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Abstract

Computation is increasingly being used to try to accelerate the discovery of new

materials. One specific example of this is porous molecular materials, specifically

porous organic cages, where the porosity of the materials predominantly comes from

the internal cavities of the molecules themselves. The computational discovery of novel

structures with useful properties is currently hindered by the difficulty in transitioning

from a computational prediction to synthetic realisation. Attempts at experimental

validation are often time-consuming, expensive and, frequently, the key bottleneck of

material discovery. In this work, we developed a computational screening workflow

for porous molecules that includes consideration of the synthetic difficulty of material

precursors, aimed at easing the transition between computational prediction and ex-

perimental realisation. We trained a machine learning model by first collecting data
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on 12,553 molecules categorised either as ‘easy-to-synthesise’ or ‘difficult-to-synthesise’

by expert chemists with years of experience in organic synthesis. We used an approach

to address the class imbalance present in our dataset, producing a binary classifier

able to categorise easy-to-synthesise molecules with few false positives. We then used

our model during computational screening for porous organic molecules to bias towards

precursors whose easier synthesis requirements would make them promising candidates

for experimental realisation and material development. We found that even by limiting

precursors to those that are easier-to-synthesise, we are still able to identify cages with

favourable, and even some rare, properties.

Introduction

Functional materials underpin the foundations of modern society, but their discovery is a

long and challenging process. High-throughput computational screening seeks to guide the

process and thus to accelerate novel material discovery.1–3 A key component in computational

materials discovery needs to be a consideration of whether a hypothetical material with

promising properties can actually be experimentally obtained.4 There are many elements to

that challenge, including the ability to obtain or synthesise the precursors, finding a successful

synthetic method to form the material, and being able to control the solid-state form and

assembly, for example, to enable incorporation into a device. For materials built from entirely

or primarily organic components, the consideration of whether the precursor building blocks

of the material can be easily, and ideally cheaply, synthesised is vital. Without expert

chemists guiding some element of the computational screening process, it is challenging

to foresee which new candidate materials are synthetically viable and accessible prior to

experimental design.

The growth of data-driven tools in chemistry have allowed chemists to ease the transition

from computational prediction to experimental realisation of targeted molecules.5,6 In the

pharmaceutical industry, there has been a growing interest in the computational prediction
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of synthetic difficulty and the automated prediction of retrosynthetic pathways for organic

molecules.6 An assessment of synthetic difficulty allows medicinal chemists to more effi-

ciently allocate their time and resources, prioritising molecules with greater drug-likenesses

and lower synthetic difficulties. The approaches used to calculate synthetic difficulty can be

broadly categorised as follows: calculating the structural complexity of the molecule;7,8 us-

ing retrosynthetic analysis to elucidate viable synthetic pathways to a molecule;9 modelling

the intuition of expert chemists;10 and finally, machine learning (ML) models trained on

extensive reaction databases or datasets on easy- and difficult-to-synthesise molecules.11,12

Existing approaches to calculate the synthetic difficulty of organic molecules include the

synthetic accessibility score (SAScore), the synthetic complexity score (SCScore) and the

SYnthetic Bayesian Accessibility (SYBA) score.8,11,12 The SAScore uses a combination of

structural complexity and fragment contributions to calculate synthetic difficulty.8 A similar

approach is employed by SYBA, which also uses the frequency fragments appear in public

compound datasets to estimate synthetic difficulty.12 The synthetic complexity score (SC-

Score) meanwhile uses a neural network to predict the number of reaction steps required

to synthesise a molecule, defining synthetically complex molecules as those that require a

greater number of reaction steps to synthesise.11 Each of these approaches is subject to indi-

vidual limitations, making creation of a useful heuristic for synthetic difficulty challenging.

However, both scores are able to provide a continuous score extremely quickly, which can be

used to bias towards easier-to-synthesise molecules.13

Structural complexity does not imply that a molecule is easy to synthesise, as complexity

can be introduced into a molecule with simple reaction transformations. Identifying retrosyn-

thetic routes is often computationally intensive,9 however, recent open-source developments

in computer-aided synthesis planning have been shown to produce viable synthesis pathways

and be good estimators of synthetic difficulty.13,14 Meanwhile, data-driven approaches can

struggle to generalise to molecules outside of their training set,11 and can contain inherent

bias due to the lack of failed reactions. Obtaining scores derived from the intuition of ex-
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pert chemists is often labour intensive and can be subject to human bias,15 however, this

approach can create a useful model if large amounts of unbiased training data are obtained.

Moreover, many of these predictive methods are developed with the primary objective of

obtaining synthesisable drug candidates, whose synthesis requirements may not perfectly

align to those of a materials discovery programme.

In this work, we focus on predicting the synthetic accessibility of precursors for porous

molecular materials, whose properties depend not only on the solid-state packing, but also

on the structure of their discrete building blocks. The molecular nature of porous molecular

materials means that they are typically soluble in common solvents, inferring advantages

particularly in their solution synthesis and processability, for instance allowing relatively

easy formation into membranes.16 Porous materials have been investigated for applications

such as gas storage,17–19 separations,20,21 catalysis,22,23 and sensing.24,25 Porous organic cages

(POCs), an example of which can be seen in Figure 1, are a class of porous molecular

materials where the porosity predominantly arises from the internal cavity of the molecule

(known as ‘intrinsic’ porosity) and can form a porous material in the solid-state by directing

the packing to create interconnected pore networks, sometimes combined with the ‘extrinsic’

porosity that arises between the molecules due to inefficient packing.

POCs pack together in the solid-state through intermolecular interactions, and do not

have the extended chemical bonding found in porous network materials such as metal-organic

frameworks (MOFs) and zeolites. Furthermore, the intrinsic porosity of POCs means they

have solution-based applications and can give rise to porous liquids.26,27 Although the POC

literature is becoming increasingly diverse,28,29 the number of previously reported POCs is

in the low hundreds, this is comparatively few compared to the number of discovered MOFs,

numbering 70,000 in the Cambridge Structural Database.30,31 Recently, we reported an ap-

proach to explore the vast chemical space of POCs using an evolutionary algorithm.32,33

Using this approach, we were able to computationally identify new cages with less common

properties, including a large internal cavity diameter of 16 Å. However, the vast majority
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of precursors are unlikely to form a shape-persistent POC with a permanent internal cavity,

making screening all potential precursors extremely inefficient.34 Many POCs are thus dis-

covered through serendipity or are designed using the intuition of an expert chemist in the

POC field.

