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Nonadiabatic trajectory surface hopping simulations are reported for trans-C5H6NH+
2 , a model of

the rhodopsin chromophore, using the augmented fewest-switches algorithm. Electronic structure
calculations were performed using time-dependent density functional theory (TDDFT) in both its
conventional linear-response (LR) and its spin-flip (SF) formulations. In the SF-TDDFT case, spin
contamination in the low-lying singlet states is removed by projecting out the lowest triplet compo-
nent during iterative solution of the TDDFT eigenvalue problem. The results show that SF-TDDFT
is able to correctly describe the photoisomerization of trans-C5H6NH+

2 , with favorable comparison
to previous studies using multireference electronic structure methods. In contrast, conventional LR-
TDDFT affords qualitatively different photodynamics due to an incorrect excited-state potential
surface near the Franck-Condon region. In addition, the photochemistry (involving pre-twisting of
the central double bond) appears to be different for SF- and LR-TDDFT, which may be a conse-
quence of different conical intersection topographies afforded by these two methods. The present
results contrast with previous surface-hopping studies suggesting that the LR-TDDFT method’s
incorrect topology around S1/S0 conical intersections is immaterial to the photodynamics.

I. INTRODUCTION

Time-dependent density functional theory (TDDFT),
in its conventional linear-response (LR) formulation,1–3

fails to describe the topology of any conical intersec-
tion (CX) that involves the reference state (typically
the ground state), for which the branching space is one-
dimensional rather than two-dimensional.4,5 Depending
upon one’s point of view, this behavior arises either due
to a lack of double excitations in the ansatz for the
TDDFT “wave function”,4 or else simply due to an im-
balance in the nature of how LR-TDDFT describes the
variational ground state versus the response (excited)
states, leading to problems in regions of configuration
space where the ground state becomes degenerate. A
simple example is H3 radical, which is a Jahn-Teller sys-
tem in its D3h geometry and for which LR-TDDFT pre-
dicts highly distorted potential energy surfaces that fail
to reproduce the ground-state degeneracy.6

In contrast, CXs between two excited states are topo-
logically correct in LR-TDDFT, which can be understood
by considering the configuration interaction singles (CIS)
method as a special case and examining its wave function
ansatz,

|ΨCIS〉 = c0|Φ0〉+
∑

ia

cia|Φia〉 , (1)

where |Φia〉 represents a singly-excited Slater determi-
nant formed from ground-state molecular orbitals (MOs).

∗herbert@chemistry.ohio-state.edu

The coefficients cia are obtained by diagonalizing the or-
bital Hessian (“A matrix”),3 and as such the CIS ex-
cited states are variational with respect to one another.
However, the ground-state coefficient c0 is determined (if
needed) by normalization rather than by any variational
calculation that involves the excited states.

The “spin-flip” (SF) approach to TDDFT7,8 has been
used as a means to fix (or at least circumvent) the topol-
ogy problem.4–6 SF-TDDFT starts from a ground-state
calculation with higher spin multiplicity as compared to
the states of interest, e.g., a triplet state if targeting sin-
glet photochemistry, or a quartet state for the aforemen-
tioned doublet H3 radical. This high-spin state is used
as a reference for a LR-TDDFT calculation that also
involves a one-electron α → β spin flip, thus affording
states with the target multiplicity, at least in favorable
cases. (As discussed later in this work, SF-TDDFT is
often beset by significant spin contamination.5,9–12) The
SF-TDDFT approach cures the topology problem around
a CX by introducing a limited set of double excitations
that couple ground and excited states, or (from a differ-
ent point of view) because all of the states having the tar-
get multiplicity are generated by response theory and are
thus described in a balanced fashion. Challenging cases
such as H3 in D3h symmetry are described correctly by
SF-TDDFT.6

Despite its topology problems, however, conventional
LR-TDDFT remains a widely-used approach in the con-
text of trajectory surface hopping simulations of nona-
diabatic molecular dynamics (NMD).13–20 Provided that
trajectories are halted before they can undergo internal
conversion (IC) to the ground state, problems associated
with incorrect topology may be avoided, but this con-
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FIG. 1: Chemical structures of (a) 11-cis-retinal protonated
Schiff base (PSB11), and (b) the truncated model, trans-
PSB3.

straint is rather limiting insofar as the timescale for IC
is one of the most basic questions that one might wish to
answer using NMD simulations. As a counterpoint, there
might be reason for optimism given that most nonadia-
batic events likely occur near conical seams, where the
energy gap is small, as opposed to occurring at a conical
seam, where the energy gap is zero but which occupies a
vanishingly small volume in the configuration space of a
polyatomic molecule. A recent side-by-side comparison of
NMD simulations using LR- and SF-TDDFT,21 for cis →
trans photoisomerization azobenzene, seems to corrobo-
rate the optimistic viewpoint. That study found very lit-
tle difference between the two approaches when it comes
to predicting either the IC timescale or the branching
ratio of cis versus trans photoproducts. It is worth not-
ing, however, that the excited-state trajectories in that
study are significantly more oscillatory when LR-TDDFT
is used, which may reflect warping of the potential energy
surfaces in the vicinity of the S1/S0 intersection. In ad-
dition, 41 of the 300 LR-TDDFT trajectories had to be
discarded due to convergence failure,21 whereas none of
the SF-TDDFT trajectories suffered this problem. These
observations are consistent with the problematic descrip-
tion of CXs involving the ground state in LR-TDDFT.6

In the present work, we contribute to this ongoing
discussion by comparing NMD simulations using both
LR- and SF-TDDFT, for a well-studied photochemical
problem: photoisomerization of the protonated Schiff
base C5H6NH

+
2 . This molecule has been suggested22,23

as a minimalist model of the rhodopsin chromophore,24

namely, 11-cis-retinal protonated Schiff base (PSB11).
The full chromophore is depicted in Fig. 1(a) and the
truncated model, trans-C5H6NH+

2 (PSB3), is shown in
Fig. 1(b). PSB3 has become something of a benchmark
case for excited-state electronic structure theory,25 and is
used here to probe difference between trajectory surface-
hopping results at the LR- and SF-TDDFT levels of the-
ory.

