for condensed phase simulations. In future work, hydrogen-245

bonded dimers may be included along with intramolecularly hydrogen bonded conformers in order to as-246

sure a suitable balance.63 Hydrogen bonds were detected using the Baker Hubbard method (Angle(D-H..A)247

> 120 degrees and Dist(H..A) < 2.5 Å), as implemented in the MDTraj package.64 Details can be found in248

Supporting Information section 1.1.2.249

For compounds in the Roche Set, torsional scans were generated for the 819 dihedral angles matching250

all of the following conditions:251

1. the center bond is not part of a ring;252

2. there is at least one heavy side group on both sides of the bond;253

3. neither of the two angles involved is close to linear (≥ 165◦).254

Among all torsions sharing the same center bond, the one with the largest side groups, by number of atoms,255

was picked. For the compounds in the Coverage Set, we used the SMIRNOFF force field to label the torsions256

in eachmolecule and selected the first five dihedral angles thatmatch each torsion term for scanning. (Note,257

however, that the force field term t155bwas added after this datasetwas created, so no torsionwas selected258

for that term.)259

The objective function contribution was computed as a weighted sum of squared differences between260

QM andMM energies. During the fitting process, each structure along the QM torsional profile was partially261

relaxed using the empirical force field being optimized. These MM optimizations were started from the262

QM constrained optimized structure, the four atoms defining the torsion were fixed at the QM coordinates,263

and all other atoms were held near the QM coordinates by applying harmonic energy restraints with force264

constant 1 kcal/mol/A2. These added harmonic restraints avoid the possibility of large structural changes265

of the MM structures away from the QM structures, which could make the torsional profile differences266

less meaningful. The restraint term is applied only in the MM energy minimization, and the MM energy at267

the energy-minimized geometry without the restraint term is used in subsequent steps. The QM and MM268

energies being compared were calculated as:269

EQM
(

xi
)

= EQM
′ (xi

)

− EQM
′ (x0

)

EMM
(

xi; �
)

= EMM
′ (OptMM

(

xi; �
))

− EMM
′ (OptMM

(

x0; �
))

(3)
where the primes indicate absolute energies, subscripts indicate grid point indices, x0 is the lowest energy270

energy-minimized structure, � represents the MM force field parameters, and OptMM(x; �) denotes the MM271

constrained optimization procedure described above. The objective function is then calculated as:272

L (�) = 1
dE

2

∑

i∈N(gridpoints)
w
(

EQM
(

xi
))(

EQM
(

xi
)

− EMM
(

xi; �
))2

∑

i∈N(gridpoints)
w
(

EQM
(

xi
)) (4)

where dE = 1.0 kcal mol−1 is a scaling factor. The weights are calculated by a formula that uses two cutoffs,273

where the weight is constant until the first cutoff (1.0 kcal/mol) then starts to decrease, followed by a hard274

second cutoff at 5.0 kcal/mol above which the weights are zero.275

w(E) =

⎧

⎪

⎨

⎪

⎩

1 E < 1.0kcal∕mol
(

1 + (E − 1)2
)− 12 1.0 ≤ E < 5.0kcal∕mol

0 E ≥ 5.0kcal∕mol
(5)

Our decisions regarding the fitting of torsion energy profiles warrant some discussion and comparison276

to published studies. Previously published force fields have either employedQM torsion scans similar to this277

work,65 or used customMM simulations to generate input conformations for QM calculations.66 During the278

development of a nucleic acid force field, QM and MM minimizations were carried out prior to comparing279

energies in a similar procedure to this work.67 Theweighting schemewe used is comparable with a previous280

study68 that employed a Boltzmann distribution with T = 2000 K (kBT ≈ 4.0 kcal/mol) to assign weights in281

fitting torsion energy profiles.282
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The variety of torsion fitting procedures used in prior studies shows that a standard procedure for car-283

rying out this step is currently lacking. This is in part because each approach involves making a different284

set of compromises when fitting the approximate potential, and it is challenging to assess the impact of285

an approach on the accuracy of simulated properties. This and other challenges motivates the creation of286

automated benchmarking tools that are the subject of current research but beyond the scope of this paper.287

2.1.6 Optimization algorithm and convergence criteria288

The parameter optimization was carried out with ForceBalance,43 a Python toolkit to optimize force fields289

in a systematic, reproducible, scalable and flexible manner.43,69 We employed a development version of290