Figure 1: An imine condensation of 1,3,5-triformylbenzene (4 equivalents) with trans-1,2-
diaminocyclohexane (6 equivalents) to form covalent cage 3 (CC3), a prototypical porous
organic cage (POC) with a permanent internal cavity (coloured blue).35 Carbon atoms are
shown in grey, nitrogen atoms in blue, and hydrogen atoms in white

POCs are typically synthesised via dynamic covalent chemistry (DCC), where the re-

versible reaction allows for error-correction and affords the opportunity to reach either the

thermodynamic product,36 or a desired kinetic product,37 rather than an oligomer, or poly-

meric adduct. The computational prediction of a synthetically accessible POC with a desired

set of properties is accompanied by a series of challenges. The majority of POCs reported

thus far were synthesised through imine bond formation. The precursor components of the

POC, for example an amine and an aldehyde for an imine-based molecule, must themselves

be synthesised and they must subsequently react in a predictable manner to form the de-

sired POC of the targeted molecular mass and topology. For example, imine condensation

between a trialdehyde and a diamine (arguably the most common precursor pair in reported

POCs) can result in cages of six different topologies, in addition to unpredictable mixtures of

polymers.38,39 The challenge of synthesising a POC can extend beyond precursor synthesis;

a combination of insoluble products can result in inseparable mixtures,39 decreased reaction
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yields or driving the equilibrium away from the desired thermodynamic minimum.40,41

The most common topology observed in POCs, denoted as Tri4Di6 using the terminology

of Santolini et al.,38 results from the condensation of four tritopic molecules with six ditopic

molecules into a single cage unit, as shown for the formation of CC3 in Figure 1. As POCs

formed through imine condensation are often the thermodynamically most stable product,

we have previously used formation energies to predict the likely topological outcome of a

reaction between a precursor pair,38 and the likely sorting outcome within a given topology

if a mixture of precursors is used.42 The required POC model construction and energy

calculations can be automated, for example by our own open-source supramolecular toolkit

software (stk),43 which we have previously exploited to computationally aid the experimental

discovery of 33 cleanly-formed POCs using a robotic platform.30 We have in multiple cases

ourselves used computation to accelerate the discovery of POCs,44,45 but time and again, the

synthesis of the POC is the most time consuming component in their development, taking

months to years compared to weeks for the computational screening.46 Worse, the synthesis

is often not successful at all.

Here, we investigate the best approach to consider the synthetic difficulty of an organic

material’s precursors in a computational screening workflow, with a focus on POCs. The long

term goal is to increase the success rate of experimental materials discovery programmes in

relation to the synthetic realisation of computational targets. We develop our own synthetic

difficulty prediction model, the Material Precursor Score (MPScore), and compare how this

performs relative to the previously reported SAScore and SCScore. Our model reformulates

synthetic difficulty prediction as a classification problem modelled using a random forest to

answer the following question: can you make 1 g of this compound in under 5 steps? In the

end, we demonstrate the applicability of our classifier for chemists’ intuition in a context

that would normally require significant database reduction to human-tractable size. We

demonstrate the model’s ability to bias against precursors that chemists themselves would

avoid in materials synthesis, allowing us to focus our computational resources on POCs with

6



Figure 2: High-throughput computational screening workflow for the discovery of syntheti-
cally viable shape-persistent porous organic cages (POCs)

a greater probability of being synthetically realised. We show that even when limiting the

precursors to the easiest-to-synthesise, we are able to identify shape-persistent POCs with

unconventional properties, such as large pore diameters.

Methods

Overall, our ambition is to include a synthetic difficulty consideration of organic precursors

within our workflow for computational screening to identify functional POCs. We test two

existing approaches (SCScore and SAScore) and compare the results to a new synthetic dif-

ficulty model we develop here. We test the three approaches in a computational workflow

aimed at identifying synthesisable functional POCs that are shape-persistent. Shape per-

sistency is a property that POCs must exhibit to achieve porosity, where they remain rigid

and have a permanent cavity even in the absence of scaffolding solvent. We calculate shape

persistency as part of our workflow here as it is relatively computationally cheap to assess,

allowing for easy comparison between different computational screening workflows. We have

chosen to target POCs with the Tri4Di6 topology, which is the most common topology in

previously reported POCs, formed by imine condensations between diamines and trialdehy-

des. Our computational workflow, which will be described in full detail below, is depicted
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in Figure 2. The workflow involves screening a precursor database to remove molecules pre-

dicted to have the largest synthetic difficulty, followed by automated cage construction and

POC structure prediction, and finally characterisation of the POC pores to identify those

with permanent internal cavities. In the below subsections, we first discuss the creation of

a labelled training database used to train our synthetic difficulty model. We then evalu-

ate our model using cross-validation, and finally demonstrate the model’s utility, selectively

screening for easy-to-synthesise precursors as part of a POC screening workflow.

Creating the Synthetic Difficulty Model for Organic Material Pre-

cursors

Training Database Construction

First, to train a ML model to classify potential POC precursors as either easy-to-synthesise

or difficult-to-synthesise, we needed to generate a diverse training dataset with an approxi-

mately equal number in each group. Initially, molecules were extracted from a subset of the

proprietary Reaxys47 and eMolecules48 databases. This initial subset consisted of molecules

with functional groups that are likely to undergo common DCC reactions, frequently used

in materials synthesis. This set included di-, tri-, tetra-, penta- and hexa-topic amines and

aldehydes, which was extended with molecules that have been used previously in POC syn-

thesis by our experimental collaborators, known to be easy-to-synthesise. Additionally, we

included molecules that our experimental collaborators have previously avoided due to their

challenging syntheses. To this set of molecules, functional group substitutions were per-

formed to extend the size and diversity of our training set, resulting in a set of molecules

with a fairly even distribution of different functional groups. For each molecule in the initial

starting set, a SMARTS substitution was performed, exchanging all functional groups in

the molecule with those from a pre-defined list, resulting in a dataset consisting of 14,859

molecules. The final database, in addition to the script used to perform functional group
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substitutions is available on GitHub.49 A full breakdown of molecules by their respective

functional groups can be found in Table S1.

The molecules were then assessed by three experimental chemists with at least PhD-

level training in synthetic chemistry. Existing measures of synthetic difficulty of organic

compounds originate from the drug discovery field and might not capture the scale and sim-

plicity required for materials synthesis. Therefore, we asked experienced synthetic chemists

to label molecules relevant to POC synthesis as ‘easy-to-synthesise’ based on the question

“can you make 1 g of this compound in under 5 steps?”. Instead of producing a continuous

measure of synthetic difficulty, as is the case in both the SAScore and SCScore, we aimed to

create a discrete binary classifier, with the goal of identifying easy-to-synthesise precursors

for POC synthesis. A binary classification approach was chosen to reduce the challenge of

collecting training data, and it is much easier to obtain a consensus on a binary classifica-

tion. While the use of binary classification does not capture the subtle variations in ease of

synthesis between molecules, our goal for the MPScore was not to detect these nuances, but

to detect and prioritise easy-to-synthesise precursors. To achieve this, we did not require the

user to perform an in-depth retrosynthetic search, but instead favoured a fast judgement on

the ease of synthesis.

Figure 3 shows the graphical user interface developed to collect the training labels. Three

of our authors labelled the molecules, these are: author RLG, with 12 years of research

experience in organic synthesis and 8 years experience synthesising POCs; author FS with

more than 4 years research experience in organic chemistry, and author MEB with 20 years

organic chemistry experience and 8 years experience synthesising POCs. Those labelling

the molecules were presented with a two-dimensional representation of a molecule they had

not previously scored, and tasked with answering ‘yes’ or ‘no’ to the previously mentioned

criterion. Each molecule was presented randomly, with equal probability of selection, to

reduce the likelihood of systematic scoring occurring if the chemist’s opinion was influenced

by the preceding molecule. The ‘unsure’ option was added to avoid appending anything to
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the database, instead skipping to the next molecule.

Figure 3: The interface for labelling of molecules by experimental chemists.

Random Forest Model

We aimed to replicate the decision-making process that experimental chemists themselves

would use when selecting precursors for material synthesis in our synthetic difficulty model.