II. THEORY

A. Nonadiabatic couplings

We briefly review the formalism of nonadiabatic cou-
plings in both CIS and LR-TDDFT in order to demon-
strate the origin of the topology problem for CXs that
involve the reference state. For LR-TDDFT, we use a
“pseudo-wave function” formalism in which one treats
the Kohn-Sham determinant as a wave function and
derivative couplings are obtained from analytic gradient
theory,6,26,27 in analogy to the way in which nonadia-
batic couplings are derived for the CIS method. This
approach sidesteps certain divergences associated with
the use of quadratic response theory to obtain derivative
couplings.28–31

In CIS, the electronic wavefunction is expressed as a
linear combination of singly-excited Slater determinants
|Φia〉, as in Eq. (1). The coefficients c0 and {cia} in
Eq. (1) are determined by solving the Schrödinger equa-

tion Ĥ|Ψ〉 = E|Ψ〉 after projecting the Hamiltonian onto
the single excitation space:

Ĥ = |Φ0〉E0〈Φ0|+
∑

ijab

|Φia〉〈Φia|Ĥ|Φjb〉〈Φjb| . (2)

Here, E0 is the Hartree-Fock (HF) energy. We use i, j, . . .
to indicate occupied MOs and a, b, . . . for virtual MOs,
as determined by the HF reference state.
Now suppose that two electronic states |ΨI〉 and |ΨJ〉

become degenerate at a geometry RCX. It is possible to
define the so-called “crude” adiabatic basis,32

{∣∣ΨI(RCX)
〉
,
∣∣ΨJ(RCX)

〉
,
∣∣Ψ̃K(RCX)

〉}

in which |Ψ̃K(RCX)〉 is orthogonal to the two degener-
ate states. If we further project the Hamiltonian onto
the two-dimensional subspace spanned by |ΨI(RCX)〉
and |ΨJ(RCX)〉, at an arbitrary geometry R, then the
energies of the two intersecting states can be obtained
through first order32 by diagonalizing the 2× 2 Hamilto-
nian

H(R) =

(
HII(R) HIJ(R)
HJI(R) HJJ(R)

)
(3)

where

HIJ(R) =
〈
ΨI(RCX)

∣∣Ĥ(R)
∣∣ΨJ(RCX)

〉
. (4)

This 2× 2 Hamiltonian becomes diagonal, with degener-
ate eigenvalues, at the point R = RCX:

H(RCX) =

(
EI 0
0 EI

)
. (5)

One can also expand H(R) around RCX to the first
order as

H(R) = H(RCX) + ∇̂RH(RCX) · δR (6)
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where δR = R−RCX. To locate another crossing point
R′

CX in the vicinity of RCX, one may require that

HII(R
′
CX) = HJJ (R

′
CX) (7a)

HIJ(R
′
CX) = 0 . (7b)

Using Eq. (6), the two conditions in Eq. (7) can be rewrit-
ten as

gIJ(RCX) · δR = 0 (8a)

hIJ(RCX) · δR = 0 (8b)

by introducing the gradient difference vector gIJ and the
nonadiabatic coupling vector hIJ . The former is defined
as

gIJ(R) = ∇̂R

[
EI(R)− EJ(R)

]
(9)

where

∇̂REI(R) =
〈
ΨI(R)

∣∣∇̂RĤ(R)
∣∣ΨI(R)

〉
. (10)

The nonadiabatic coupling is defined as

hIJ(R) =
〈
ΨI(R)

∣∣∇̂RĤ(R)
∣∣ΨJ(R)

〉
. (11)

The vectors gIJ and hIJ span a two-dimensional branch-
ing plane at the CX,33 and the degeneracy between the
two intersecting states is preserved through first order
(δR), provided that δR is restricted to the space orthog-
onal to the branching plane, i.e., to the seam space.32

If the CX involves the reference state (meaning the HF
ground state, for conventional CIS), then the derivation
presented in Appendix A shows that the nonadiabatic
coupling vector can be written

hCIS
0I = −(EI − E0)

∑

ia

〈a|i[R]〉cIia , (12)

where the parameters cIia are the CIS coefficients for
excited state |ΨCIS

I 〉 and the superscript [R] denotes a

nuclear derivative. The quantity 〈a|i[R]〉 represents the
overlap between an unperturbed virtual orbital |a〉 and
a perturbed occupied orbital, |i[R]〉. It is clear from
Eq. (12) that the nonadiabatic coupling h0I vanishes at
any crossing point between the HF ground state and a
CIS excited state (E0 = EI), hence the degeneracy is
lifted in the direction of g0I only and the branching space
is one-dimensional. So long as the excitation energy gap
EI − E0 is not exactly zero, however, the coupling h0I
does not generally vanish. This makes the topology of
the potential surface rather complicated in regions close
to crossing points RCX; see Appendix B.

It should be noted that the nonadiabatic coupling de-
fined in Eq. (11) is slightly different from the one defined
by Yarkony,32 the latter of which has the following form:

hIJ(R) = cI(R)† ∇̂RH(R) cJ(R) . (13)

The difference comes from the fact that the crude adi-
abatic basis in Ref. 32 is defined in such a way that

only the CI coefficients are fixed, whereas in our defi-
nition both the CI coefficients and the Slater determi-
nants are fixed. As a result of Brillouin’s theorem, the
definition in Eq. (13) makes the nonadiabatic couplings
vanish between the HF ground state and the CIS states
at any geometric coordinates R. This choice is not con-
venient for examining the topology of potential energy
surfaces at approximate crossing points; see Appendix B.
When applied to compute nonadiabatic couplings be-
tween two CIS excited states, the use of Eq. (11) versus
Eq. (13) affords couplings that differ by so-called elec-
tronic translation factors,34 equivalent to non-Hellmann–
Feynman terms in the analytic gradient expression for the
coupling.6

As shown in Appendix A, the nonadiabatic coupling
between the Kohn-Sham DFT ground state and LR-
TDDFT excited states can be defined as

hDFT
0I = −(EI − E0)

∑

ia

〈a|i[R]〉(xI
ia − yIia) , (14)

where xI
ia and yIia are the usual LR excitation (xI

ia)
and de-excitation (yIia) amplitudes for the Ith excited
state.2,3 If the Tamm-Dancoff approximation (TDA) is
invoked,3 corresponding to neglecting the de-excitation
amplitudes, then xI

ia coincides with cIia in Eq. (12). Im-
portantly, however, while the expressions for hCIS

0I and
hDFT
0I are formally very similar, the latter might be

nonzero even at a crossing point. This is more clear
in the complete-basis limit, where hDFT

0I reduces to the
Chernyak-Mukamel expression,35–37

hDFT
0I (R) =

∫
ρ0I(r;R) ∇̂R vne(r;R) dr . (15)

The quantity ρ0I(r;R) is the transition density, which is
a parametric function of the nuclear coordinates R, and
vne(r;R) is the nuclear–electron Coulomb (or “external”)
potential. Upon invoking the TDA, one finds that hDFT

0I
in Eq. (14) vanishes whenever EI = E0, just like the
situation for CIS. (See Appendix A.)
In summary, the nonadiabatic coupling at an approxi-

mate conical intersection that involves the reference state
does not vanish in general for either CIS or LR-TDDFT,
meaning that the branching space is not solely deter-
mined by the vector g0I , as shown in detail in Ap-
pendix B along with a numerical example. Nevertheless,
the magnitude of these couplings remains small, which
is a direct consequence of the absence of proper interac-
tions between the reference state and the response states.
The practical consequence is incorrect local topology and
large curvature of potential energy surfaces in the vicin-
ity of CXs that involve the reference state. Presumably,
this should have consequences for NMD simulations.

