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Abstract

Predicting the nature and outcome of reactions using computational methods is a

crucial tool to accelerate chemical research. The recent application of deep learning-

based learned fingerprints to reaction classification and reaction yield prediction has

shown an impressive increase in performance compared to previous methods such as

DFT- and structure-based fingerprints. However, learned fingerprints require large

training data sets, are inherently biased, and are based on complex deep learning ar-

chitectures. Here we present the differential reaction fingerprint DRFP. The DRFP

algorithm takes a reaction SMILES as an input and creates a binary fingerprint based

on the symmetric difference of two sets containing the circular molecular n-grams gener-

ated from the molecules listed left and right from the reaction arrow, respectively, with-

out the need for distinguishing between reactants and reagents. We show that DRFP

outperforms DFT-based fingerprints in reaction yield prediction and other structure-

based fingerprints in reaction classification, reaching the performance of state-of-the-art

learned fingerprints in both tasks while being data-independent.
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Introduction

Computational methods to predict the nature and outcome of reactions are important tools

to accelerate chemical research.1–11 The nature of a reaction is well-described by its name

and class, where a reaction class is defined by the general reaction-type and the partici-

pating chemical entities.12–14 Automating the classification of reactions provides a tool for

chemists to search databases and to quickly evaluate and optimise a novel reaction based on

the nature of similar reactions. An important outcome of a chemical reaction is its yield,

the percentage of successfully converted reactants into the desired product. Computational

methods for predicting such yields are highly valuable in synthesis-planning, where high

yields are of paramount importance–especially in multi-step reactions. Earlier work used

physics-based descriptors or structure-based molecular fingerprints to classify chemical reac-

tions or predict reaction yields.6,15,16 However, computational complexity and inherent biases

have introduced seemingly insurmountable challenges to these approaches. Recently, with

the availability of large data sets and the resurgence of artificial neural networks (ANN),

deep learning-based learned fingerprints have been introduced as an alternative to earlier

methods, outperforming them by considerable margins.11 However, these approaches come

with several drawbacks as well. Training a learned fingerprint requires large amounts of

data of acceptable quality and must be retrained when new data becomes available, posing

a challenge to accessibility and reproducibility. Due to the nature of the ANNs, learned

fingerprints are challenging to interpret, as they, for example, require a careful analysis of

attention weights.11 Finally, the training and evaluation of the models require specialised

hard- and software to become computationally tractable.

Here we present the differential reaction fingerprint (DRFP) for reaction search and

categorization as well as yield prediction. The reaction fingerprint DRFP borrows the

creation of circular substructures from a molecule and the subsequent hashing of their

SMILES representations from the chemical fingerprints ECFP and MHFP, respectively

(see Figure 1 and Molecular n-grams).18,19 However, as reaction SMILES consist of mul-
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tiple molecules in the form REACTANTS>AGENTS>PRODUCTS, three additional steps have to

be introduced: (I) The agents are added to the reactants, resulting in the representation

REACTANTS+AGENTS>>PRODUCTS; (II) molecules on each side of the reaction representation

are processed individually, resulting in two sets of SMILES R and P ; (III) the symmetric

difference of the two sets S = R4P is taken, hashed using an arbitrary hash function with

a sufficiently low collision probability (BLAKE2), and then further hashed into a fix-length

binary vector using h(k) = k mod d, where k ∈ S, and d is the desired dimensionality of

the fingerprint. Compared to the approach introduced by Schneider et al. 16 , DRFP does

not apply weights based on atom-mapping to differentiate between reactants and agents,

does not require the calculation of molecular properties for the agents, and does not apply

arithmetic operations on individual molecular fingerprints, such as the atom pair fingerprint,

to create a reaction fingerprint.

Given this conceptually simple fingerprint, we show that its performance, when applied

to tasks mentioned above, rivals or even surpasses that of state-of-the-art methods while

using minimal non-specialised computational resources and no specialised hard- or soft-

ware (see Computational Resources). The fingerprint requires an unannotated, non-atom-

mapped reaction SMILES as input and embeds this molecular representation from reaction

SMILES space into an arbitrary low dimensional binary metric space through set opera-

tions and subsequent mod hashing. We show that a k-NN classifier trained with DRFP

significantly outperforms those trained on existing, non-learned fingerprints and rivals or

surpasses the performance of learned fingerprints without the need for supervised learning

pre-classification. Furthermore, the fingerprint can act as an unbiased benchmark for new

methods. Finally, we show that this method, based on a simple set operation and hash-

ing scheme, can outperform both deep learning-based learned fingerprints and physics-based

descriptors in yield prediction tasks. We make the fingerprint creation algorithm available

as a pypi package (drfp). The source code and documentation are available on GitHub

(https://github.com/reymond-group/drfp).
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Figure 1: Encoding a reaction17 without distinguishing between reactants and agents into
an DRFP fingerprint is achieved by first extracting circular substructures of radius r (r =
3 in the above example) into two sets (blue and red circles for reactants and products,
respectively). In a second step, the two sets’ symmetric difference (blue and red shaded
areas) is hashed using an arbitrary hash function. Finally, the resulting set is hashed into a
binary vector using modular hashing.
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Results and Discussion