For this task, we chose a random forest (RF) classifier to model the data due to its practical

utility, such as the fact that RF models are quick to train and produce good performance on

small to medium datasets. RF models are frequently used in chemistry problems to develop

quantitative structure-property relationships for both classification and regression problems,

and the models can offer some interpretability.50,51 We used the RandomForestClassifier

Python class, as implemented in scikit-learn version 0.24.1,52 to construct the model.

We chose “balanced” as the “class-weight” hyperparameter, which reduces the effect of

class imbalance by weighing each data point inversely to the class frequency, increasing

the importance of classes that appear fewer times in the training dataset. Weighted RFs

have shown to perform equally, and in some cases better, on imbalanced datasets than

using sampling techniques such as Synthetic Minority Oversampling Technique to artificially

generate minority class data.53 Hyperparameter optimisation was used to identify the best

performing parameters for both the RF and fingerprinting algorithm used to create vector

representations. We used a randomised grid-search to sample the parameter space, in which
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we identified best parameters for: the number of decision trees, the maximum tree depth, the

minimum sample split, the minimum samples per leaf, the maximum number of leaf nodes,

the maximum features used to identify the best split, and, finally, the maximum samples to

draw from each estimator. Further implementation details and best performing parameters

can be found in the ESI.

The extended-connectivity fingerprint (ECFP) was chosen as the vector representation

of each molecule for the input vector, as implemented in RDKit version 2020.09.4.54,55 We

included the bit-size and radius as parameters to be optimised during the hyperparameter

optimisation procedure, identifying a bit-size of 1024 and radius of 4 as best performing

parameters, as shown in Table S4. ECFP was chosen as it has previously been shown to be

one of the best performing fingerprints when similarity searching molecules to identify those

with similar bioactive properties.56 A count-based fingerprint was implemented to encode the

number of times a feature appears in the molecule. This count-based approach is thought to

provide greater information within the vector encoding of the molecule, and shows improved

performance when predicting bioactivity compared to their bit-encoded counterparts.57

Cross-validation and Calibration of the Model

We used five-fold cross-validation to assess the performance and generalisability of each RF

model during the hyperparameter optimisation procedure, and to estimate the performance

of the final MPScore model. During cross validation, an individual RF model was trained

and evaluated using each fold. In five-fold sampling, the dataset is split into five different

folds randomly, and the fold that is used as the test set is changed each time. This evaluation

procedure allows us to assess how well the model can generalise to unseen data, allowing all

the labelled samples to be used as test data at least once. We calculated the average accuracy,

precision, recall, F1 scores, and Fβ (β = 0.2) across all folds to assess the performance of
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the models (as discussed later in the results). These scores are defined as:

Accuracy =
True Positives + True Negatives

Total Dataset
(1)

Precision =
True Positives

True Positives + False Positives
(2)

Recall =
True Positives

True Positives + False Negatives
(3)

F1 = 2 · Precision · Recall

Precision + Recall
(4)

Fβ = (1 + β2) · Precision · Recall

β2 · Precision + Recall
(5)

Following cross-validation, we calibrated the probabilities returned by the RF model

using Platt scaling to improve the probability estimate. As we interpret the MPScore as a

continuous measure of synthetic difficulty, this procedure ensures that probabilities from the

RF are reliable. Ensemble methods, such as RFs, are known to struggle to provide probability

predictions of close to 0 and 1 as the average of individual classifiers in the ensemble pushes

the probability away 0 or 1.58 To counteract this, we plotted a calibration curve, as shown

in Figure S2, to show how scaling the final probabilities improves the probability estimates.

For the final model, we split the entire dataset into a training set (75% of all data)

and calibration set (25% of all data), using the scores achieved during cross-validation as

performance estimates. We also calculated the F1 score and Fβ (β = 0.2) score, which

provides a combined measure of precision and recall in a single metric of model performance.

The Fβ score provides a weighted average of the precision and recall, in which a value of

β < 1 favours precision over recall. The value of 0.2 was selected so as to weigh precision

five times more than recall, which we believed was a good comprise for the MPScore. In

the subsequent results section, we justify why we believed this trade-off was useful for our

model, and why we choose to focus primarily on maximising the precision score.
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High-Throughput Virtual Screening

Next, we compared how the three automated synthetic difficulty scores (SAScore, SCScore

and our MPScore) perform as filters for easy-to-synthesise precursors in a POC virtual

screening workflow. By selecting precursors with the lowest 1% of synthetic difficulty scores

using each of the three scoring methods, we hoped to identify shape-persistent POCs that

could be readily accessed from the easiest-to-synthesise precursors.

Preparation of the Precursor Database

We wanted a database of potential precursors for POCs in the Tri4Di6 topology, which

are formed through a [4+6] imine condensation reaction between a tritopic aldehyde and a

ditopic primary amine. This single topology was chosen as we previously showed that a signif-

icant number of precursors will preferentially form Tri4Di6 over the other common Tri8Di12

topology,32 and because Tri4Di6 molecules are more likely to be shape-persistent (38% of

6,018 cages we investigated in a previous study).34 To create our database of POC precursor

molecules, we used the eMolecules48 and Reaxys47 databases, selecting only molecules that

contained exactly exactly three aldehydes or two primary aliphatic amines. All functional

groups within molecules were identified using an automated detection algorithm, imple-

mented using RDKit.59 The final precursor database comprised 7,190 ditopic amines and 98

tritopic aldehydes, resulting in a possible 704,620 POC combinations that can be formed

when restricted to the Tri4Di6 topology.

Identification of Synthesisable Precursors

For each combination of diamine and trialdehyde precursors, we calculated the sum of their

synthetic difficulty scores with each of the three scoring methods. These sums were then

scaled to values between 0 and 1 to allow for comparison between the models. For the MP-

Score, we interpreted the probability that a molecule belonged to the ‘difficult-to-synthesise’

class as a continuous score, such that a higher value indicates the molecule is more challenging
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to synthesise. As mentioned in the previous methods section, we scaled these probabilities

to return a more reliable estimate. For each synthetic difficulty model, precursors within

the first percentile of synthetic difficulty values (in total 21,140 precursor pairs, assuming no

duplicates) were investigated for shape-persistence. Duplicate precursor combinations were

identified by concatenating the SMILES strings of the diamine and trialdehyde precursors

together and finding the overlap between precursor combinations selected by each score.

In addition to easy-to-synthesise precursors filtered using synthetic difficulty scores, we se-

lected a further 1% of precursor combinations randomly as a control sample, to investigate

whether the three synthetic difficulty scores also bias towards precursors likely to form a

shape-persistent cage.

Cage Construction and Conformational Search

The cages were constructed from precursors in an automated approach that utilises our

supramolecular toolkit (stk - version 18.12.2019).43 stk is a Python library for constructing

and optimising complex supramolecular species, by providing precursor molecules and a pre-

defined molecular topology. Structures built in stk then underwent a three-step procedure

to identify plausible geometries for the lowest energy conformation of each cage. Each step

of the process employed the OPLS3 force field,60 used within Schrödinger’s MacroModel

software,61 which has been shown to be able to accurately reproduce geometries of flexible

imine cages.38 Firstly, only bonds created during the stk build process were optimised, fixing

the geometries of all other atoms. Subsequently, a molecular dynamics (MD) simulation was

performed in the NVE ensemble for 2 ns after a 100 ps equilibration, with a time step of 1 fs

and a temperature of 700 K. Structures were sampled every 40 ps along the MD trajectory

and each of the resulting 50 sampled structures underwent a further geometry optimisation.