B. SF-TDDFT

Unlike LR-TDDFT, the SF-TDDFT approach treats
electron correlation on a consistent footing for both the
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FIG. 2: SF-TDDFT excitation manifold for a four-electron,
four-orbital model with a high-spin triplet reference configu-
ration that is shown in (a). The excitation subspace in (b)
is spin-complete but those in (c)–(e) are not. Reprinted from
Ref. 12; copyright 2015 American Institute of Physics.

ground and excited states of the target multiplicity, and
in particular affords correct topology in the vicinity of
any CX, including ones that involve the ground state of
the target multiplicity.5,6 However, the usual SF-TDDFT
approach contains only single spin flips, which often
leads to significant spin contamination especially as one
moves away from the Franck-Condon region of the ex-
cited state and starts to explore bond-breaking geome-
tries. The more pervasive spin contamination in SF-
TDDFT as compared to (spin-conserving) LR-TDDFT
can be understood using the simple model that is shown
in Fig. 2.5,12 Here, a high-spin triplet configuration is
used as the reference determinant in order to target states
of singlet multiplicity via single excitations combined
with a single α → β spin flip. The figure depicts the
SF-TDDFT excitation manifold that is generated in this
manner.
Amongst the Slater determinants contained in this

manifold, only the four that are depicted in Fig. 2(b) are

able to form spin-pure states, i.e., eigenfunctions of Ŝ2,
and these can be combined to form three singlet states
and one triplet. These states include both the nominal
S0 configuration as well as the two determinants nec-
essary to form the properly spin-adapted open-shell S1
configuration, corresponding to excitation between fron-
tier MOs. Also present in the “o-o” space of Fig. 2(b) is
a double excitation that couples S0 and S1 and is needed
in order to obtain proper topology at the S1/S0 CX.4

The determinants shown in Fig. 2(c)–(e) are also part of
the SF-TDDFT excitation manifold, however, and each
of these is missing one or more of its “spin complements”,
meaning the determinants that are necessary to form a
Ŝ2 eigenstate with S = 0. The missing determinants
cannot be formed by any single excitation and single spin
flip from the high-spin triplet reference state in Fig. 2(a).
Any SF-TDDFT state that has a significant contribution

from one or more of the determinants in Fig. 2(c)–(e) will
exhibit significant spin contamination.
The spin contamination problem becomes severe for

photochemical simulations and makes SF-TDDFT chal-
lenging to apply in a general way for NMD. In our experi-
ence, when starting from a triplet reference configuration,
states that manifest as singlets upon vertical excitation
(〈Ŝ2〉 ≈ 0) quickly become highly mixed as the molecule
moves away from the Frank-Condon region (typically

〈Ŝ2〉 ≈ 1, in atomic units). As a result, it becomes dif-
ficult to distinguish singlets from triplets, and to pro-
ceed without human intervention requires some kind of
a state-tracking procedure.12,38,39 Although some NMD
simulations using SF-TDDFT have been reported using
this approach,21,39–46 a more reliable remedy is to remove
the spin contamination directly. This can be done either
exactly, by construction,9–12 or else approximately,47–51

but these procedures are not yet in widespread use.
Fortunately, photoisomerization of the PSB3 molecule

that is considered herein involves only the two lowest
singlet states.22 Instead of using a fully spin-adapted
version of SF-TDDFT,12 for which the analytic gradi-
ent is not yet available, we instead aim to obtain only
approximately spin-pure S0 and S1 states. To achieve
this, we simply enforce that the two open-shell Slater
determinants in Fig. 2(b) must form a singlet configura-
tion state function when solving the SF-TDDFT eigen-
value equations, meaning that their coefficients must be
equal in magnitude and opposite in sign. For PSB3, the
S0 and S1 states that we obtain in this way typically
have 〈Ŝ2〉 < 0.5 and are thus easy to distinguish from
triplet states. As discussed below, we do observe some
exceptions, in which S1 is significantly spin contaminated
(with 〈Ŝ2〉 ≈ 1); this occurs in cases where one of the
single bonds in PSB3 is significantly twisted. However,
the manifold of excited states is sparse enough that we
are nevertheless able to perform consistent NMD simu-
lations via trajectory surface-hopping, without resort to
state-tracking algorithms.

III. COMPUTATIONAL DETAILS

NMD simulations for trans-PSB3 were performed
using the augmented fewest-switches surface hopping
(aFSSH) algorithm,52–54 a modification of the origi-
nal fewest-switches algorithm55 to account for decoher-
ence effects.54 Separate simulations were performed us-
ing LR-TDDFT (both with and without the TDA) and
also SF-TDDFT. For the LR-TDDFT simulations we
used the ωB97X functional,56 and for SF-TDDFT we
used BH&HLYP.57,58 (Early benchmarks of SF-TDDFT
demonstrated that a functional with 50% exact exchange
works well,7 a fact that was later justified theoretically,59

and BH&HLYP has become the de facto standard for
use with SF-TDDFT.21,39–45,47–50,60) The 6-31G* basis
set was used for all aFSSH simulations. All calculations
were performed using a locally-modified copy of Q-Chem,
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A set of 200 aFSSH trajectories were computed at each
level of theory. The initial nuclear configurations and mo-
menta were sampled according to the Wigner distribution
for the quantum harmonic oscillator, with harmonic fre-
quencies and normal modes obtained from ground-state
MP2 calculations. At t = 0 in the simulations, the S1
state is populated at the ground-state geometry and each
trajectory was then propagated in time for 9,000 a.u.
(≈ 218 fs), using a time step of 20 a.u. (≈ 0.484 fs).
These trajectories are intended to model a real photoex-
citation of PSB3. For reasons described below, we also
propagated a second batch of 200 trajectories (at each
of three levels of theory) in which the central C2=C3

bond is twisted by 25◦ at t = 0. These “activated” tra-
jectories were propagated in the same way and analyzed
separately.
Nonadiabatic coupling vectors are required for the

aFSSH simulations and are available in analytic form
in Q-Chem,6,29 for both LR-TDDFT and SF-TDDFT.
Whereas calculation of the derivative couplings is some-
times (incorrectly) perceived as being significantly more
expensive than analytic gradients, in reality the calcula-
tion of hIJ for TDDFT adds only about 10% overhead

on top of the cost of computing the gradients ∇̂REI(R)