ForceBalance based on v1.6.070) to minimize the objective function. Support of the OpenFF force field was291

enabled by an interface with the OpenFF Toolkit v0.4.1.61 The commercial OpenEye toolkit version 2019.4.2292

was used to generate .mol2 files, which are needed by ForceBalance to set up OpenFF simulations using293

the toolkit.294

Numerical derivatives of the objective function with respect to parameters were computed with dimen-295

sionless displacements of 0.01 for improved numerical stability, relative to the ForceBalance default of 0.001.296

Fitting was terminated once two convergence criteria were met:297

1. The dimensionless parameter step size fell below 0.01;298

2. The objective function (Section 2.1.7) decreased by less than 0.1 during the step.299

To efficiently optimize the parameters in as few iterations as possible, ForceBalance uses a quasi-Newton
iteration to take near-optimal steps in parameter space:

�(n+1) = �(n) + [H(�) + �I]−1

To approximate the Hessian H(�), ForceBalance computes an approximation to the the matrix of second300

derivatives of each least-squares component in a manner that neglects parameter couplings:301

Hi,pq(�) =
)2

)�p)�q
Li(�) =

∑

j∈data

)Aj

)�p

)Aj

)�q
+

)2Aj

)�p)�q
≈

∑

j∈data

)Aj

)�p

)Aj

)�q
(6)

The � parameter is used to set the optimization step size, and was determined by line-search minimiza-302

tion for a given parametric gradient and Hessian. This strategy was employed because the line search over303

� only requires repeated evaluation the objective function itself, and not the parametric gradient which is304

relatively expensive.305

2.1.7 Objective function with regularization306

ForceBalancewas used tominimize anobjective, or loss function,L(�), with respect to force field parameters
�. The objective function quantifies deviation of quantities derived with the force field from the reference
quantum chemical data while adding a regularization penalty to minimize the deviation from a reference
set of parameters, following the standard approach for ForceBalance:43

Ltot(�) =
∑

i∈targets
wiLi(�) +wreg

∑

p∈parameters

|Δ�p|
�2p

2

Here, wi is the weight of each class of optimization data targets with corresponding loss functions Li(�),which are often least-squares penalized loss:
Li(�) =

∑

j∈data

(

Aobsj − Acalcj (�)
)2

where Aobsj is an observed quantum chemical or physical property target to fit, and Acalcj (�) is the calculated307

value. wi of each target type was chosen to prevent the optimizer prioritizing one target type over other308

types. Carefully selected weights enabled the objective function contributions of different target types to309

have the same order of magnitude. wreg is the regularization penalty weight, andΔ� quantifies the deviation310

11 of 32



from a reference set of parameters – here, the initial SMIRNOFF99Frosst v 1.1.0 parameter set.35 Regulariza-311

tion ensures that parameter adjustments are made conservatively to avoid introducing large problematic312

parameter changes that may only provide marginal improvements in the optimization target, especially313

when smaller datasets are used in parameterization. We used the regularization scales, �p, listed in Table 2,314

based on past observations of variations in these parameter types in previous studies.69315

parameter regularization scale �p
bond force constant Kr 100 kcal∕mol∕A2

bond equilibrium length r0 0.1 Å
angle force constant K� 100 kcal mol−1 rad2

angle equilibrium angle �0 20 degrees
proper torsion barrier height K 1 kcal∕mol

vdW well depth � 0.1 kcal∕mol
vdW minimum rmin−half 1 Å

Table 2. Regularization scaling parameters used in ForceBalance optimization runs for each force field parameter type.

2.2 Testing the Parsley Force Field316

Once the parameters had been trained as detailed in Section 2.1, we tested the resulting force field, Parsley-317

1.0.0, against optimized geometries outside the training set, and compared the results to those obtained318

with the initial force field, SMIRNOFF99Frosst-v1.1.0.35Wealso tested Parsley against two data types outside319

the training set: energy differences among conformers of a given molecule, and physical properties of320

various organic liquids. Tests against vibrational spectra and torsional energy potentials are reserved for321

future studies. Benchmark comparisons of Parsley in the context of other general force fields are also322

available.71 We now describe how these tests were done.323

2.2.1 Quantum chemical test set generation324

The QCArchive tool was used to generate and archive additional QM data, using the procedures detailed in325