All geometry optimisations employed the Polak–Ribière Conjugate Gradient algorithm, using

a gradient conversion criteria of 0.05 kJ Å-1 mol-1. The resulting lowest-energy conformation

was used for further analysis.
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Identification of Shape Persistent Cages

Following the optimisation procedure, organic cages that did not remain shape-persistent

were removed. pyWindow was used to detect and analyse all the windows in the cages.

pyWindow is a Python package for the analysis of structural properties of molecular pores,

shown to be able to accurately reproduce pore sizes of POCs with a Tri4Di6 topology.62

For the POCs in which the expected number of four windows was identified, we calculated

a parameter α

α =
4× Average Difference in Window Diameter

Maximum Window Diameter × Expected Number of Windows
(6)

to classify shape-persistent cages. We developed this equation in our previous work, with

the aim of maximising the number of organic cages labelled as shape-persistent using an

automated approach.34 The average window difference in equation 6 is the average difference

in window diameter for all possible pairs of windows. If α is less than 0.035 and cavity size

is greater than 1 Å, the cage was classified as shape-persistent. Otherwise, it was assigned

as undetermined and disregarded. For organic cages that were deemed shape-persistent by

this analysis, the central cavity diameter was then calculated using pyWindow.

Results and Discussion

Material Precursor Score (MPScore)

Evaluating Chemists Scores

To train our MPScore, we first constructed a diverse database of 14,859 molecules to provide

to experimental chemists for labelling, as was discussed in the previous section. Ideally, we

would have a very large number of chemists rank all molecules in our database to achieve an

overall consensus. However, the labelling of these molecules is extremely time-consuming,

taking approximately 1 hour to assess 180 molecules, and thus it was only possible to obtain
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12,553 labelled datapoints, with the largest amount ranked by RLG (10,000), followed by

FS (1,858), and MEB (695). As all three chemists work in fields related to organic synthesis,

their classifications are of particular value in a model that considers ease-of-synthesis scoring

for POCs (and molecular materials in general). Despite the relatively small amounts of

labelled data obtained from MEB and FS, we believed model performance would benefit

from having multiple labelled datapoints for at least some of the molecules. Averaging the

scores assigned by expert chemists has been shown to lead to a better prediction of synthetic

difficulty than the opinion of individuals, due to bias originating from personal preference and

experiences.63 The training database labelled by three experienced chemists contained 12,553

data points in total, of which we obtained 2,008 positive easy-to-synthesise labels and 10,545

negative difficult-to-synthesise labels, including overlapping molecules scored by multiple

chemists. Table 1 shows the number of molecules scored by each chemist, in addition to the

percentage of molecules each chemist labelled easy- and difficult-to-synthesise, and their years

of synthetic chemistry experience. RLG labelled the smallest percentage of molecules as easy-

to-synthesise (11% of all labelled molecules), followed by MEB (33%) and FS (36%). Despite

the widely varying percentages of molecules assigned as easy- and difficult-to-synthesise, the

number of molecules scored by multiple chemists was relatively low (11% of all the molecules

in the training set), as seen in Table 2. This relatively low overlap in the molecules scored by

each chemist suggests that the greater proportion of difficult-to-synthesise labels, especially

in the case RLG’s labels, is not indicative of systematic labelling of one class over the other.

Table 1: The number of molecules labelled by each chemist, in addition to the number of
easy- and difficult-to-synthesise, and their respective percentages. The number of years of
synthetic chemistry experience of each chemist is also given.

RLG FS MEB
Molecules 10,000 1,858 695
Years Experience 12 4 20
Easy-to-synthesise 1,109 (11%) 667 (36%) 232 (33%)
Difficult-to-synthesise 8,891 (89%) 1,191 (64%) 463 (67%)

Although the number of molecules scored by multiple chemists was low (1,667 molecules
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in total), the chemists agreed with each other 73% of the time on average. As shown in

Table 2, for the 42 molecules labelled by three chemists, the chemists agreed 74% of time

and for the 1,625 molecules labelled by two chemists, 73% of the time. The 11 molecules that

at least one out of the three chemists labelled differently are shown in Figure S1, followed

by the labels assigned by the three chemists in Table S2. We found that disagreement

between chemists was relatively large (27% of molecules labelled by two or more chemists),

which, as expected, shows chemical intuition can be variable and somewhat subject to prior

experiences. Discrepancies in chemist labels were counteracted by providing both positive

and negative labels for the same molecule as training data for the RF model, which reduces

the importance of that training sample on the overall decision made by the model. Indeed,

the disagreement between chemists and the relatively short time frame in which molecules

were assessed indicates this classifier is an attempt to model the fast intuition of an expert

synthetic chemist when selecting precursors, rather than an in-depth retrosynthetic analysis

of molecules.

Table 2: A summary of the molecules labelled by each synthetic materials chemist. Percent-
ages of each label compared to the total number of molecules labelled by each chemist are
given in brackets.

Labelled by Three Labelled by Two Labelled by One
Molecules 42 1,625 10,886
In agreement 31 (74%) 1,179 (73%) -
In disagreement 11 (26%) 446 (27%) -

Comparison with Existing Methods

Figure 4 compares the labels expert chemists assigned molecules in the training database to

that of the SAScore and SCScore. The correlation between the SAScore and the SCScore

for our training database was very weak, with a Pearson correlation coefficient of 0.27.

The overlapping distributions of synthetic difficulty scores for molecules labelled as easy-

and difficult-to-synthesise suggest that these models are not able to readily distinguish be-

tween precursors used for materials synthesis in agreement with experienced chemists working
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in the field. These results highlight the necessity to develop an alternate heuristic model

that can identify molecules that synthetic chemists in the field of materials discovery would

select themselves.

To assess the correlation of our MPScore with the SAScore and the SCScore, we calculated

the Spearman’s rank correlation coefficient between each score for the molecules in the

training set. Table S5 shows the MPScore exhibits weak positive correlation with both

the SAScore (0.15) and SCScore (0.35). Additionally, we present the molecules from our

training set with the largest and smallest difference in synthetic difficulty scores in Figure

S4, alongside their synthetic difficulty values in Table S6. From inspection, the three scores

tended to agree on more structurally complex molecules. However, there were significant

differences in scores between more simple molecules, which could highlight some of the

limitations of each approach. These weak correlations and large differences in synthetic

difficulty scores may be explained by the different approaches the SAScore, SCScore and

MPScore use to quantify synthetic difficulty.

The SCScore aims to capture synthetic complexity as defined by the predicted number of

reaction steps required to make a molecule. Therefore, complex molecules appearing a greater

number of times at the start of a reaction pathway would exhibit a lower perceived synthetic

difficulty than less complex molecules that appear more frequently near the end of a reaction

pathway. By contrast, the SAScore primarily uses a measure of structural complexity to

measure synthetic difficulty. Complexity can be easily introduced into a molecule using many

robust reaction transformations, meaning apparently complex molecules are not necessarily

more synthetically challenging to access. Meanwhile, the MPScore is entirely subject to

chemists’ intuition, which may be influenced by familiar structural features or common

functional groups. While some obviously simple or complex molecules may have taken only

a few seconds to classify, others may have taken significantly longer, resulting in an average

rate of 20 seconds per classification. Although a similar small scoring time frame has been

used to develop synthetic difficulty models, human intuition can still be subject to errors.15,64
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Indeed, the nature of the binary classification of the MPScore does not capture subtle changes

in ease of synthesis which other scores attempt to capture, however, it increases the rate at

which training data can be obtained as it is a less cognitively demanding task than assigning

a continuous score. The different assumptions included in each scoring method can lead to

very different results in quantifying synthetic difficulty, which is what we observe in Figure

4. However, this does not necessarily detract from each scores ability to bias towards easy-

to-synthesise precursors.