and ∇̂REJ(R).6,20

IV. RESULTS AND DISCUSSION

A. Potential energy surfaces along the reaction

pathways

Gozem et al.25 have reported photoisomerization reac-
tion pathways for PSB3 at the CASSCF and CASPT2
levels of theory. These pathways connect the cis and
trans isomers of PSB3 with a CX seam between the S0
and S1 states. The most important geometric parameters
that characterize these pathways are the bond-length al-
ternation (BLA) coordinate, the C1–C2 single-bond tor-
sion, and the C2=C3 double-bond torsion. [See Fig. 1(b)
for the PSB3 structure.] The reaction pathway computed
at the CASSCF level shows a decrease in the BLA as the
molecule moves away from Frank-Condon region on the
S1 potential surface. Following that, the central double
bond (C2=C3) starts to twist and the BLA coordinate
increases again until the CX region is reached, at which
point a nonadiabatic transition returns the system to the
ground state. For the CASPT2 reaction path, however,
the same BLA change in the Frank-Condon region leads
to a shallow local minimum (called “MINtrans” in what
follows), which corresponds to a structure with a rotated
C1–C2 single bond.25 According to the CASPT2 calcu-
lations, the C2=C3 torsion is activated by overcoming a
small barrier.
We performed single-point potential energy scans

along the same CASSCF and CASPT2 reaction path-
ways that were reported in Ref. 25, using SF-TDDFT and

LR-TDDFT. The results are compared with the energies
calculated from multireference configuration interaction
singles and doubles (MRCISD) with the Davidson cor-
rection (MRCISD+Q), taken from Ref. 25. The S0 and
S1 potential surfaces along the CASSCF and CASPT2
pathways are depicted in Fig. 3.
For both pathways, energy profiles computed using

SF-TDDFT with the BH&HLYP functional (called “SF-
BH&HLYP” hereafter) agree well with the MRCISD+Q
results, except that SF-BH&HLYP predicts a larger en-
ergy gap in the CX regions, due to the fact that the
intersection seams obtained by these two methods are lo-
cated in somewhat different regions of coordinate space.
This is not surprising as MRCISD+Q fails to give the cor-
rect topology of the CX, because the Davidson correction
(+Q) modifies the energy but not the wave function.25

In the present study, the ωB97X functional is used for
the LR-TDDFT calculations and we abbreviate this as
LR-ωB97X. Previously, Casida and co-workers compared
the performance of different density functionals for the
out-of-plane relaxations of the retinal protonated Schiff
base models PSB4 and PSB5.62 Taking the CASPT2 re-
sults as the reference, they found that a particular long-
range corrected (LRC) functional, LRC-µBLYP,63,64 out-
performed other functionals including ωB97X. For the
PSB3 reaction pathways considered here, however, we
find that the performance of ωB97X and LRC-µBLYP is
almost identical. This lends some credence to the idea
that the LR-TDDFT results reported here are unlikely to
change qualitatively if other functionals commonly used
for LR-TDDFT are substituted in place of ωB97X.
As shown in Fig. 3, LR-TDDFT energetics agree well

with the MRCISD+Q results within the CX region but
large differences are found close to the Franck-Condon
regions, especially when the TDA is invoked. For the
CASSCF pathway, LR-ωB97X predicts a local minimum
close to the Franck-Condon point that does not exist
in either the SF-BH&HLYP or the MRCISD+Q calcu-
lations. In view of the trajectory simulations reported
below, we believe that this local minimum connects di-
rectly to the C1–C2 single bond torsion reaction pathway.
Energy profiles in Fig. 3(b) show that the energy of the
MINtrans configuration is lower at the LR-ωB97X level
of theory as compared to other methods examined here,
meaning that LR-ωB97X trajectories must overcome a
larger barrier to activate the C2=C3 double bond torsion
reaction.

B. Stationary points, vertical excitation energies,

and topography of conical intersections

Whereas the calculations discussed above were per-
formed at CASSCF and CASPT2 geometries, we have
also optimized the geometries of the local minima on
S0 and S1, and the S1/S0 minimum-energy crossing
points (MECPs), using SF-TDDFT, LR-TDDFT, and
LR-TDDFT/TDA; results are depicted in Fig. 4. For the
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FIG. 3: Potential energy scans along the (a) CASSCF or (b) CASPT2 photoisomerization pathway PSB3. Both the pathway
geometries and the MRCISD+Q energies are from Ref. 25. All calculations employ the 6-31G* basis set.

local minima these three methods predict almost identi-
cal geometries. Automated optimization of MECPs fails
at the LR-ωB97X level, due to triplet instabilities, there
is no such difficulty when the TDA is applied. (Other
results suggest that triplet instabilities are commonplace
in bond-breaking regions of the potential energy surface,
making the TDA “a practical necessity” for photochem-
ical simulations.65) MECP geometries optimized at the
LR-ωB97X/TDA and SF-BH&HLYP levels agree with
each other very well, and also agree qualitatively with
MS-CASPT2 results.66

Table I summarizes the relative energies of the various
critical points shown in Fig. 4. Overall, the energies com-
puted at the three DFT levels agree qualitatively with
each other and with multistate (MS-)CASPT2 results.
The DFT methods overestimate the vertical excitation
energy as compared to MS-CASPT2, especially in the
case of LR-ωB97X/TDA. Among the three MECPs con-
sidered here, all methods predict that the one with a
twisted C2=C3 double bond is lowest in energy; this is
the structure labeled MECP(C2C3) in Fig. 4 and Table I.
The SF-BH&HLYP method places the three MECP a bit
higher in energy as compared to LR-ωB97X/TDA. How-
ever, if one considers the energetics relative to the S1
state at Franck-Condon region, the SF-BH&HLYP re-
sults are more consistent with the MS-CASPT2 results.

We also examined the topography around the CXs,
which is believed to have correlations with the efficiency
of nonadiabatic transitions. Here, we only consider
MECP(C2C3) because most of the nonadiabatic S1 → S0
transitions in NMD simulations discussed below occur
near this particular CX. Yarkony67 has introduced sev-
eral parameters that characterize the topography of a
CX. Denoting the lengths of the branching-plane vectors
introduced in Section IIA as g = ‖g‖ and h = ‖h‖, these
topographical parameters include

dgh =
√

g2 + h2 (16)
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FIG. 4: Critical-point structures of PSB3 including S0

and S1 minima and the S1/S0 MECP, optimized using SF-
BH&HLYP (geometric parameters in bold), LR-ωB97X/TDA
(parameters in plain font), and LR-ωB97X (parameters in
italics). The bond lengths (in Ångstroms) are labeled in black
and the twist angles (in degrees) are in red. MECP geome-
tries were not optimized using full LR-TDDFT but rather
only with the TDA, due to triplet instability problems.

and

∆gh =
g2 − h2

d2gh
, (17)

which describe the sharpness and asymmetry of the CX.
Defining a “seam coordinate”

sIJ =
1

2
∇̂R

[
EI(R) + EJ(R)