Section 2.1, for compounds in three collections.326

OpenFF Discrepancy Benchmark 1 This comprises 2,802 fragment-likemolecules (19,712 conformers) se-327

lected from the eMolecules catalog46 because their energy-minimized geometries are substantially dif-328

ferent in SMIRNOFF99Frosst 1.0.8 relative to GAFF, GAFF2, MMFF94, and MMFF94s.72,73 We retained329

all protonation and tautomer states present in our initial dataset, but did not generate any additional330

ones. Further details can be found in Supporting Information section 1.2.1.331

Pfizer Discrepancy Optimization Dataset 1 This comprises 100 fragment-likemolecules forwhich Pfizer’s332

QM calculations of torsional profiles computed with HF/minix74 followed by B3LYP/6-31G*//B3LYP/6-333

31G** differed substantially from those generatedwith theOPLS3e force field. Pfizer code for relevant334

related work is public on GitHub.75 Enumeration of conformers, but not of protonation states, led to335

352 conformers.336

FDA Optimization Dataset 1 This is a subset of the list of FDA-approveddrugs in the ZINC15 FDAdataset.76337

Molecules were kept if they had 3-55 heavy atoms and consisted only of elements H, C, N, O, F, P, S, Cl,338

Br, I and B. We retained multiple protonation and tautomer states in the database, but did not gener-339

ate any additional ones. Generation of up to 20 conformers per molecule led to 6,675 conformers for340

the 1,038 structures.341

Test results are presented for the merger of these three datasets, termed the Full Benchmark Set. This342

dataset can be retrieved from the MQCAS as OpenFF Full Optimization Benchmark 1, as documented else-343

where.77 This is an "optimization dataset" in the sense that it – and the results presented here for bench-344

marking on this set – are for performance on optimized geometries only.345

Conformational energy differences were assessed as follows. Compound conformers were energy-346

minimized using QM. For a compound with at least three conformers, we identified the conformer imin with347
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the lowest QM energy Eimin ,QM and computed the energies of its other conformers relative to it: Ei,QM −348

Eimin ,QM . We then computed the force field energies of the same conformers, Ei,FF , and, for each compound,349

computed the RMSE of Ei,FF − Eimin ,FF from the corresponding QM energies. Note that conformation imin is350

based on the QM energies and used again for the FF energies.351

2.2.2 Testing against physical properties of organic liquids352

We assessed the ability of molecular dynamics simulations using the newly fitted Parsley force field to repli-353

cate 221 experimental observables for organic liquids spanning 104 molecules. The observables used are354

densities, heats of vaporization, and static dielectric constants, of pure liquids, and excess molar volumes355

and heats of mixing of binary liquid mixtures. The experimental data were drawn from the NIST ThermoML356

Archive.78 For systems involving water, the TIP3P model79 was used. Automated scripts used to select the357

data can be found in Supporting Information section 1.2.2.358

We started with all available measurements of the properties listed above. When multiple values were359

available for a given quantity, only the ones with lowest reported uncertainties were retained. We further-360

more excluded ionic liquids, compounds containing elements other than H, N, C, O, S, F, Cl, Br, and I, and361

data measured outside the temperature range 288-318K and the pressure range 0.95-1.05 atm. Dielectric362

constants < 10 were also excluded, because a force field that does not explicitly include electronic polariz-363

ability is not expected to replicate lower dielectric constants well.80 Finally, a greedy search was performed364

on the remaining data to select a minimal subset of small molecules that exercised the largest number of365

nonbonded parameter types and for which the most measurements were available. Sample compounds366

from the resulting set are shown in Figure 6, and further information on the data set can be found in Sup-367

porting Information section1.2.2.368

Values for all of these properties were computed with the OpenFF-Evaluator (formerly named the Prop-369

ertyEstimator) 0.0.5 tool, using scripts which can be found in Supporting Information section1.2.2. Calcula-370

tionswere carried outwith the newParsley 1.0.0, and, for comparison, with its precursor, SMIRNOFF99frosst371

1.1.0, as well as GAFF 1.81 and GAFF 2.11.372
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Figure 6. Representative molecules in the condensed phase physical property benchmark set.