To gain an insight into some of the frequently occurring structural features of easy-

and difficult-to-synthesise molecules that may have influenced the chemists’ decision, we

used the dimensionality reduction technique, principal component analysis, followed by the

k-means algorithm to categorise molecules by their structural features. Figure S3 shows

the representative molecules from each cluster of easy- and difficult-to-synthesise molecules

and could indicate structural features to avoid when designing precursors for computational

screening. Further details of the clustering technique used are available in the Supporting

Information.
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Figure 4: Synthetic difficulty scores of molecules in the training dataset, calculated using the
SCScore and SAScore methods, scaled between 0 and 1. Colour coding refers to those labelled
as easy-to-synthesise (green) or difficult-to-synthesise (red) by the synthetic chemists. Kernel
density estimates of the synthetic difficulty score distributions are shown on the top and side
panels.

MPScore: Model Training and Validation

We trained a RF model using the labelled training set discussed above to see if this would

give an improved assessment of the synthetic difficulty of material precursors, in particular

for POC systems. The developed model was evaluated using five-fold cross validation, and

the resulting average scores across all folds and their standard errors are shown in Table 3,

in addition to the sum of false positives, false negatives, true positives and true negatives

across all five folds, shown in Table 4.

Ideally, high precision and recall are desirable for any binary classifier, but their impact

Table 3: Evaluation metrics for the MPScore model. Scores are averaged across the five
cross-validation folds, and the standard errors are shown.

Accuracy
Precision Recall

F1 Score Fβ (β = 0.2)
Easy-to-synthesise Difficult-to-synthesise Easy-to-synthesise Difficult-to-synthesise

0.88± 0.004 0.84± 0.013 0.88± 0.0037 0.32± 0.016 0.99± 0.00080 0.46± 0.017 0.79± 0.014
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Table 4: Sum of all outcomes from each fold of the cross-validation procedure used to
estimate the performance of the MPScore, in addition to the total number of predictions
made. False positive outcomes refer to molecules labelled as difficult-to-synthesise by the
chemist but easy-to-synthesise by our MPScore, whereas false negative outcomes refer to
molecules labelled as easy-to-synthesise by the chemist but difficult-to-synthesise by our
MPScore.

False Negatives False Positives True Positives True Negatives Total

1,370 121 638 10,424 12,553

on the usefulness of a synthetic difficulty score is very different. Low precision (large number

of false positives), when a large number of molecules labelled easy-to-synthesise are actually

difficult-to-synthesise, wastes the resources of experimental chemists. Low recall (high pro-

portion of false negatives) results in precursor candidates being missed that could have had

favourable properties when formulated into the final material, but were incorrectly classed as

difficult-to-synthesise and disregarded. However, the latter misclassification is less problem-

atic, as there is no experimental cost associated with missing an easy-to-synthesise molecule.

This trade-off is quantified in the weighted Fβ score, which values precision five times more

than recall when β = 0.2. While pre-screening precursors according to their synthetic diffi-

culty with the MPScore may miss candidates with exceptional properties, whose precursors

are challenging to synthesise, we instead focus our computational resources on cages that

are most likely to be made in a lab, given lab synthesis is the bottleneck we currently face

in our computational screening approaches. Therefore, we aimed to develop a model that

maximised precision, reducing the number of false positives obtained.

The MPScore model was able to achieve an overall accuracy of 0.88, as seen in Table 3.

The mean precision and mean recall for the difficult-to-synthesise label were 0.88 and 0.99

respectively. A lower mean precision and mean recall score is seen for the easy-to-synthesise

molecule label of 0.84 and 0.32 respectively. We hypothesise that the lower precision and

recall for the easy-to-synthesise label is due to the model’s tendency to classify a molecule as

difficult-to-synthesise, as suggested by the recall of 0.99 in the difficult-to-synthesise class.
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This is exemplified by the 10,424 true negatives assigned by the MPScore, which out-weigh

the 638 true positives the model correctly classified, as shown in Table 4. This can be

explained by the imbalanced dataset to train the MPScore, in which the overwhelming

majority of molecules were labelled as difficult-to-synthesise. This differs to the typical

training dataset used in ML for chemistry, which consists of only positive examples due to

the absence of failed experiments or negative results. In such cases, the generation of negative

results proved advantageous for generating useful ML models.65 Later in this sub-section, we

show how the threshold the classifier used to make predictions can be optimised to increase

the precision of the model, reducing the negative consequences of class imbalance.

The F1 score, the harmonic mean of the precision and recall scores, provides a combined

metric of precision and recall. The F1 score of 0.46 obtained for the MPScore shows the model

has lower combined precision and recall scores for the easy-to-synthesise class, due to the

poor recall score achieved for the easy-to-synthesise class (0.32). Meanwhile, the significantly

higher Fβ score of 0.79 is unaffected by the poor recall achieved, instead favouring the

higher precision score of 0.84. A minor contributing factor to the low recall score could

be due to some of the features of easy-to-synthesise molecules being similar to those of

difficult-to-synthesise, resulting in the model having difficulty distinguishing between the

two classes. Figure 5a shows that many fingerprint bit values contributed similar amounts

to the classification of the RF model. This shows, as would be expected, that the chemist’s

opinion was influenced by multiple fragments present within a molecule. Additionally, the

confidence intervals in Figure 5a show how the importance of features differ widely across

each decision tree in the forest.

One approach to minimise the impact of class imbalance is to adjust the probability

threshold of the classifier.66 Increasing the threshold required for a molecule to belong to the

minority class (easy-to-synthesise) reduces the false positive rate, increasing the precision

of the classifier. The probability of a sample belonging to a particular class in a RF model

is determined by the proportion of decision trees in the ensemble assigning that sample to
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a particular class. Figure 5b shows the effect of changing the probability cut-off threshold

for the difficult-to-synthesise class on the mean precision and recall values achieved by the

RF models during the cross-validation processes. It can be seen that by increasing the

probability thresholds, the model’s precision outperforms the recall. At almost all thresholds,

the MPScore outperforms the naive classifier, defined as a model assigning molecules as easy-

and difficult-to-synthesise with probabilities equal to the fraction of each class. Choosing a

high probability threshold for the MPScore minimised the risk of obtaining false positives

(high precision), at the expense of a larger number of false negatives (low recall). Despite

the potential to miss easy-to-synthesise molecules, this compromise ensured we can be more

certain that the molecules that are selected by the MPScore are not false positives and

waste synthetic efforts. One estimate of the size of the chemical space of synthesisable drug-

like molecules alone is 1011 molecules,67 meaning the cost of obtaining a false negative and

missing a potential easy-to-synthesise candidate is low.