]
, (18)
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TABLE I: Relative energies (in eV) at stationary points of PSB3.a

Structures
SF-BH&HLYPb LR-ωB97X LR-ωB97X/TDA CASPT2c

S0 S1 S0 S1 S0 S1 S0 S1

trans-S0min 0.00 (0.04) 4.48 (0.17) 0.00 4.59 0.00 4.95 0.00 4.26

MECP(C2C3) 3.07 (0.03) 3.07 (0.02) 2.61 2.61 2.61

MECP(NC1) 4.29 (0.02) 4.29 (0.08) 4.09 4.10 3.81

MECP(C4C5) 3.31 (0.05) 3.31 (0.05) 3.22 3.22 3.59

S1min(C1C2) 1.85 (0.06) 3.86 (0.02) 1.78 3.63 1.77 3.64

S1min(C3C4) 1.00 (0.01) 3.82 (1.01) 0.92 4.10 0.92 4.11 3.69

aThe 6-31G* basis set is used for all calculations.
bThe value of 〈Ŝ2〉 (in atomic units) is given in parenthesis.
cSA3-MS-CASPT2(6,6)/6-31G* results from Ref. 66.

TABLE II: Parameters characterizing the topography
at the MECP(C2C3) structure of PSB3, in atomic
units.

Parameter
TDDFTa

CASSCFb

SF- LR-ωB97X
BH&HLYP fullc TDA

dgh 0.10 0.49 0.36 0.13
∆gh 0.15 1.00 1.00 0.29
sx −0.05 0.13 0.11 −0.02
sy −0.13 −0.15 0.16 0.12
sx/g −0.67 0.26 0.32 −0.16
sy/h −2.08 −7.67 > 1000 1.63

a6-31G* basis set.
bSA3-CASSCF(6,6)/6-31G results from Ref. 66.
cUsing the geometry from Fig. 5b.

one may then define dimensionless tilt parameters

sx = (sIJ · gIJ)/g (19a)

sy = (sIJ · hIJ)/h . (19b)

Larger values of sx or sy indicating sloped rather than
peaked character along the direction of corresponding
branching-plane vector (gIJ or hIJ , respectively). If
sx = sy = ∆gh = 0, the CX is vertical and cylin-
drically symmetric.67 Topographical parameters for the
MECP(C2C3) point of C5H6NH+

2 are listed in Table II.
The two LR-TDDFT methods predict much larger

values of dgh as compared to either SF-BH&HLYP or
CASSCF, indicating a much more sharply peaked topog-
raphy near the CX. Meanwhile, ∆gh ≈ 1 for the LR-
TDDFT methods, indicating that the CX is strongly
asymmetric. Along with the very large values of sy/h,
this indicates significant slope along the h direction,
which is a direct consequence of nearly vanishing cou-
pling between S0 and S1 in LR-TDDFT. The same con-
clusion can be reached by examining the g and h vectors,
which are plotted for MECP(C2C3) in Fig. 5. To have
a point of comparison at the LR-ωB97X level, where the
appearance of triplet instabilities precludes a full opti-
mization of the MECP, we started in that case from the
MECP(C2C3) structure located using LR-ωB97X/TDA
and minimized along the energy gap until an instabil-

(c) LR-ωB97X / TDA

(b) LR-ωB97X

(a) SF-BHHLYP

g h

g h

g h

FIG. 5: Gradient difference vectors (g, on the left)
and nonadiabatic coupling vectors (h, on the right) at the
MECP(C2C3) structure of PSB3, computed using (a) SF-
BH&HLYP, (b) LR-ωB97X, and (c) LR-ωB97X/TDA. Dif-
ficulties with triplet instabilities preclude full optimization of
the MECP at the LR-ωB97X level, but the structure in (b)
has an S1/S0 gap of only 0.0072 eV and is likely close to the
true MECP. For readability, the g vectors in (b) and (c) have
been scaled by 0.1 and 0.2, respectively, as the LR-TDDFT
g-vectors are significantly larger than that obtained at the
SF-BH&HLYP level.

ity appeared. The resulting structure has an energy gap
< 0.01 eV and is likely very close to a MECP structure.

The g vectors computed using LR-TDDFT are more
than ten times greater in length than those obtained with
SF-BH&HLYP, indicating significantly larger slope along
the potential surface in the g direction when using LR-
TDDFT. Small magnitude of the h vectors, especially
when the TDA is applied, is a sign of nearly zero inter-
action between the reference state and the excited state.
In contrast, SF-BH&HLYP predicts topography around
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FIG. 6: Populations of the S0 state (dotted curves) and the S1 state (solid curves) for the photoisomerization dynamics of
PSB3, averaged over aFSSH trajectories from two different sets of initial conditions. (a) Initial conditions simulating S0 → S1

photoexcitation, with internal coordinates and velocities selected from a ground-state Wigner distribution and placed on the
S1 surface at t = 0. Populations p(t) are averages over 200 trajectories at each level of theory. (b) “Activated” trajectories, in
which the C2=C3 bond was rotated by 25◦ for each of the initial structures in (a), and furthermore any trajectories that did
not proceed through MECP(C2C3) were removed.

MECP(C2C3) that is similar to CASSCF, as can be seen
from the parameters listed in Table II.

C. Trajectory surface hopping simulations

1. Photoexcitation initial conditions

We next discuss results of the aFSSH simulations of
PSB3 starting from photoexcitation initial conditions,
in which internal coordinates and velocities are sampled
from a ground-state Wigner distribution and initiated
on the S1 state at t = 0. Figure 6(a) shows the time-
dependent populations of the S0 and S1 states averaged
over 200 trajectories at each of the three levels of TDDFT
that were introduced above. The S1 population exhibits
a delayed exponential decay, meaning that the system
remains in the S1 state for a certain amount of time
before the population begins to decrease exponentially.
The lifetime of the S1 state can be obtained by fitting
the population p(t) using the function

p(t) =

{
1, t < τd
e−(t−τ

d
)/τ

e , t ≥ τd
(20)

where τd represents the initial delay time for the system
remaining in the S1 state and τe is the time constant for
the exponential decay. The overall lifetime is τd + τe,
which is technically the time required for the S1 popu-
lation to drop to 1/e of its initial value p(0) = 1. We
fit the data in Fig. 6(a) to this functional form, and the
time constants thus obtained (for each level of theory)
are listed in Table III. Uncertainties listed in the table
were obtained using the bootstrap method.68

The two LR-TDDFTmethods predict much longer life-
times for the S1 state as compared to SF-BH&HLYP and
CASSCF. In the latter two methods, most of the trajec-
tories are trapped at the local minimum S1min(C1C2),
where the molecules have to overcome a large barrier be-
fore the conical seam at MECP(C2C3) can be reached;
see Fig. 3(b). That LR-ωB97X/TDA predicts a longer
lifetime for the S1 state as compared to LR-ωB97X is
also consistent with the larger barrier predicted by the
former as compared to the latter.