2.2.3 Testing against protein-ligand binding free energies373

Weassessed the performance of the newly fitted Parsley forcefield in binding free energy calculations based374

on molecular dynamics simulations following suggested best practices for benchmarking binding affini-375

ties.81 The test set consisted of 8 protein targets with a total of 199 ligands (Supporting Information, Table376

1), using a set commonly referred to as the “JACS dataset” from a prior study published in that journal and377

frequently used by the community.12 For a fair comparison to previously published results, the initial ligand378
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and protein structures were obtained from prior benchmark work.82 These structures are available in the379

protein-ligand-benchmark repository.83 Relative binding free energies were calculated employing alchemi-380

cal perturbations between pairs of ligands in water and the protein complex. These calculations employed381

a non-equilibrium workflow based on GROMACS and pmx.84,85 For the ligand molecules, the Parsley force-382

field was used as parameters. The protein was parameterized with the AMBER ff99sb*ILDN force field86–88383

and a TIP3P explicit water model was employed. Tomimic physiological conditions, ions (150mMNaCl) and384

additional counterions to neutralize the system were added to the dodecahedral simulation boxes.385

The analysis workflow used for analyzing the calculations is available in 89. The statistics in this workflow386

were calculated using Arsenic,90 which is a package implementing best practices for consistently calculating387

statistics and reporting results from binding free energy calculations. The Parsley results were compared to388

previously published results using the GAFF2.1,26 CGenFF3.0.127 and OPLS3e34,65 force fields. The former389

GAFF2.1 and CGenFF results were calculated with the same pmx worklow, and the OPLS3e results were390

calculated with Schrödinger FEP+.82391

More detailed discussion of the workflow, the employed parameters and the analysis can be found in392

the Supporting Information. Full details of this study will be reported in a forthcoming publication, and a393

preliminary report can be found in 91.394

3 Results and Discussion395

This section first describes the consequences of parameter optimization for accuracy over the training set,396

and then benchmarks Parsley on the separate test set compounds and properties. The test set results397

should be indicative of Parsley’s accuracy in new applications.398

3.1 Improvements in accuracy over training set data399

3.1.1 Optimization of the objective function400

Figure 7. Objective function, or loss function, plotted against the number of ForceBalance iterations.

The parameter fitting process dramatically increased the accuracy of the force field for the training data.401

Although this was anticipated, it is important to confirm, because it verifies the effectiveness of the opti-402

mization procedures and provides a scale for the degree of improvement. The dimensionless objective (or403

loss) function—the weighted sum of squared differences between QM and MM values—decreased dramat-404

ically in the fitting, from 25,708 to 4,522 (Figure 7). As described in Section 2.1, the objective function is a405

sum of contributions which report the accuracy of optimized geometries, vibrational spectra, and torsional406

energy profiles. The effect of training on these components is summarized in Table 3 (Training Set data)407
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and Figure 8, and the following subsections provide further details of these results. Full fitting details, as408

well as inputs and outputs, can be found in the release package.92409

Table 3. Overall change in root-mean-squared error (RMSE) metrics vs. the quantum chemical result calculated for fourtypes of properties, using the initial and optimized force field, and divided into training set and test set. The numbers inparentheses under vibrational spectra indicate RMSE in frequencies after permutation ofMMnormalmodes tomaximizeoverlap with QM normal modes. ND = No Data.
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Figure 8. Improvement in components of the training set and test set objective functions with fitting. Red his-togram shows performance with our initial force field, green histogram shows performance with the optimized forcefield and blue histogram shows the distribution of changes in objective function contribution of each target (individualmolecules/geometries contributing to the objective function) due to the parameter optimization. Left column (a-c) pro-vides the training set results. Right column (d-e) provides test set results. The range of each plot encompasses ≥ 94.94% of the population of initial objective function contributions and ≥ 99.2 % of the population of final objective functioncontributions.