To reduce the probability of obtaining false positive scores for molecules, a final thresh-

old of 0.21 was chosen for our MPScore to select easy-to-synthesise molecules during the

precursor screening process, chosen to assign only 1% of all molecules in the POC precursor

database as easy-to-synthesise. Molecules with a probability of below 0.21 of belonging to the

difficult-to-synthesise were classified as easy-to-synthesise and carried forward in the work-

flow. At this probability threshold, the precision and recall scores for the easy-to-synthesise

test-set class were 0.89 and 0.25 respectively. This means, despite missing 75% of easy-to-

synthesise molecules, we can be 89% certain our selected molecule is not a false positive,

a necessary trade-off for our materials screening workflow. We trained the final MPScore

model used in the screening workflow on the 75% of the entire dataset of labelled molecules,

followed by calibration using Platt scaling on 25%, using the scores obtained from the cross-

validation procedure as estimates for the final model. The model, in addition to the training

scripts are available on GitHub.49
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Figure 5: Mean importances for the 20 most important fingerprint bits (a) and the precision-
recall curve (b) for our MPScore, shown in red. Feature importances (a) were calculated
across all 100 decision trees in the random forest, and the standard deviation across the 100
decision trees in the ensemble are shown by the black bars. Precision and recall scores (b)
are calculated using the average precision and recall scores across all five folds. The baseline
classifier, shown in grey, assigns a probability equal to the fraction of positive samples in
each fold. The precision and recall values for the final threshold used for our MPScore model,
0.21, is labelled by the black circle, and standard errors are represented by the black lines.

High-Throughput Computational Discovery of Synthesisable POCs

To test the applicability of the MPScore, we investigated its performance within a high-

throughput screen for the discovery of novel shape-persistent POCs. We repeated the

screening with the SAScore and SCScore separately to compare the results. The scores

were used to eliminate difficult-to-synthesise POC precursors from a database of diamines

and trialdehydes. Using the remaining easy-to-synthesise precursors, we constructed and

geometry optimised the POCs that could be formed from these precursors, analysing the

pore structure of those that were predicted to be shape-persistent.
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Precursor Database and Synthesisable Precursors

We explored the chemical space of Tri4Di6 imine-based cages formed from a [4+6] conden-

sation of a tritopic aldehyde with a ditopic amine.38 The precursors library was based on the

eMolecules48 and Reaxys47,68 databases, thus containing literature-reported compounds of

varying levels of synthetic difficulty. For the MPScore, we interpreted the probability value

obtained from the RF model as a continuous score. Molecules with a higher probability of

belonging to the easy-to-synthesise class were defined as being less synthetically difficult to

make. We assigned an overall synthetic difficulty value to each pair of precursors that could

be used to form a POC (diamine and trialdehyde). The aggregated score was defined as the

sum of each synthetic difficulty score of each precursor in the pair, scaled between 0 and

1 to allow for easier comparison between scores. We calculated the aggregated scores for

each pair using the SAScore, SCScore and MPScore, which can be seen in Figure 6. Overall,

Figure 6 shows a similar distribution of precursor synthetic difficulties for the SCScore and

MPScore, whereas the SAScore consistently assigns a greater synthetic difficulty.

The relatively broad distributions across all three scores imply that if considering precur-

sors for experimental material synthesis, even restricting the initial database to the literature-

reported Reaxys68 database is insufficient. The synthesis of these molecules could require

multiple difficult and low yielding reaction steps, toxic or expensive reagents, or challenging

purification procedures; none of these points are considered if we simplify the existence of a

molecule in the Reaxys68 database to meaning it is ‘synthesisable’. Even if those molecules

are accessible via many-step syntheses, they are, most likely, unsuitable for materials dis-

covery, unless one was extremely certain that a specific precursor was the only molecule that

could infer a desired functionality that was of high value. Certainly, in the case of POC

materials discovery programmes, we are not anticipating such scenarios, and instead high

quantities of readily accessible precursors are required; meaning that cheap reagents and

robust reactions are essential to create them.

For our screening workflow, we chose cut-off thresholds for each of the synthetic difficulty
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Figure 6: Distributions of the synthetic difficulty values for each POC precursor combination.
Synthetic difficulty values are calculated using the SAScore (blue), SCScore (orange) and
our MPScore (red). Vertical lines represent the first percentile for each score, the respective
cut-off thresholds are given by the value above each vertical line, coloured according to score.
A precursor pair is defined as easy-to-synthesise with a synthetic difficulty score lower than
the threshold value for each score, indicated by the vertical dashed lines. A lower score for a
precursor combination indicates both precursors in the combination are easier-to-synthesise,
whereas a higher score indicates they are harder-to-synthesise. Precursors whose combined
synthetic difficulty scores were below these threshold values (to the left of horizontal lines)
were carried forward for POC construction and optimisation.

scoring methods that would remove 99% of all precursor combinations, leaving the 1% of

precursors with the lowest synthetic difficulty values remaining. By using this approach, we

hoped to identify any novel and previously undiscovered POCs with promising properties

that could be made from only the easiest-to-synthesise precursors. As precursor synthesis is

much more cost- and time-intensive than our POC screening workflow, 1% was chosen as a

cut-off to maximise the chance that the precursors could be synthesised or are commercially

available. The final cut-off thresholds were: 0.21 for the MPScore, 0.48 for the SAScore,

and 0.18 for the SCScore. Precursor combinations with synthetic difficulty scores greater

than these values were defined as too difficult-to-synthesise and disregarded. Combinations

with scores less-than or equal-to these values were carried forwards for POC construction
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and further computational analysis.

Model Validation by Expert Chemists

Next, we evaluated the developed MPScore against the SAScore and SCScore methods as pre-

cursor filters, comparing molecules selected as ‘easy-to-synthesise’ and ‘difficult-to-synthesise’

by the different methods against data coming from an experienced materials chemist. Author

RLG was blindly presented with 30 diamines and 30 trialdehydes with the lowest and high-

est synthetic difficulty values (calculated using the SAScore, the SCScore and the MPScore)

from the POC precursor database and presented with the same criterion as previously: can

you make 1 g of this compound in under 5 steps? The molecules and their calculated syn-

thetic difficulties, can be found in Figure S5. We present the true positives, true negatives,

false negatives and false positives for each model in Table 5.

Table 5 shows our MPScore was able to achieve the lowest number of false positives for

both the aldehyde and amine ranking task (1 false positive and no false positives). Generally,

models were better at identifying difficult-to-synthesise molecules in agreement with RLG,

as shown by the higher numbers of true negatives than true positives. While desirable, this

is not a requirement of a synthetic difficulty model in our POC screening workflow, as scores

are used to identify easiest-to-synthesise precursors, as opposed to identifying the hardest-to-

synthesise. For our requirement of selecting precursors in agreement with expert chemists,

this shows that the MPScore is the most effective, given by the lowest cumulative number

of false positives (1 false positive for both amines and aldehydes). However, we do note the

sample size of 10 amines and 10 aldehydes for each model is too small to draw any concrete

conclusions from.