0  50 100 150 200

time (fs)

–0.05

0.00

0.05

0.10

B
LA

 (
Å

)

SF-BH&HLYP
LR-ωB97X
LR-ωB97X / TDA

FIG. 7: Bond length alternation (BLA) coordinate as a func-
tion of time for PSB3 photoisomerization dynamics, averaged
over 200 trajectories (starting from photoexcitation initial
conditions) at each of three levels of theory. These coordi-
nate dynamics correspond to the population dynamics shown
in Fig. 6(a).
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TABLE III: Time constants τd and τe and total lifetime of the S1 state of PSB3 (all in fs), obtained
by fitting the population data in Fig. 6 using Eq. (20).

Method Photoexcitation Initial Conditionsa Activated Initial Conditionsb

τd τe lifetime τd τe lifetime
SF-BH&HLYP 35.1± 1.4 89.6± 6.3 124.8± 6.1 26.2± 1.4 34.4± 2.7 60.6± 2.4
LR-ωB97X 44.1± 2.4 320.6± 42.4 364.8± 42.2 26.0± 1.5 48.5± 3.4 74.5± 3.5
LR-ωB97X/TDA 15.8± 7.5 1264± 269 1280± 269 29.4± 1.0 45.3± 3.9 74.7± 3.9
CASPT2c ≈ 50 ≈ 150

aPopulation data plotted in Fig. 6(a).
bPopulation data plotted in Fig. 6(b).
cSA3-MS-CASPT2(6,6)/6-31G results from Ref. 66.
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FIG. 8: Distributions of the torsion angles (a) γ(C1C2C3C4) and (b) γ(NC1C2C3) for aFSSH simulations of PSB3, each
at three different levels of theory. These trajectories correspond to “photoexcitation” initial conditions in which coordinates
and velocities sampled from ground-state harmonic oscillators are propagated on the S1 surface starting from t = 0. [The
corresponding population dynamics are plotted in Fig. 6(a).] The probability density ranges from 0 to 1 as the color varies
from black to red. Red dots in (a) indicate hopping events.

In Figure 7, we plot the averaged BLA coordinate val-
ues during the simulations. For LR-ωB97X, either with
and without the TDA, the BLA does not decrease to an
extent such that the reaction coordinate (corresponding
to C2=C3 torsion) can be activated, therefore only a few
of the trajectories manage to return to the S0 state via

nonadiabatic transitions at MECP(C2C3). This is more
clear in Fig. 8(a), where the distribution of the torsion
angle around C2=C3 is plotted for each of the three DFT
methods. In the case of SF-BH&HLYP, about 90% of the
trajectories returned to the S0 state on the timescale of
the simulation, with 56% of them forming the cis pho-
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FIG. 9: Distributions of the torsion angles (a) γ(C1C2C3C4) and (b) γ(NC1C2C3) for aFSSH simulations of PSB3, each at
three different levels of theory, starting from “activated” initial conditions in which γ(C1C2C3C4) is twisted by 25◦ at t = 0,
and retaining only those trajectories that pass through MECP(C2C3). The corresponding population dynamics are plotted in
Fig. 6(b). The probability density ranges from 0 to 1 as the color varies from black to red. Red dots in (a) indicate hopping
events.

toproduct. For LR-ωB97X, however, only 40% of the
trajectories underwent S1 → S0 deactivation within the
218 fs timescale that we simulate, and amongst those
that do return to the ground state, 43% relaxed to the
cis isomer. Even fewer transitions were observed at the
LR-ωB97X/TDA level, which amounts to 14% of the to-
tal number of trajectories, and 25% of the nonadiabatic
transitions lead to the cis isomer. If we further plot
the distribution of the torsion angle for the C1–C2 sin-
gle bond [Fig. 8(b)], we find that most of the trajectories
computed by the two LR-TDDFT methods follow the re-
action pathways of C1–C2 twisting, especially at the LR-
ωB97X/TDA level. This corresponds either to trapping
at S1min(C1C2) or hopping at MECP(NC1). The latter
explains the observation of fewer cis photoproducts in
the LR-TDDFT trajectories as well as the smaller delay
time τd, as compared to SF-BH&HLYP simulations.

2. Activated initial conditions

The main goal of this work is to study the effect of in-
correct CX topography on NMD simulations within the
framework of TDDFT, and for side-by-side comparison
of LR- and SF-TDDFT we would ideally like to have
a set of trajectories from either method that undergo
the same reaction pathway, namely, nonadiabatic tran-
sition at MECP(C2C3). In order to achieve this, we
have performed an entirely new set of aFSSH simula-
tions starting from “activated” initial conditions. By
this we mean that the same set of starting coordinates
and velocities was used as in the simulations described
above (where they were sampled from ground-state har-
monic oscillators), but in the present case the C2=C3

bond was twisted by an additional 25◦ in each individual
starting structure. The can be seen in the plots of the
time-dependent torsion angle γ(C1C2C3C4), which are
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presented in Fig. 9(a), where it can be seen that the dis-
tributions at t = 0 are peaked narrowly around γ = 25◦,
unlike the corresponding “unactivated” distributions in
Fig. 8(a), for which γ ≈ 0 at t = 0.

Even with this activation step, we find that quite a few
of the LR-TDDFT trajectories fail to proceed through
MECP(C2C3) on the timescale that we simulate. Many
of them become trapped at S1min(C1C2), and a few oth-
ers access the ground state via either MECP(NC1) or
MECP(C4C5). In order to have a side-by-side compar-
ison of similar dynamical pathways at different levels of
theory, we discarded all but the trajectories that return
to the ground state via MECP(C2C3). This corresponds
to 189 trajectories retained for the SF-BH&HLYP sim-
ulation, 112 retained for LR-ωB97X, and 85 for LR-
ωB97X/TDA. All of the analysis below corresponds to
these subsets of the 200 trajectories. Population decays
from S1 are plotted in Fig. 6(b) for this subset of trajec-
tories, and then p(t) was fit to Eq. (20). Time constants
and S1 lifetimes are reported in Table III.

Similar delay times τd are obtained for all three
TDDFT methods, indicating similar reaction pathways
towards the MECP(C2C3) seam. However, the time con-
stant τe is 30% smaller at the SF-BH&HLYP level as
compared to the two LR-TDDFT methods, the latter
of which are quite similar. This is likely due to the
peaked topography near the MECP(C2C3) seam that
is predicted by SF-BH&HLYP, whereas the LR-TDDFT
methods afford sloped CXs due to lack of proper cou-
pling between S0 and S1 as discussed in Section IVB.
Note that a peaked CX usually facilitates more efficient
transitions than a sloped CX.