3.1.2 Optimized geometries410

The geometric component of the objective function is computed from the deviations of bond-lengths, bond-411

angles and improper torsions, in structures optimized with the force field, from their values in correspond-412

ing structures optimized with QM (Section 2.1.4). As shown in Figure 8a, the fitting process led to improved413

overall agreement between force field and QM geometries; compare the initial (red) and final (green) his-414

tograms. The portion of the blue histogramon the negative / positive x-axis shows the percentage of targets415

where accuracy is improved / degraded, respectively. The accuracy was somewhat reduced for a small mi-416

nority of conformers, as evident from the histogram of differences (blue), but this is as expected, because417

compromises have to bemade for somemolecules in order to improve the accuracy for others that use the418
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same parameters. Table 3 provides a physically interpretable perspective of these results, showing that the419

RMS errors of bond-lengths, bond-angles, and improper torsions, in the optimized geometries, decreased420

by 14-49% with training.421

It can also be useful to assess the fitting of individual parameters. To do this for a given bond-stretch422

parameter, for example, we collected all test cases that included the parameter of interest and made a423

scatter plot of the length of the bond in the QM geometries vs the length in the MM geometries. Such plots424

were generated for each bond-length, bond-angle, and improper dihedral, in the training set, and all are425

available in the release package.92 When considering this term by term analysis, it should be kept in mind426

that the length of a bond or the value of an angle in an optimized geometry is determined not just by the427

parameters of the corresponding force field term, but also by the rest of the structure. For example, a bond428

length may be shifted by ring strain. However, when these values consistently differ between QM and MM429

geometries, this can be an indicator that the specific force field parameter requires further attention.430

Bond type [#16X2:1]-[#8X2:2], N=696 Bond type [#7:1]-[#7:2], N=32

Figure 9. Comparison of QM and MM energy-minimized bond lengths for two parameters. Left: divalent sulfursingle-bonded to a divalent oxygen. Right: divalent bond between nitrogens. Vertical line indicates the value of the forcefield’s equilibrium bond length. Orange and blue indicate results for initial and optimized force field. Dashed: Line ofidentity.

The fitting process moved most bond lengths and angles closer to the diagonals of these scatter plots,431

implying better agreement between MM and QM, as expected based on Figure 7. For a clear example,432

see Figure 9(left), where a change in the equilibrium bond length shifted the MM results to the diagonal433

and thus into better agreement with QM. However, a few of these scatter plots are more problematic. For434

example, Figure 9 (right), which examines a general N=N bond stretch, shows a small shift of the data points435

toward the diagonal, but does not correct the fact that this bond length falls in a narrow range across all the436

MM geometries but is varied in the QM geometries. In cases like this, greater accuracy might be achieved437

by creating two or more force field types for N=N bonds, rather than just one. Before taking such a step,438

though, one should consider whether the variations in the QM bond lengths trace to varied amounts of439

strain placed on the bond by other components of the structure. If so, then the accuracy of the N=N bond440

lengths should be improved by adjustment of other parameters that would correct the strain, rather than441

correcting parameters intrinsic to the bond itself.442

Relationships among force field equilibrium bond lengths, chemical environment, and strain, may be443

further explored by examining the lengths of a given bond type across the geometrically optimized con-444

formers of various compounds. Figure 10 illustrates this concept for a generic C-N single bond. The curves445
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in the left panel show the energy-minimized central bond lengths in QM torsion profiles taken from the446

Roche dataset, including all cases where the central bond is matched by the SMIRKS pattern indicated.447

The rise and fall of an individual curve indicates a dependence of the central bond length on the torsion448

angle, and the vertical displacements of the various curves relative to each other indicate the torsion angle-449

independent differences of central bond lengths between different molecules, or different central bonds450

in the same molecule. When integrated over all torsion angles, the bond lengths across all instances of the451

central bond matched by this SMIRKS pattern has a bi- or tri-modal distribution (Figure 10 right panel). This452

result suggests that this generic bond type ought to be split into at least two or perhaps three more specific453

types determined by SMIRKS patterns matching more specific chemical environments.454

Figure 10. Dependence of bond lengths of a given force field type upon the chemical and conformational environ-
ment. Left: Length of the central bond as a function of the torsion angle in the Roche dataset for central bonds matchingthe C-N bond type indicated. Each line corresponds to the length of the C-N bond matching the b7 parameter for con-strained energy-minimized conformers over a range of torsion angles. Right: Histogram of the observed bond lengthsafter summing over the torsion angles. Solid line in both panels indicates the force field’s equilibrium bond length fortype b7, and dashed lines indicate the lengths for which the bond energy equals 1.2 kcal/mol. The lines labeled in redare b7 in the initial force field, and lines labeled in green are b7 after force field optimization. Example molecules andtheir given b7 bond(s) are highlighted on the far right, which correspond to typical environments where the bond lengthis 1.44 Å (orange), 1.46 Å (green), or 1.52 Å (violet).

