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Benzo[c]chromene-6-ones are the very significant class of lactones which constitute core structural 

subunits of various biologically and pharmaceutically active molecules1 and some important natural 

products2. Natural anti-tumour agents3 such as autumnariol (Fig. 1, 1), alternariol, altenuisol, 

autumnariniol, and graphislactones (Fig. 1, 2),  and antibiotic agents such as the galivocarcins (Fig. 1, 

3), ravidomycins and chrysomycins contain these types of oxygen containing heterocycles as their 

core structural unit.3,4 These lactones are major structural part of naturally occurring  viz. Urolithin-A 

(Fig. 1, 4), Urolithin-B (Fig. 1, 4), Urolithin-C which show anti-proliferative activity resisting cancer 

cells in animals as well as in humans. The antioxidant and important bioactive constituents of Shilajit 

are also these benzo[c]chrome-6-ones4. Distribution of 6H-benzo[c]chromene-6-ones are observed 

widely in lichens, citrus foods, herbs, plants and some invertebrates5–12.  
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Figure 1. Structure of some natural products and bioactive compounds containing chromenone moeities
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Importance of 6H-benzo[c]chromene-6-ones for its potential therapeutic and pharmaceutical 

properties, has attracted researchers over the decades towards the development of more 

convenient and straight forward route for the synthesis of these molecules6–9,11–39. 

In the past decade Bowman et al. reported Bu3SnH mediated oxidative cyclisation of o-

(benzyoxy)aryl and o-[(aryloxy)methyl]aryl radicals.10,19 
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Scheme 1.1. Synthesis of 6H-benzo[c]chromen-6-ones via Bu3SnH mediated oxidative radical cyclisation

 

 

Michael E. Jung and his co-worker synthesized these lactones via Diels-Alder cycloaddition of 4-

cyanocoumarins with 1-silyloxydienes.9 
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Inamoto and his group developed a synthetic route to benzo[c]chromene-6-ones using ruthenium-

based catalytic system via carbonylative C-H cyclization of 2-arylphenols.10 
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Our aim was to develop an efficient, convenient and environmentally benign methodology for  

the synthesis of benzo[c]chromenones. 

Vanker et al. developed a methodology for conversion of allylic alcohols to vinylic carbonyl 

compounds11 and recently, our group has reported Pd-catalyzed synthesis of benzo[c]chromenones 

and its analogues from 2-bromoaryl aldehydes and 2-hydroxyphenylboronic acid.12 We have 

efficiently combined these two ideas to construct a novel method for the one-pot synthesis of 

benzo[c]chromenones and their derivatives by palladium catalyzed domino Suzuki-Miyaura cross 

coupling and oxidative lactonization under aqueous-aerobic condition. We started our investigation 

by optimizing the reaction condition.  

 

Table 1 Optimization of the reaction conditiona,b 
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Entry Catalyst Base Ligand Solvent Additive Temp(0C) Time (h) Yield (%)c

1 PdCl2 Cs2CO3 PPh3 DMF - 80 12 49

2 PdCl2 Cs2CO3 PPh3 DMF - 90 11 57

3 PdCl2 Cs2CO3 PPh3 DMF - 110 12 51

4 Pd(OAc)2 Cs2CO3 PPh3 DMF - 90 6 73

5 Pd2(dba)3 Cs2CO3 PPh3 DMF - 90 8 64

6 Pd(OAc)2 K2CO3 PPh3 DMF - 90 6 78

7 Pd(OAc)2 Na2CO3 PPh3 DMF - 90 8 71

8 Pd(OAc)2 K3PO4 PPh3 DMF - 90 6 80

9 Pd(OAc)2 K3PO4 PPh3 CH3CN - 90 8 72

10 Pd(OAc)2 K3PO4 PPh3 Dioxane - 90 8 75

11 Pd(OAc)2 K3PO4 PPh3 H2O 90 8 81

12 Pd(OAc)2 K3PO4 PCy3 H2O TBAB 90 8 86

13 Pd(OAc)2 K3PO4 - H2O 90 8 71

14 Pd(OAc)2 K3PO4 PPh3 H2O 90 8 71

TBAB

TBAB

TBAB

TBAB

 

 

a Reagents and conditions: 5a (0.5 mmol), 2-hydroxyphenylboronic acid (0.5 mmol), catalyst (10 mol 

%), base ( 1.5 equiv.), ligand (0.25 equiv.), solvent ( 3 ml). 

b In a two-necked round-bottomed flask fitted with condenser. 

c Isolated yields after purification through column chromatography. 

