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ABSTRACT: Trillions of tiny particles generated by our plastic-reliant society are polluting 

environments worldwide. An explosion of research has been devoted in the last years to detect, 

identify and quantify the microplastics, hidden not only in the oceans but also in the world’s rivers, 

lakes, air, soil as well as food and organisms. Thus, we urgently need reliable standards to support the 

decision-maker to handle many issues related to this question. In this paper, the results of a VAMAS 

survey that involved 390 experts are presented and discussed. The inter-laboratory studies urgently 

needed in the next future are proposed.  
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1. Introduction 

Microplastics (MPs) derive from countless human-made products and are found in every 

environmental sector1,2,3. Below the micron, the term nano-plastics (NPs) should be used, although 

in general this distinction is not yet applied, at least by current regulations4. MPs and NPs have all 

anthropic origin and consist of mainly six different polymers: polyethylene terephthalate (indicated 

in the recycling codes as PET or PETE), high or low-density polyethylene (indicated respectively as 

PE-HD or HDPE and PE-LD or LDPE), polyvinyl chloride (PVC), polypropylene (PP), polystyrene 

(PS)5. They originate from many everyday products (mainly cosmetics, synthetic fabrics, tyres) and 

are found in the environment principally due to the inadequate disposal of plastic waste and wear 

phenomena3,6,7,8,9. 

The presence of MPs in water bodies worldwide is increasing and scientists, risk-managers, 

politicians and, above all, the population, consider the related issue to be of great concern. It is now 

necessary to fully understand the level of risk to human health and ecosystems and, therefore, the 

necessary prevention and control actions10. MPs may reach surface water bodies by different routes, 

such as leaching of particles in soil or air to water bodies, transport of plastics disposed inadequately 

and also from untreated sewage drains, due to meteoric events and transported by effluent from 

sewage treatment plants11,7,12. 

Therefore, it is a topic of primary interest and requires fundamental interdisciplinary research. There 

is a need to implement the necessary environmental policies to deal effectively with the potential 

environmental problems13,14. 

In this context, proper scientific and technical dissemination to the various stakeholders, decision-

makers and the population should promote awareness of the issue, its origin, dissemination and extent, 

deepening the aspects still under discussion to provide a sound knowledge base and 

standards15,16,17,18,19.  

The risk of MPs for humans and aquatic organisms is still under discussion20,21,10. In fact, against the 

experimental evidence that shows how the MPs, ingested or breathed, can penetrate through the 



tissues of living organisms, their actual toxicity is still not assessed. Relevant are also potential 

impacts of the additives such as plasticisers and pigments22,23,24,25,26. 

One of the major difficulties is the lack of standardisation of the tests for the evaluation of MPs. An 

effective strategy can be only achieved thanks to a clear scientific vision of the issues arising from 

MPs and NPs, allowing the development of common standards, and facilitating the agreement on 

international regulations. 

MPs issues are addressed in the environmental legislation (with a particular focus on marine 

protection) and in the legislation dealing with products and product packaging. At a more general 

political level, in Europe, for instance, it is discussed in the plastic strategy27 and the European action 

plan for the circular economy, "Closing the loop"28, where, however, MPs and NPs are not explicitly 

mentioned4. Due to the lack of reliable data, the precautionary principle has been part of the basis of 

the current regulation29.  

There are currently no standardised and unambiguous methods for sampling MPs in the various 

environmental matrices, even if a lot of work has been done30,31,32,33,34. In such a complex scenario, it 

is necessary to know the matrix to be monitored and to carry out the proper sampling. The assessment 

of MPs is a multi-step process, including sample preparation (such as homogenisation or pre-

concentration), extraction, purification, identification, and quantification. 

The composition of MPs plays a fundamental role in the precise knowledge and management of the 

problem of the relative environmental pollution. Unfortunately, any standard method for MPs 

identification has still been adopted. The characterisation of MPs can be performed by different 

chemical-physical techniques, each of which has advantages and disadvantages and through which it 

is possible to estimate different parameters. Among the different techniques, vibrational 

spectroscopies are attested as the most used techniques, because the analysis is fast, free of chemical 

reagents, cost-effective, and non-destructive35.  

Knowledge of the sources, levels, environmental fate of MPs and the models are based on sampling 

and analysis, and reliable data are mandatory for the assessment of the management options36.  



Another critical aspect of assessing is the ability of MPs and NPs to act as carriers for other 

environmental contaminants37,38. MPs and NPs can be distributed differently from the physical 

particles in the different abiotic environmental compartments and constitute an additional risk factor 

for organisms through the diet and the breathing.  