In Fig. 10, we compare the SF-BH&HLYP and
LR-ωB97X/TDA minimum-energy intersection seams
around MECP(C2C3), by scanning the C2=C3 twist an-
gle. The two seams are quite similar in shape except
that the slope of the potential surface is larger in the
LR-ωB97X/TDA case, with an energy change that is
≈ 3 kcal/mol greater over the same range of the tor-
sion angle. The distribution of torsion angles around
C2=C3 is plotted in Fig. 9(a) for the subset of acti-
vated trajectories that decay through MECP(C2C3), and
the distribution around C1–C2 is plotted in Fig. 9(b).
The similarities amongst these distributions provides fur-
ther evidence that the trajectories produced by all three
methods undergo the same reaction pathway. The frac-
tions of cis photoproduct are 54% (SF-BH&HLYP), 53%
(LR-ωB97X), and 47% (LR-ωB97X/TDA). The differ-
ence in τe predicted by SF-BH&HLYP and LR-ωB97X
may therefore be only a consequence of different CX to-
pographies. Nevertheless, these similarities are borne out
only by removing dissimilar trajectories from the data
set. Left to its own devices, LR-TDDFT (with or with-
out the TDA) predicts rather different dynamics as com-
pared to SF-BH&HLYP.
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FIG. 10: Minimum-energy intersection seam between the S0

and S1 states of PSB3, obtained by scanning the twist angle
of the C2=C3 double bond at two different levels of theory,
as indicated.

V. CONCLUSIONS

We have carried out trajectory surface hopping sim-
ulations for the Schiff base model system C5H6NH

+
2 , in

order to study the effects of correct versus incorrect CX
topography on photodynamics. By comparing LR- and
SF-TDDFT results, we observe that CXs predicted by
the more traditional LR-TDDFT approach have sloped
rather than peaked character, which is an artifact of
improper couplings between ground (reference) and ex-
cited (response) states. The sloped character of the
CX leads to a slowdown in the nonadiabatic dynamics
and longer lifetimes in the S1 state, as compared to the
SF-TDDFT simulations where the relevant CX is more
strongly peaked. The SF-TDDFT results are generally
in better agreement with existing CASPT2 estimates as
compared to LR-TDDFT, although the short lifetime of
the S1 state of C5H6NH+

2 limits the magnitude of the
discrepancies.

The main result of this work is a proof-of-concept
demonstration that warped topography around a CX, re-
sulting from an incorrect description of the topology of
intersections involving S0 when LR-TDDFT is used, can
manifest in photodynamics simulations if those simula-
tions are carried all the way through to the final S1 → S0
deactivation event. Unless this problem is rectified, using
SF-based versions of TDDFT or other methods, nona-
diabatic simulations with LR-TDDFT should be halted
prior to the point where trajectories return to the ground
state. Information gained from the part of the trajectory
that approaches the incorrectly-described CX is likely un-
reliable.
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Appendix A: Nonadiabatic couplings between the

reference and response states

Using Eq. (2) for Ĥ and Eq. (11) for hIJ , the nonadi-
abatic coupling between the HF ground state and a CIS
excited state can be expressed as

hCIS
0I =

〈
Φ0

∣∣(|Φ0〉E0〈Φ0|
)[R]∣∣ΨI

〉

+ 〈Φ0|
(∑

ijab

|Φia〉〈Φia|Ĥ|Φjb〉〈Φjb|
)[R]

|ΨI〉

= E0

〈
Φ

[R]
0

∣∣ΨI

〉
+ EI

∑

ia

〈
Φ0

∣∣Φ[R]
ia

〉
cIia .

(A1)

By direct differentiation of the creation operators,34 it is
possible to obtain the nuclear derivatives of the Slater
determinants,

∣∣Φ[R]
0

〉
= −

∑

ia

〈a[R]|i〉
∣∣Φia〉 (A2)

and

〈
Φ0

∣∣Φ[R]
ia

〉
= −〈i[R]|a〉 . (A3)

Using the latter two results, Eq. (A1) can be simplified
to afford the result that was given in Eq. (12).
The first-order derivative coupling vector is defined as

dIJ = 〈ΨI |Ψ
[R]
J 〉 . (A4)

The derivative coupling dCIS
0I between HF and CIS states

can be derived by proceeding as above, and this affords

dCIS
0I = −

∑

ia

〈a|i[R]〉cIia . (A5)

Comparing this expression to Eq. (12), one may conclude
that the nonadiabatic coupling, as defined in Eq. (11), is
related to the derivative coupling according to

hCIS
0I = (EI − E0)d

CIS
0I . (A6)

Although Eq. (A6) is a standard expression in exact
quantum mechanics, this relationship does not hold if
the nonadiabatic coupling is defined using Eq. (13), for
which h0I vanishes identically as a result of Brillouin’s
theorem.

Similarly, the nonadiabatic coupling between a ground-
state Kohn-Sham determinant and a LR-TDDFT state
may be defined as

hDFT
0I = ωI d

DFT
0I (A7)

where ωI = EI−E0 is the LR-TDDFT excitation energy.
The derivative coupling dDFT

0I can be obtained using lin-
ear response theory.36 The result is

dDFT
0I = −

∑

ia

〈a|i[R]〉
(
xI
ia − yIia

)
. (A8)

The amplitudes xI
ia and yIia can be collected into vec-

tors xI and yI that satisfy the LR-TDDFT eigenvalue
equation,1–3

(
A B

B A

)(
xI

yI

)
= ωI

(
1 0

0 −1

)(
xI

yI

)
. (A9)

The orbital Hessian matrices A and B have matrix ele-
ments

Aai,bj = δabδij(εa − εi) + (ai|jb)

− CHF(ab|ji) + (1− CHF)(ai|κxc|jb)
(A10)

and

Bai,bj = (ai|bj)− CHF(aj|bi) + (1− CHF)(ai|κxc|bj) ,
(A11)

where CHF indicates the fraction of exact exchange and
κxc = δ2Exc/δρ

2 is the semilocal exchange-correlation
kernel.
In order to compute dDFT

0I , the nuclear derivative of
the MO coefficients needs to be evaluated:

C
[R]
µi =

∑

a

CµaU
[R]
ai −

1

2

∑

j

CµjS
[R̄]
ji . (A12)

Here, the superscript [R̄] represents a “skeleton”
derivative,70 and U[R] satisfies the coupled-perturbed
Kohn-Sham (CPKS) equation:71

(A+B)U[R] = −Q[R̄] . (A13)

The right side of Eq. (A13) can be written as

Q
[R̄]
ai = F

[R̄]
ai − εiS

[R̄]
ai

−
∑

kl

{
(1− CHF)(ai|κxc|lk) + (ai|lk)