Reaction Classification

The reaction classification was carried out using the k-nearest neighbor classifier based on

faiss20 as defined by Schwaller et al. 11 . Initially, DRFP was evaluated on the USPTO 1k

TPL set using a number of different configurations, namely for radius r ∈ {2, 3, 4} and

dimensionality d ∈ {16, 32, 64, 128, 256, 512, 1024, 2048}. For all chosen radii, the accuracy

increases strongly between d = 16 to d = 128, while only increasing slightly from d = 256 to

d = 2048. The r = 2 variant performs significantly better than r ∈ {3, 4} for d ∈ {16, 32}

(Figure 2a). This is due to fewer collisions during mod hashing resulting from fewer extracted

sub-structures. Starting with d = 256, the r = 3 variant performs better than both the other

variants.

Reducing the training set to 10 and 1% of its original size, aside from a general reduction

in accuracy, also leads to a better relative performance of the r = 2 variant across all

dimensions d (Figure 2b,c). These results suggest that choosing the r = 2 variant might be

advantageous in low data settings, and there is no value in choosing r = 4 over r = 2 or

r = 3, independent from d and the amount of available training data. However, as the r = 3

variant performed best in the case of the complete training set for high d, the r = 3 and

d = 2048 variant is chosen for all further benchmarks, including reaction yield predictions.

Table 1: Reaction classification accuracy on the USPTO 1k TPL data set.

USPTO 1k TPL Classifier Accuracy CEN MCC

rxnfp 5-NN 0.989 0.006 0.989
AP3 256 5-NN 0.295 0.242 0.292
AP3 256 MLP 0.809 0.101 0.808
DRFP 5-NN 0.917 0.041 0.917
DRFP MLP 0.977 0.011 0.977

Evaluating the k-nearest neighbour classification benchmark on the TPL data set, DRFP

outperforms the structure-based fingerprint AP3 256 by a factor of 3.1 and reaches 93% of
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Figure 2: Accuracy of the k-nearest neighbor classification on (a) the entire TPL data set, (b)
10% of the data set, and (c) 1% of the data set using DRFP fingerprints for dimensionality
d ∈ {16, 32, 64, 128, 256, 512, 1024, 2048} and r ∈ {2, 3, 4}. The accuracy starts to plateau
with d = 128 independently from the amount of training data. However, a lower r increases
the accuracy in low data settings and when a low dimensionality d is chosen due to increased
generality and fewer collisions, respectively.

the performance of the learned fingerprint rxnfp. Replacing the k-nearest neighbour classifier

with a simple multilayer perceptron (MLP), DRFP reaches 99% of the performance of rxnfp.

This result suggests that conceptual complexity, including learning, can be factored out of

fingerprint creation, moving it instead to the classification task with a minor impact on

classification performance. A non-learned fingerprint has the advantages of reducing bias

and increasing the interpretability of results as each feature can be mapped to one or more

molecular substructures.
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Reaction Yield Prediction

Comparing the yield prediction performance of DRFP to that of learned and physical

descriptor-based fingerprints shows that this simple fingerprint is competitive, as it demon-

strates consistent performance on all test sets. Averaging the 11 tests shown in Table 2,

DRFP outperforms Yield-BERT, an augmented version of Yield-BERT, as well as a DFT-

based method, in a yield prediction task on a data set of Buchwald Hartwig reactions. It

also outperforms rxnfp in yield prediction of USPTO reaction data and a data set of Suzuki

Miyaura reactions (Tables 3 and 4).

Table 2: R2 of yield prediction on Buchwald Hartwig reactions.

R2 DFT6 Yield-BERT10 Yield-BERT (aug.)21 DRFP (xgboost)

rand 70/30 0.92 0.95 ± 0.005 0.97 ± 0.003 0.95 ± 0.005
rand 50/50 0.9 0.92 ± 0.01 0.95 ± 0.01 0.93 ± 0.01
rand 30/70 0.85 0.88 ± 0.01 0.92 ± 0.01 0.89 ± 0.01
rand 20/80 0.81 0.86 ± 0.01 0.89 ± 0.01 0.87 ± 0.01
rand 10/90 0.77 0.79 ± 0.02 0.81 ± 0.02 0.80 ± 0.02
rand 5/95 0.68 0.61 ± 0.04 0.74 ± 0.03 0.73 ± 0.02
rand 2.5/97.5 0.59 0.45 ± 0.05 0.61 ± 0.04 0.61 ± 0.04
test 1 0.8 0.84 ± 0.01 0.8 ± 0.01 0.81 ± 0.01
test 2 0.77 0.84 ± 0.03 0.88 ± 0.02 0.83 ± 0.003
test 3 0.64 0.75 ± 0.04 0.56 ± 0.08 0.71 ± 0.001
test 4 0.54 0.49 ± 0.05 0.43 ± 0.04 0.49 ± 0.004
avg. 1-4 0.69 0.73 0.58 ± 0.33 0.71 ± 0.16
avg. overall 0.75 ± 0.12 0.76 ± 0.17 0.778 ± 0.18 0.784 ± 0.14