3.1.3 Vibrational frequencies455

Fitting against the training set led to substantial improvements in the accuracy of the vibrational frequencies456

in the training data, relative to the reference QM results, as evident from a dramatic fall in the vibrational457

components of the objective function. This is evident in Figure 8b, which shows decreases in error for the458

sum of squared vibrational frequency differences for individual molecules. Indeed, the improvement from459

initial results (red) to fitted results (green) appears even more marked than that of optimized geometries460

(Figure 8a). The distribution of improvements for individual conformations (blue) also shows strong im-461

provement, with only a tiny minority of cases becoming less accurate with fitting. These results correspond462

to a 67% drop in the RMSE of individual MM vs QM frequencies; i.e., from 119 to 40 cm −1 (Table 3). When463

the MM vibrational frequencies are permuted to maximize overlap between MM and QM normal modes,464

the RMSE in the vibrational frequencies is found to decrease by 42% (156 to 90 cm −1) with optimization.465
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3.1.4 Torsional energy profiles466

Fitting also led to improvements in the accuracy of the torsional energy profiles in the training set (Figure 8c),467

although the improvements (red to green) appear less dramatic than for the geometric and vibrational468

components discussed above. As for the other objective function components, the improvements observed469

for many torsions come at the expense of decreased accuracy for some others (blue). The RMSE of the MM470

torsional energy profiles relative to the QM ones in the training set fell from 2.96 to 1.89 kcal/mol, a 36%471

drop (Table 3).472

It is also of interest to compare the MM and QM potential energy profiles for individual torsion angles473

across the full training training set, and a full set of comparisons is available in the Supporting Information.474

Sample plots for a torsional profile that improves with fitting and another that gets worse are provided475

in Figure 11, left and right panels respectively. Interestingly, the parameter in the second plot occurs 231476

times in the training set, so degraded performance is likely not due to lack of sufficient data, but instead to477

either changes in other portions of the force field, or improved performance on other molecules utilizing478

this same parameter at the expense of degraded performance for this particular target. Note that most479

torsional parameters appear in in many molecules in the training set, so fitting can improve accuracy for480

most occurrences while degrading it for others.481

The greater difficulty of fitting torsional profiles may result from the fact that these are particularly sen-482

sitive to nonlocal interactions within the molecules, such as longer-range sterics and electrostatics. Also,483

defining force field types for torsional terms is more complex than for most other terms in the force field,484

as multiple torsional terms contribute to the profile around a given bond, and torsional terms include step485

changes in periodicity. Note, too, that the present fitting process adjusted only amplitudes, and left peri-486

odicities and phases unchanged. Adjustment of these additional parameters will clearly be of interest in487

future rounds of force field development.488

Figure 11. Examples of torsional profiles that were improved (left) or degraded (right) by fitting. Data are for aspecific torsion angle in a specific molecule, as detailed below the plot. Blue: QM energy. Orange: force field energybefore training. Green: force field energy after training (Parsley). The metadata at the bottom explains which datasetthis data is drawn from, andwhich specificmolecule this torsion occurs in, as well as the SMIRKS pattern for the particulartorsion being fitted here. The total count of this SMIRKS pattern across the dataset (5) is also shown at the bottom, aswell as the parameter ID and the atom indices in themolecule. The full set of plots are available in the release package.92

3.2 Test Set Results489

Results for data outside the training set provide an indication of the transferability of the new parameters490

and hence of the accuracy that may be expected in actual use. Here, we examine the ability of the new491

parameters to replicate QM-optimized gas-phase geometries for molecules outside training set, energy dif-492

ferences between gas-phase conformers, physical properties of liquids, and relative protein-ligand binding493

free energies.494
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3.2.1 Quantum chemical data495

The overall objective function for the test set is lower for Parsley (20,672) than for the initial force field496

(29,469). The distribution of improvements over the test-set compounds (Figure 8d) shows that the objective497

function improves for almost all compounds, given that the blue histogram of differences has few positive498

values. Accordingly, improvements of 6-35% are observed in the terms that contribute to the objective func-499

tion (Table 3. It is worth noting that the test set exercises 415 out of the 500 parameters. We also grouped500

the bond lengths, bond angles, and improper dihedrals across test set compound according to their FF types501

and examined the improvement in accuracy by type, as illustrated for the bond-lengths in Figure 12. The502

complete figures for bond lengths, bond angles and improper torsion angles can be found in Supporting503