Further research is needed, which is still limited and scarcely comparable to clarify the transport 

mechanisms, the fate and potential for bioaccumulation of MPs and NPs in humans and to estimate 

the actual risks for each compartment. 

The scientific community is rarely involved in the standardisation process since usually this is not 

considered part of the research. However, scientists should participate in this process when the 

assessment of experimental procedures is required. Indeed, a technical standard must correspond to 

the best practice assessed by experts, who must compare the results through inter-laboratory tests and 

understand the differences among results obtained by different techniques, different instruments, 

different laboratories. Standards can be used for proficiency tests to guarantee the reliably of the data, 

a mandatory requirement to any kind of analysis, and to help the operator to improve the laboratory 

performances. Moreover, the standards are relevant for the decision-makers, and scientists have the 

responsibility to give a contribution to their validation and assessment. 

The standardisation process for the definition of material properties or new techniques is always based 

on research results (Figure 1). A new method then must be assessed first by intra- and then inter-

laboratory test to define the best procedure. After that, the standardisation process inside can begin. 

The standardisation is a mandatory step in the case of issues related to society, in particular in the 

case of health and environmental normative. 



 

Figure 1. Standardisation Process 

 

VAMAS, established in 1982, helps and speeds up the assessment and the optimisation of a 

harmonised procedure39. Indeed, these two steps are those often neglected by the scientific 

community, and VAMAS can internationally promote these actions. The scope of VAMAS includes 

all the steps necessary to define materials and properties: process, characterisation, and performances. 

Today it involves Australia, Brazil, Canada, China, Chinese Taipei, France, Germany, India, Italy, 

Japan, Mexico, Republic of Korea, South Africa, UK, USA, Mexico, and European Union. 

Researchers of any countries can participate in the projects. 

Why we need reliable standards for micro and nano plastics issues? Before coronavirus pandemic, 

plastic was considered one of the major environmental issues, together with global warming. Indeed, 

the production, demand and waste of plastics growth exponentially starting in the last century. 

According to the analysis of European plastics production, demand and waste data40, in 2020 more 

than 368 million tonnes have been produced and this number is expected to double it in the next ten 

years. The worldwide coronavirus emergency has made make it even worst. Since the pandemic 

started, there has been a significant increase in plastic waste, such as masks, gloves and gowns. New 

https://www.theverge.com/2020/3/26/21194647/the-covid-19-pandemic-is-generating-tons-of-medical-waste


solutions to handle the waste and to find new materials with more sustainable properties are needed 

and must be assessed.  

On the other side, researchers are very active in the field of MP issues. During the last 2 years (namely, 

2019 and 2020), more than 230 reviews have been published about different topics related to MPs 

and NPs. As shown in Figure 2a, the number of papers in the last 15 years is growing exponentially. 

The research devoted to nano plastics has the same trend, even if there is an order of magnitude lower. 

There is also a strong correlation between MPs and NPs-related papers published in each country as 

depicted in Figure 2b. 

Figure 2. (a) SCOPUS publications about MPs (in blue) and NPs (in red). (b) Correlation between 

MPs and NPs-related papers.  

 

The geographical distribution of the authors mirrors the international degree of the research in this 

field (Figure 3), confirming recent findings of detailed studies on global trends in MPs research13,41. 



 

Figure 3. Total papers published in the world: micro and nano plastics. 

 

There are already normative activities in the Technical Committee ISO/TC61-Plastic, in which there 

is a subcommittee devoted to the Environmental aspects and five working groups already established: 

• Terminology, classifications and general guidance 

• Biodegradability  

• Biobased Plastics 

• Characterisation of plastics leaked into the environment (including microplastics) 

• Mechanical and chemical recycling 

 

2. The survey 

Last year, a survey was proposed to the scientific community to collect information about experts 

who work and plan to work on MP issues. 390 experts from 46 countries answered the survey. In this 

paper, we report a summary of the results. The survey is open and still available42. 



2.1 General Information 

On the 390 experts answering the survey, about 50% have worked with MPs. In Figure 4, the experts 

who answered the survey for each country are reported. The black columns indicate the experts who 

are involved in MP issues, the grey columns those who are planning to work in the field. In the red 

rectangle, there are countries where no experts who answered are yet involved.  

We had the contribution of experts belonging to universities public research centres, private 

companies, metrological, and no-profit institutes. In Figure 5, it is shown that the large majority of 

the experts (75%) belong to university. 

 

Figure 4. The experts of the countries who answered the survey. In the black are those who declared 

to have already experience in the field. In the red rectangle, there are countries where no experts who 

answered are yet involved. 