 

Initially 5a (0.5 mmol) on reaction with 6 (1 equiv) in a domino fashion in presence of catalyst PdCl2 

(10 mol %), base Cs2CO3 (1.5 equiv), ligand PPh3 (0.25 equiv.) in DMF at 80°C for 12 hours gave 7a in 

49 % yield. Then we varied the conditions thoroughly to get the optimal condition. Firstly, the 

temperature was varied. The best result was obtained at 90°C. Then different Pd-catalysts were 

used. Pd(OAc)2 gave the best result. We also varied the base to obtain the most suitable base for our 

purpose. K3PO4 was found to be the best. Next we carried out solvent variation which showed water 

as the promising solvent. Lastly, we also changed ligand. PCy3 was found to be the best for our 

reaction giving the highest yield. In the absence of any ligand we did not get the desired product. 



Thus the optimized condition for one-pt synthesis of benzo[c]chromene-6-ones was found to be 10 

mol % of Pd(OAc)2, 1.5 equiv K3PO4,  and 0.25 equiv PCy3 in water at 90°C for 8 hours. 

 

Having this optimized condition in our hand, the scope of our methodology was investigated by 

applying the same on different substrates 5a-h (Table 2) and 8a-d (Table 3) to get 

benzo[c]chromene-6-ones 7a-h (Table 2) and napthochromenones 9a-d (Table 3) respectively. 

  

Table 2: Synthesis of chromenones  

 

R1

R2

R3

OH

Br

HO

(HO)2B

+

Pd(OAc)2 (10 mol %)

K3PO4, PCy3

TBAB, H2O

air, 90 0C

R1

R2

R3

O

O

5a-5h
7a-7h

 



Entry Substrate Product Yield (%) b

OH

Br

O

O

1

5a

7a

OH

Br
5b

Me

O

O

7b

Me2

OH

Br

5c

MeO

MeO

O

O

7c

MeO

MeO
3

OH

Br

5d

MeO

MeO

O

O

7d

MeO

MeO

OMe
OMe

4

OH

Br

5e

O

O

7e
F

F5

OH

Br
5f

O

O

O2N O2N

7f

6

7
N

OH

Br

5g

N

O

O

OH

Br

O

O

8

5h
7h

7g

Table 2. Synthesis of benzo[c]chromenonesa

86

84

80

62

73

83

_

_

 

a Reagents and conditions: 5a-h (0.5 mmol), 2-hydroxyphenylboronic acid (0.5 mmol), Pd(OAc)2 (10 

mol %), K2CO3 ( 1.5 equiv.), PCy3 (0.25 equiv.), water ( 3 ml). 

b Isolated yields after purification through column chromatography. 
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a Reagents and conditions: 8a-d (0.5 mmol), 2-hydroxyphenylboronic acid (0.5 mmol), Pd(OAc)2 (10 

mol %), K2CO3 ( 1.5 equiv.), PCy3 (0.25 equiv.), water ( 3 ml). 

b Isolated yields after purification through column chromatography. 

 

In order to study the proper sequence of the reactions for the synthesis of the substituted 

chromenones, a reaction (Scheme 2) was carried out between bromobenzene 10 and 2-

hydroxyphenylboronic acid 6 keeping all others reaction factors intact17. The reaction (Scheme 2) 

was completed in one and half hours and the product 11 was obtained in excellent yield.  
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Then another reaction (Scheme 3) was accomplished without 2-hydroxyphenylboronic acid 6 using 

2-bromobenzyl alcohol 12 as the only reactant. The reaction (Scheme 2) took five hours to be 

completed and we got 2-bromobenzaldehyde 13 as the product. 
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From this observation it can be concluded that the Suzuki-Miyaura coupling is faster than oxidation 

of the alcohols to carbonyls by Pd-nanoparticles25 under the optimized reaction condition. Thefore, 

the plausible reaction sequence is the formation of the intermediate A which then oxidises to B 

which in turn equilibrates with the hemi acetal C followed by another oxidation of the alcoholic 

group i.e. oxidative lactonization to form the product. The sequences and the catalytic cycle for the 

plausible mechanism has been shown in the Scheme 3 and Scheme 4 respectively.40 
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However the intermediates were never isolated because whenever A converts to B, it rapidly 

equilibrates with C due to the close proximity of free O- under the reaction medium. So B & C are 

formed as transient intermediate. Further investigation of the mechanistic details is underway.17 
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Conclusion: 

In summary, we have developed a new convenient methodology for the synthesis of 

benzo[c]chromenones and its higher analogues via domino Suzuki-Miyaura cross-coupling and 

oxidative lactonization catalyzed by in situ generated palladium nanoparticles in water under aerobic 

condition. Our methodology is short and environmentally benign and substrate is readily available. 
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