Information Figures 1-3. Clearly, optimization over the training set led to improved test-improvement for504

most parameters. Comparable plots for angles and torsions are available in the release package for this505

force field.93506

Figure 12. Bond length RMSE comparison for initial and optimized force fields for the Full Set. For each bond type(b1, b2...), a gray circle indicates the RMSE of bonds of this type for the initial force field and arrows show the drops (green)or increases (red) in error on going to the new force field. (SMIRKS patterns for these parameter IDs can be retrievedfrom the force field XML file, openff-1.0.0.offxml.44

We also tested the ability of the Parsley force field to replicate differences among conformations of507

gas-phase molecules in the test set. Note that this type of data is entirely absent from the training data.508

Nonetheless, the RMSE for these quantities fell by 12% on going from the initial force field to the new Parsley509

force field (Table 3). The improvements accuracy are distributed acrossmany compounds, rather than being510

dominated by improvements for a few, as evident from the histograms in Figure 8e.511

21 of 32



3.2.2 Physical properties of organic liquids512

We tested Parsley’s ability tomodel condensed phase properties by using it to compute densities, enthalpies513

of vaporization, static dielectric constants, enthalpies of mixing, and excess molar volumes, of organic liq-514

uids and mixtures, and comparing with experimental data from NIST’s ThermoML. Note that no condensed515

phase data were used in the fitting process. As shown in Figures 13 and 14, the new Parsley force field516

offers competitive performance for these data, with marginal, though not statistically significant (by com-517

parison of the root-mean-square errors and their 95% confidence intervals), improvement over the previous518

SMIRNOFF99frosst 1.1.0 release (Table 4). The overall accuracy also is similar to that of the established GAFF519

family of force fields. This pattern presumably reflects the fact that these physical properties are not sensi-520

tive to the valence parameters optimized here, and that condensed phase data were not used to guide the521

optimization.522
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Table 4. Measures of accuracy of force fields for the physical property benchmarks. RMSE: root-mean-square error;
R2: coefficient of determination; �: Kendall’s tau ranking accuracy metric. Subscripts and superscripts indicate 95%confidence intervals on these statistics.

Property Force Field RMSE R2 �

Vexcess (x)
(

cm3∕mol
) smirnoff99frosst 1.1.0 0.410.520.29 0.390.700.14 0.440.670.13parsley 1.0.0 0.390.510.26 0.440.710.18 0.500.710.22gaff 1.81 0.470.610.34 0.170.450.01 0.230.46−0.01gaff 2.11 0.410.540.27 0.360.660.10 0.420.620.14

Hmix (x) (kJ∕mol) smirnoff99frosst 1.1.0 0.640.760.50 0.500.670.25 0.490.660.28parsley 1.0.0 0.580.690.46 0.590.740.34 0.540.700.32gaff 1.81 0.690.870.52 0.450.620.25 0.440.630.22gaff 2.11 0.600.730.45 0.580.740.35 0.580.720.40
Hvap (kJ∕mol) smirnoff99frosst 1.1.0 6.037.564.24 0.790.900.62 0.700.830.50parsley 1.0.0 5.877.374.23 0.850.930.71 0.790.880.61gaff 1.81 5.537.123.97 0.800.900.63 0.720.840.54gaff 2.11 7.008.525.33 0.600.800.30 0.590.760.35
� (g∕ml) smirnoff99frosst 1.1.0 0.100.140.06 0.960.980.94 0.900.920.85parsley 1.0.0 0.100.150.05 0.960.980.94 0.900.920.85gaff 1.81 0.050.070.03 0.981.000.95 0.910.940.87gaff 2.11 0.050.070.03 0.991.000.97 0.920.940.87
� smirnoff99frosst 1.1.0 14.7818.1711.62 0.530.800.22 0.500.720.22parsley 1.0.0 15.7219.1912.54 0.530.790.22 0.490.690.20gaff 1.81 13.2215.6310.80 0.640.820.44 0.540.730.34gaff 2.11 12.1614.969.40 0.620.820.40 0.670.810.42