− CHF

[
(ak|li) + (al|ki)

]}
S
[R̄]
kl

(A14)

where F is the Fock matrix.
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Using Eq. (A13), the derivative coupling dDFT
0I in

Eq. (A8) can be recast as

dDFT
0I = −

∑

ia

(xI
ia − yIia)

(
U

[R]
ai +

〈
a
∣∣i[R̄]

〉)
. (A15)

From Eq. (A9), one may obtain

(A+B)(xI + yI) = ωI(x
I − yI) . (A16)

In conjunction with Eq. (A13), it is possible to show
that36

− (xI − yI)†U[R] = ω−1
I (xI + yI)†Q[R̄] . (A17)

Substituting this expression into Eq. (A15), the deriva-
tive coupling dDFT

0I is finally expressed as36

dDFT
0I =

∑

ia

[
ω−1
I (xI

ia + yIia)Q
[R̄]
ia − (xI

ia − yIia)〈a|i
[R̄]〉

]
.

(A18)
The nonadiabatic coupling defined in Eq. (A7) therefore
takes the following form:

hDFT
0I =

∑

ia

[
(xI

ia + yIia)Q
[R̄]
ia − ωI(x

I
ia − yIia)〈a|i

[R̄]〉
]
.

(A19)
Even if ωI = 0, the first term on the right side of
Eq. (A19) remains and does not appear to vanish. In
the complete basis limit

Q
[R̄]
ai =

(
a
∣∣v[R]

ne

∣∣i
)
, (A20)

where vne denotes the nucleus–electron Coulomb poten-
tial. Thus

hDFT
0I = tr

[
(xI + yI)v[R̄]

ne

]
. (A21)

Because the transition density matrix xI + yI is gener-
ally nonzero even at a crossing point, the nonadiabatic
coupling hDFT

0I does not vanish either.
In the case of the CIS method, or if the TDA is applied

to LR-TDDFT (by setting yIia = 0), then the derivative
coupling becomes

d
CIS/TDA
0I = −

∑

ia

xI
ia

(
U

[R]
ai + 〈a|i[R̄]〉

)
. (A22)

Note that Eq. (A17) does not have a counterpart within
the TDA, i.e.,

− (xI)†U[R] 6= ω−1
I (xI)†Q[R̄] . (A23)

As such, the nonadiabatic coupling hTDA
0I = ωId

TDA
0I van-

ishes when ωI = 0.

Appendix B: Topology of CXs between HF and CIS

states

In this section, we use a numerical example to demon-
strate that the gradient difference vector g ≡ g01 [Eq. (9)]
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FIG. 11: Energy gaps between the S0 and S1 states of PSB3
computed at the CIS/6-31G* level. Two different director
vectors z are used, corresponding to Eqs. (B1) and (B3) with
the same choice of R, and these are plotted in red and in
blue, respectively. The value z = 0 corresponds to the S0/S1

MECP geometry.

is not sufficient to determine the branching space at an
approximate CX between the HF ground state and a CIS
excited state. Consider an arbitrary nuclear geometry R

and construct a unit vector z as follows:

z =
(1− ĝĝ†)R

‖(1− ĝĝ†)R‖
(B1)

in which

ĝ = g/‖g‖ . (B2)

Thus, z is a normalized projection of the vector R onto
the space orthogonal to g01. If the branching space were
determined solely by the g vector, then we would expect
that an intersection seam should exist along the direction
of z.
We have located the MECP along the conical seam be-

tween the S0 and S1 states of PSB3 at the CIS/6-31G*
level of theory. The energy difference between the two
states is less than 10−7 Ha. Taking this MECP as the
origin, we carried out single-point energy scans for an ar-
bitrary choice of R, with z constructed from R according
to Eq. (B1). The S1/S0 energy gap is plotted in Fig. 11 as
the red curve. It can be seen that the degeneracy between
the two states is lifted even in the very near vicinity of
the MECP. This indicates that the g vector itself is not
sufficient to determine the branching space.
As shown in Appendix A, hCIS

0I may be nonzero if
EI − E0 6= 0, which implies that the h vector can also
contribute to the branching space at an approximate CX.
To determine whether this is numerically significant, we
carried out the same energy scan described above (i.e.,
using the same vector R), except that we make z per-
pendicular to both g and h:

z =
(1− ĝĝ† − ŷŷ†)R

‖(1− ĝĝ† − ŷŷ†)R‖
(B3)
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where

ŷ = y/‖y‖ (B4a)

y = (1− ĝĝ†)h , (B4b)

with h ≡ hCIS
01 defined in Eq. (12). The results are plot-

ted as the blue curve in Fig. 11. This time, degeneracy
between the S0 and S1 states is preserved along the z

direction. Even at the distance of 0.02 bohr from the
MECP geometry, the energy gap between the two states
remains quite small (≈ 0.0003 eV).

Seam

FIG. 12: Potential energy surfaces of the S0 and S1 states of
PSB3 computed at CIS/6-31G* level of theory. Energies are
measured relative to the S0 energy at the MECP geometry,
which is taken as the coordinate origin. The intersection seam
is highlighted in black.

Finally, starting from the MECP geometry we per-
formed two-dimensional potential energy scans along the
directions ĝ and ŷ, with results plotted in Fig. 12. It can
be seen that the intersection seam forms a closed curve
encompassing a small area around the MECP, which is
located at the origin. This behavior results from the fact
that the HF reference state is unstable in the vicinity of
the CX, leading to negative excitation energies. (In the
absence of instabilities, one would expect a double-cone

shape around the MECP.) Although these results are
computed at the CIS level, one can expect the same be-
havior for intersections between the Kohn-Sham ground
state and the LR-TDDFT excited states, at least within
the pseudo-wave function formalism for DFT derivative
couplings that is described herein.

When the excitation energy is small, we observe that
the slope of the potential surfaces becomes unrealisti-
cally large near the seam, because the energy gradient
has contributions that vary as ω−1

I .72 This is clear by
comparing Figs. 12 and 13, where the latter provides the
analogous plot computed using SF-TDDFT around the
same MECP. Here, a proper double cone is obtained.
We conclude that the potential surfaces close to a cross-
ing point involving the ground state generally exhibit
incorrect topologies, at both the CIS level and at the
LR-TDDFT level. This can be expected to have conse-
quences in NMD simulations.

FIG. 13: Potential energy surfaces of the S0 and S1 states
of PSB3 calculated at SF-BH&HLYP/6-31G* level of theory.
Energies are measured relative to the S0 energy at the MECP
structure, which is taken as the coordinate origin. This plot
exhibits the correct double-cone topology around the CX,
whereas the analogous plot at the CIS level (Fig. 12) does
not.
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