Structural Analysis of Computationally Screened POCs

Following the analysis of the MPScore, we assessed the results of the computational screen-

ing workflow, when using the three different scoring methods to remove non-synthesisable
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Table 5: Performance metrics for the blind validation task used to assess the performance of
the SAScore, SCScore and MPScore on predicting easy-to-synthesise POC precursors. True
positive outcomes are defined as molecules with the lowest calculated synthetic difficulty
scores that were also classified as easy-to-synthesise by RLG. For our MPScore model, we
aim to minimise false positives, which are molecules classified as difficult-to-synthesise by
RLG, but which a synthetic difficulty model assigned a low synthetic difficulty score, implying
it is easy-to-synthesise. Values in bold correspond to the score that produced the fewest false
positives.

Trialdehydes

True Positives True Negatives False Positives False Negatives

SAScore 7 9 3 1
SCScore 6 8 4 2
MPScore 9 10 1 0

Diamines

True Positives True Negatives False Positives False Negatives

SAScore 3 10 7 0
SCScore 9 10 1 0
MPScore 10 10 0 0

precursors. After only using the 1% of precursors scored as most likely to be synthesisable

from each of the methods, we automated cage construction and conformer searching using

stk and MacroModel, and then analysed the windows and central cavity of the lowest en-

ergy conformation using pyWindow.43,61,62 We then analysed the property distributions of the

cages, with a focus on those that are shape-persistent (as defined by Equation 6). In other

words, we sought molecules where the lowest energy conformations had a cavity large enough

to host, at the very least, a hypothetical spherical probe with a diameter of 1 Å. Finally,

we compared the cavity distributions of shape-persistent POCs from precursors filtered for

synthetic difficulty with a control sample of randomly selected precursor combinations from

the database, also 1% of all combinations.

In total, 28,185 precursor combinations were selected: 7,046 from the MPScore, 7,047

from the SAScore, 7,047 from SCScore and 7,045 from a control sample of randomly selected

precursor combinations. A control sample was used to investigate whether the synthetic
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difficulty scores had any influence on the properties of the cages the precursor combinations

formed. Following the duplicate precursor removal mentioned in the previous section, re-

sulting in a total of 26,830 required optimisations. In total, there were 1,355 overlapping

precursor combinations between precursors combinations selected by all three synthetic dif-

ficulty scores and the control sample, the full breakdown of which can be seen in Table S9.

The SCScore and MPScore had the most overlap in the number of selected precursors at

621. The SAScore had fewer overlaps, with 205 precursors in common with the SCScore

and 34 for the MPScore. Table 6 shows the number of POCs optimised for each synthetic

difficulty score, in addition to the percentages that remained shape-persistent.

Table 6: Number and percentage of shape-persistent cages formed from precursors selected
by each synthetic difficulty model in the first three columns, in a control sample of randomly
selected precursors, and in our previous work in the final column.34 The absolute number of
cages and percentages are shown.

MPScore SCScore SAScore Control Previous work34

Cages 6,944 6,877 7,015 7,045 6,018
Shape Persistent 709 (10%) 287 (4%) 76 (1%) 90 (1%) 2,314 (38%)

In our previous work, out of 6,018 Tri4Di6 POCs constructed from trialdehyde and

diamine precursors designed by RLG to exhibit rigid precursor cores, 2,314 (38%) were shape-

persistent following geometry optimisation (Table 6).34 As expected, a far lower proportion

than 38% remained shape-persistent in our workflow now that we were also including a

very strict consideration of synthetic difficulty of the precursors without manual assessment

of precursors for their propensity to form a shape-persistent cage. As shown in Table 6,

organic cages that remained shape-persistent from each synthetic difficulty score are: 10%

from the MPScore, 4% from the SCScore, 1% from the SAScore, and 1% from the control

sample. The percentage of shape-persistent cages from precursor combinations selected by

the MPScore was 9 percentage points greater than the control sample of randomly selected

cages. Both percentages of the SCScore and SAScore were much closer to that of the control

sample, with percentage point differences of 4 and 0 respectively. This large difference in
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the number of shape-persistent cages suggests that easy-to-synthesise precursors selected by

the MPScore are more likely to form a shape-persistent POC, compared with precursors

selected by other scoring methods. While our only aim for the MPScore was to filter for

easy-to-synthesise POC precursors, its secondary effect of biasing towards precursors more

likely to form a shape-persistent POC is nonetheless useful for POC chemists in the precursor

selection process.

Figure 7 shows the distribution of cavity diameters for shape-persistent POCs screened

using the three different synthetic difficulty models. Interestingly, precursors selected by the

MPScore formed POCs with the highest cavity diameter, with a mean of 8.4 Å, followed

by the precursors with the lowest synthetic difficulty calculated by the control sample (6.5

Å), the SCScore (5.5 Å) and finally the SAScore (4.7 Å). In our previous work, we found

that out of 116 cages reported in the literature, cages with cavity sizes of 0-6 Å are most

prevalent, with a general absence of cages with diameters larger than 16 Å.32 Large cavity

sizes are properties POCs rarely exhibit due to the propensity of larger cages to collapse

upon desolvation or to catenate with other cages, making POCs with large cavity sizes

an interesting target for a computational screening workflow. Precursors that form POCs

with larger cavities typically contain greater numbers of atoms and bonds, resulting in more

degrees of freedom, more competing synthesis pathways during their formation and greater

flexibility, and thus more facile collapse mechanisms.
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Figure 7: Distribution of cavity diameters for POCs predicted to be shape-persistent from the
screening. Only POCs with a cavity diameter greater than 1 Å are included. The precursors
of the POCs were those with the lowest 1% of synthetic difficulty scores calculated using
the SAScore (blue), SCScore (orange), the MPScore (red) and a control sample of randomly
selected precursors (green).

From this analysis, we conclude it is possible to discover shape-persistent POCs from

precursors predicted to be easy-to-synthesise, without designing those precursors with struc-

tural features that are more likely to result in a shape-persistent POC. We show the MPScore

is able to identify the largest proportion of shape-persistent POCs (709 cages), compared

with other synthetic difficulty scores. Using this approach, we discovered a total of 1,072

shape-persistent cages that could be formed from easy-to-synthesise precursors; a significant

number in contrast to the hundreds of POCs that have already been discovered. Addition-

ally, while the vast majority of shape-persistent POCs have a pore diameter of 5 Å, we show

that this workflow is also able to identify a smaller number of cages with larger pore diame-

ters. This is a promising discovery, as it shows precursors that could form larger POCs can

be readily accessed.
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Analysis of the Identified Promising Large Cavity Diameter POCs

From the computational screening workflow, seven unique shape-persistent cages had a cavity

size of 16 Å or greater, five selected using the MPScore, two with the SCScore and none

with the SAScore. Figure 8 shows the six largest synthetically accessible cages, alongside

their corresponding precursor pair and Table 7 summarises the properties of these cages.

All six cages (labelled 1 through 6, according to their size, with 1 being the largest cavity)

in Figure 8 are predicted to have a cavity size greater than 16 Å, and four were from the

screening using our new MPScore method. If using solely the SCScore for pre-screening,

only cages 2 and 3 would have been included. Meanwhile, using only the SAScore, all of

these cages would have been missed. We inspected the six precursor pairings to see whether

they were indeed likely to be synthetically accessible. To assess whether a precursor was

commercially available, we used the stock supplier feature on the ZINC database, one of

the largest commercially available compound catalogues.69,70 Diamines in cages 1, 3, 5,

and 6 are commercially available, with more than five suppliers listed in the ZINC database,

meanwhile, the diamine in cage 4 can be synthesised in two steps.71 The diamine in 2 is more

challenging to access in its enantiopure form, with no commercial suppliers or straightforward

synthetic routes.