In order to predict reaction yields using DRFP, gradient boosting with early stopping

was chosen as a machine learning technique. 10% of each training split was set aside and

used to evaluate for early stopping. Hyperparameter optimisation was performed on five

random splits (70/30). The resulting performance (R2) is then compared to the density

functional theory (DFT) based fingerprint with a random forest regressor by Ahneman

et al. 6 , Yield-BERT, an extension of the learned rxnfp fingerprint with a regression layer,

and an augmented variant of the latter (Table 2). The data set used is a collection of 3,955

Pd-catalysed Buchwald–Hartwig C-N cross-coupling reactions from a high throughput ex-
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periment by Ahneman et al. 6 . For this data set, 11 splits were defined; seven splits where

the relative size of the training set was decreased from 70 to 2.5% and four out-of-sample

splits based on isoxazole additives. DRFP performs better on the random splits than the

DFT-based fingerprint with random forests and Yield-BERT but is outperformed by the

augmented Yield-BERT by a narrow margin. In the out-of-sample splits, DRFP performs

better than the augmented version of Yield-BERT and the DFT-based method, yet the non-

augmented Yield-BERT performs slightly better. When averaging over all 11 tests, DRFP

performs best.

Table 3: R2 of yield prediction on Suzuki Miyaura reactions.

R2 Yield-BERT DRFP (gradient boost)

avg. 0.81 (± 0.01) 0.85 (± 0.01)

The performance of DRFP was further tested on a data set containing Suzuki-Miyaura

reactions and the USPTO reaction data set. In both cases, DRFP performed better than

Yield-BERT. However, similar to the Buchwald-Hartwig reaction data, the difference be-

tween the two approaches is relatively small. Both methods perform better on reactions

with a sub-gram scale yield.

Table 4: The R2 of yield prediction on the USPTO data set that has been divided into gram
scale and sub-gram scale yield subsets.

USPTO Random Split rxnfp DRFP

Gram Scale 0.117 0.13
Sub-Gram Scale 0.195 0.197

Overall, DRFP reaches a compelling performance in yield prediction using a gradient

boosting regressor that does not require hyperparameter tuning between different sets.
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Conclusion

We have introduced a reaction fingerprint encoding scheme, DRFP, based on a simple 4-step

process comprised of extracting circular n-grams, XORing, hashing, and folding. DRFP

is capable of reaching state-of-the-art performance without extending the use of machine

learning models from classification or regression tasks to the fingerprint creation task. The

fingerprint creation algorithm is available as a pypi package (drfp). Source code and docu-

mentation are available on GitHub (https://github.com/reymond-group/drfp).

Methods

Computational Resources

We ran all of the training runs as well as the evaluations of the models on a DELL XPS

Laptop with 16 GB of main memory, no dedicated GPU, and an 11th Gen Intel(R) Core(TM)

i7-1165G7 @ 2.80GHz CPU.

Molecular n-grams

Molecular n-grams are generated from SMILES using the RDKit library. Given a radius r,

we iterate over the heavy atoms in an input molecule and extract sub-SMILES centred on

each atom with radii 0 to r, where a radius of 0 is the single central atom. In addition,

rings from the SSSR (smallest set of smallest rings) are extracted as well. Compared to the

atom pair-based approach by Schneider et al. 16 , the n-grams-based fingerprint also captures

stereochemistry.

Gradient Boosting

For regression by gradient boosting, we used the Python library xgboost. Hyperparameter

tuning was carried out on the rand 70/30 set of the Buchwald-Hartwig reaction data set.
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Algorithm 1 Generating molecular n-grams

1: shingling ← empty set
2: for atom in molecule do
3: for radius = 0, . . . , r do
4: Add substructure with radius rooted at atom to shingling as SMILES
5: end for
6: end for
7: for ring in sssr(molecule) do
8: Add substructure of ring to shingling as SMILES
9: end for

We applied the same hyperparameter values (n estimators=999999, learning rate=0.01,

max depth=15, min child weight=8, colsample bytree=0.2125, subsample=1) in all uses

of xgboost. For each test, 10% of the training data were randomly selected as the validation

set an removed from the training set. The validation data sets were used as evaluation sets

for early stopping (20 rounds for all data sets with the exception of the USPTO, data for

which 10 rounds were used to speed up the calculation).

k-Nearest Neighbours Classifier

The k-Nearest Neighbour classifier was implemented according to Schwaller et al. 11 using

faiss with k = 5.

Multilayer Perceptron Classifier

In addition to DRFP + 5-NN classifier, DRFP + multilayer perceptron (MLP) classifier

was applied to the USPTO 1k TPL data set. The MLP was implemented using Tensorflow

2.4.1 and consists of an input layer the size of the input vector (2,048), a dense hidden

layer of size 1,664 and a tanh activation function, and a dense output layer with a softmax

activation function. The loss function was sparse categorical cross-entropy. Adam was used

as an optimiser. The model was trained over 10 epochs with a batch size of 64 on a CPU.

For the evaluation of AP3 256, the number of units in the hidden layer was changed to

1024, and the model was trained for 100 epochs.
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