3.2.3 Protein-ligand binding free energies523

The Parsley force field provides competitive accuracy in relative binding free energy calculations for 199524

ligands across eight different protein targets, as shown in Figure 15. Indeed, the differences in accuracy525

across the four force fields examined here are within 95% confidence intervals. It is also important to note526

that the accuracy of these calculations is strong affected by additional factors, including input structure527

preparation and sampling time. That said, in terms of mean unsigned error (MUE) of all relative free energy528

differences ΔΔG, Parsley (MUE = 1.02 kcalmol−1) ranks third, after GAFFv2.1 (MUE = 0.92 kcalmol−1) and529

OPLS3e (MUE = 0.93 kcalmol−1), and before CGenFF (MUE = 1.09 kcalmol−1). These results indicate that530

Parsley is a reasonable choice of force field for binding free energy calculations in drug discovery projects.531
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4 Using and Citing Parsley532

The present Parsley force field, formally named openff-1.0.0, can be accessed fromPython by installing the533

Open Force Field Toolkit with the command conda install -c omnia openforcefield openforcefields534

and then loading the force field as follows:535

536
from openforcefield . typing . engines . smirnoff import ForceField537

ff = ForceField (’openff -1.0.0. offxml ’)538539

The default version of Parsley includes hydrogen bond length constraints, which allow use of the typical540

2-4 fs timestep in molecular dynamics simulations. A second version without these constraints, which is541

suitable for geometry optimizations and single-point energy calculations, may be accessed as follows:542

543
ff = ForceField (’openff_unconstrained -1.0.0. offxml ’)544545

An example of the use of Parsley to run a molecular dynamics simulation can be found in Supporting Infor-546

mation section 3. Alternatively, the force field files themselves can be found under the openforcefields/of-547

fxml subdirectory of the openforcefields GitHub repository.94548

The present Parsley versionmay be referred to as “Open Force Field (OpenFF) Parsley Force Field (v1.0.0)”549

on first reference, and “Parsley” thereafter. Newer Open Force Fields are in development, and updates in550

the OpenFF 1.x series will also be referred to as Parsley, while new major versions will receive updated551

codenames. To cite Parsley, please reference the latest version of this article and the DOI of the force field552

version you use. This information is available in the OpenForceField repository,94 and the present version553

may be cited as.44554

To provide feedback on the performance of the OpenFF force fields, we highly recommend using the555

issue tracker at http://github.com/openforcefield/openforcefields. For toolkit feedback, use http://github.com/556
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openforcefield/openforcefield. Alternatively, inquiries may be e-mailed to support@openforcefield.org, though557

responses to e-mails sent to this address may be delayed and GitHub issues receive higher priority. For558

information on getting started with OpenFF, please see the documentation linked at http://github.com/559

openforcefield/openforcefield, and note the availability of several introductory examples.560

5 Conclusions and Directions561

We have described a methodology to derive new simulation force fields and an initial application of this562

infrastructure to create OpenFF 1.0.0 (codenamed Parsley), a SMIRNOFF force field with bonded terms op-563

timized against a range of gas-phase QM reference data. For both training and test sets, Parsley provides564

more accurate molecular geometries and conformational energetics, while preserving accuracy for a range565

of condensed phase properties. Importantly, it also yields highly competitive accuracy in calculations of566

relative protein-ligand binding free energies. This work lays a foundation for efficient iterative force field567

improvement, which is already underway in subsequent releases (OpenFF 1.1, 1.2, 1.2.1 and 1.3,37–41 to be568

described elsewhere). In the near term, we aim to extend the optimization to nonbonded interaction pa-569

rameters and incorporate expanded training and testing data sets. Later, we plan to address issues related570

to the definitions of chemical types and elaboration of the functional form, such as by the addition of off-571

center partial charges and incorporation of an explicit treatment of electronic polarizability. At the same572

time, we hope that the associated open release of our datasets and infrastructure will enable independent573

use of these data and tools to advance force field science.574
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8 Supporting Information Available603

The supporting information document contains links to scripts and resources for training, testing, and run-604

ning simulations using the Parsley force field; simulation procedures for physical properties of organic liq-605

uids; and optimized geometry RMSEs for the full test set grouped by parameter type. This information is606

available free of charge via the Internet at http://pubs.acs.org .607
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