The 1,3,5-tris(phenylenevinylene)benzene precursor used in cages 1-5 was present in five

of the seven remaining shape-persistent cages with cavity diameter greater than 16 Å, indi-

cating this could be a promising precursor to choose when designing cages with a large cavity

size. The relative ease with which these trialdehydes can be accessed and their propensity to

form cages with large cavity sizes makes them a desirable precursor for targeting cages with

large cavity sizes. Indeed, the 1,072 cages predicted to be shape-persistent are a great many

more than those that have been experimentally realised to-date. Despite the poor recall

of the MPScore potentially resulting in a large number of false negative precursor combi-

nations, the score is still able to bias towards easy-to-synthesise precursors that are able to

form shape-persistent POCs. Promisingly, this also indicates that precursors that form cages
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Figure 8: The six largest shape-persistent POCs identified from the screening workflow along-
side their respective precursor pairings. The cages are labelled 1 through 6 in descending
order of cavity diameter. Calculated cavity diameters are labelled below each POC. The
corresponding features of the POCs are in Table 7. All but cage 2 and 3 were identified with
our MPScore method for measuring synthetic difficulty, and cages 2 and 3 were identified by
the SCScore. Carbon atoms are shown in grey, nitrogen in blue and oxygen in red. Hydrogen
atoms are omitted for clarity.
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Table 7: Calculated cavity diameter and precursor synthetic difficulty scores (from each of
the three scores) for the six largest shape-persistent POCs identified from any of the methods.
A low score indicates a precursor is easy-to-synthesise, whereas a score nearer one indicates
the synthesis is predicted to be challenging or even impossible. The synthetic difficulty scores
in bold show that each precursor pair belongs in the lowest 1% of values for each scoring
method.

Precursor Synthetic Difficulty

Number Cavity Diameter / Å SCScore SAScore MPScore

1 18.8 0.23 0.73 0.17
2 18.1 0.17 0.72 0.48
3 17.7 0.15 0.53 0.29
4 17.3 0.29 0.73 0.19
5 16.3 0.26 0.73 0.20
6 16.2 0.36 0.68 0.10

with a cavity diameter of over 16 Å can be accessed using easy-to-synthesise precursors.

In this workflow, we only considered the ease with which cage precursors can be synthe-

sised, however, there are a number of other challenges one must overcome when designing

a POC. While we only screened for Tri4Di6 topology cages, the thermodynamic driving

force may steer the DCC reaction to form a diverse range of other topologies, or even form a

polymer or oligomer. We also did not account for the precursor solubility, or the formation of

insoluble products, which is also a significant challenge in POC synthesis.40,41 Accounting for

all of these factors computationally is extremely challenging (and expensive), which is why

chemical knowledge from humans still remains irreplaceable in the field of POC development.

Conclusions

Our primary goal in this work was to develop a computational screening workflow that eases

the transition between computational material prediction and experimental realisation, us-

ing porous organic cages (POCs) as an exemplar material. To achieve this, we needed an

automated way to consider the ease with which the organic molecules that are the precursors

to POCs can be synthesised. We compared existing methods of calculating synthetic diffi-
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culty computationally, showing how current methods are not able to replicate the decisions

of materials chemists when selecting easy-to-synthesise precursors for material synthesis. As

existing synthetic difficulty scores were unsuitable for our intended purpose of automated

POC discovery, we created our own machine learning model to predict the ease of synthesis,

the Materials Precursor Score (MPScore). We collected 12,553 pieces of labelled training

data from three materials chemists in the field of POCs and more general organic synthe-

sis, with the goal of developing a model capable of modelling the decision-making process

of chemists when classifying POC precursors as easy-to-synthesise or difficult-to-synthesise.

The data was collected based on the answer to the question: can you make 1 g of this

compound in under 5 steps?.

We applied our MPScore to the task of identifying easy-to-synthesise precursors for a

computational screening workflow aimed at identifying organic cages with permanent, shape-

persistent cavities. We found that our MPScore performed slightly better than existing

methods to score the synthetic accessibility of organic molecules, and was more likely to bias

towards precursors that form shape-persistent POCs. We showed that even when limiting

precursors to only those that are considered easiest-to-synthesise, we could still discover

POCs with unconventional properties, including those with a cavity size of greater than 16 Å.

In total, we predicted 1,072 shape-persistent cages, seven of which have a cavity size greater

than 16 Å, a property scarcely found in the literature. For the six largest cages discovered

using our autonomous workflow, we confirmed that the precursors used to create these top-

scoring cages are either commercially available or there are straightforward synthesis routes

reported in the literature.

We provide the database of shape-persistent cages in the hope of future experimental

validation of some of the computational predictions, which is accessible at doi.org/10.

14469/hpc/8395. Our MPScore, training data and ranking website are also open-source,

and can be applied to the ranking of other potential POC precursors or expanded with

additional training data to generalise to other material precursors, or can be utilised for
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other classification tasks.

Code used to train and validate our MPScore is available at 10.5281/zenodo.4651403,

and our ranking website is available for open-source use at 10.5281/zenodo.4961162. We

hope the MPScore will also be of value for considering the ease of synthesis of organic pre-

cursors in the wider field of molecular materials, although the model has not yet been tested

beyond POC precursors. In the future, we hope the MPScore can be used to help guide

both experimental and computational design of new functional materials. Such validation

is the subject of our ongoing collaboration with experimental chemists. Chemist intuition

remains a crucial part of any materials discovery programme, and we believe automating it

can accelerate many computational discovery workflows. We would consider using a simi-

lar binary classification criterion in the future, as we believe a model that allows for quick

pre-screening of synthesisable molecules would make a useful filter in many computational

screening procedures. In the future, we would consider using chemist scoring to supplement

data-driven techniques. Chemist intuition already plays a key role in the creation of the

computer-aided retrosynthesis planner SYNTHIA,72 and we believe it has the potential to

overcome several limitations of these techniques, such as limited dataset size or lack of nega-

tive training examples. We believe this workflow is a small step towards a more autonomous

discovery of new porous molecular materials.
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Supporting Information Available

The supporting information includes training set analysis; analysis of the labelled chemist

data; data for the MPScore validation; and further information from the cage screening

workflow. The labelled training dataset used to train the MPScore and the database of

optimised cages are provided as separate files. The open-access code and MPScore training

files can be found on Zenodo using the DOI 10.5281/zenodo.4651403.49 The dataset of

optimised cages can be found at doi.org/10.14469/hpc/8395.

Data and Software Availability

All classification data used to train the random forest model is available on Zenodo using

the DOI (10.5281/zenodo.4651403). The MPScore was trained using the open-source

scikit-learn Python package version 0.24.1, and the workflow makes extensive use of RDKit

version 2020.09.4. The open-source Python packages stk version 18.12.2019 was used to

optimise cages and pyWindow version 0.04 was used to calculate cavity diameters. Synthetic

difficulty scores were calculated using the SAScore code from https://GitHub.com/rdkit/

rdkit and the SCScore code from https://GitHub.com/connorcoley/scscore. A file to

replicate the Anaconda environment is available on the code repository to directly install

packages. The commercially available MacroModel software version 2018-1 by Schrödinger

was used to perform molecular dynamics. All optimised cages are available at doi.org/10.

14469/hpc/8395.
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