 

Figure 5. Experts organizations. In black the experts who declared to have already experience in the 

field. 

 

2.2 MP definition 

When standardisation procedures have to be assessed, definitions have to be clear and clarified43,44. 

Regarding microplastics, there are different definitions on the web and in the scientific publications. 

Thus, the first question of the survey regards the definition of MPs.  

We proposed six different definitions45: 

A. Small pieces of plastic, less than 5 mm (0.2in) in length; 

B. According to their origin, primary, if produces to be of microscopic dimensions or secondary if 

resulting from degradation and fragmentation processes in the environment; 

C. Plastic particles < 5 mm in diameter, which includes particles in the nano-size range (1nm); 

D. Lower size limits ranging from 1 to 20 μm; 

E. Microplastics are any synthetic solid particle or polymeric matrix, with regular or irregular shape 

and with size ranging from 1 μm to5 mm, of either primary or secondary manufacturing origin, 

which are insoluble in water; 



F. “Particles resulting from the degradation of plastic objects” and that “nano plastic exhibit a 

colloidal behaviour within size ranging from 1 nm to 1 μm”. 

As shown in Figure 6, the majority of the expert chose option E as the best definition for MPs. 

Interestingly, the percentage of experts choosing different definition is independent by the country. 

 

Figure 6. Definition of MPs, as given in the text. In black are those who declared to have already 

experience in the field. 

 

The ISO technical report published in February 202046 has given the definition for MP, large MP and 

nanoplastics44. In Figure 7, the comparison of the survey results and the ISO definition. The term 

“large microplastic” is introduced for a particle with size between 1 to 5 mm. Remarkably, following 

the ISO definition, 200 nm particles is defined as nanoplastic, but not as nanoparticle.  

 

 

 



2.3 Criteria for defining MPs  

The second question is “What are the key criteria for defining microplastic?” Experts can make more 

than one choice. As expected, the majority chose as key criteria the size. In particular, 255 experts 

choose only the size. However, 27 experts choose the origin as the only key criterion (Figure 8).  

 

Figure 7. Definition of MPs given in the survey and in ISO. 

 



 

Figure 8. “What are the key criteria for defining microplastic?” In black are the experts who declared 

to have already experience in the field. 

 

2.4 MP properties  

The following question was: "what properties of microplastics are more/less critical for the 

environment?" The expert can score the properties from 0 (not relevant) to 6 (mandatory).  

Most of the experts chose biodegradability as the most critical properties to be considered, followed 

by chemical and biological features. Mechanical and thermal properties are those considered less 

critical from most of the experts. In Figure 9, the scores given by the experts are shown. The black 

points in Figure 9(a) correspond to experts who declared to have already scientifically involved in 

MP matters. In Figure 9(b), are shown the choices of the experts who scored as mandatory the thermal 

prosperities. Interestingly, most of the experts who score 6 for thermal properties, considered also 

mandatory the definition of all the properties of the MPs. 

 



 

Figure 9. “What properties are far more/less critical for the environment?” (a) in black experts who 

declared to already have experience in the field. (b) in black the experts who score 6 to thermal 

properties.  

 

In Figure 10, the correlation map among the scores given to the different properties is shown. 

Chemical, biological properties and biodegradability are considered the most critical. A strong 

correlation is clearly shown with the choices of mechanical and thermal properties. Some experts, 

answering the question gave interesting suggestions regarding other critical properties that have to be 

considered namely:  

• Capacity to adsorb persistent organic pollutants (POPs); 

• Transportation mechanisms; 

• Biofilm formation around micro-particles; 

• Degradation path; 

• Absorption by living beings, ecotoxicity; 

• Chemical additives in plastic production. 



 

Figure 10. Correlation Map of the scores. 

 

2.5 Competences declared by the experts 

In Figure 11, the competences declared by the experts are reported. Other engineering competencies 

were added, as manufacturing, advanced water treatment, robotics, image processing. 

Unfortunately, social and economic expertise are missing. Likely, when reliable data and models are 

available, also their contribution will be mandatory. In the Supplementary Material, the correlation 

between the competences of the experts and their scores are shown. There is not a significant 

correlation among the scores and the declared expertise.  



Based on the survey, experts had developed protocols to analysis MPs in all kinds of matrices, as 

waste, plants, animals, materials, and air. The majority declared to have developed protocols for the 

determination of chemical components in water (95) and sediment (67).  

 

Figure 11. Competences of the experts. In black, the experts who declared to have already experience 

in the field. 

 

2.6 MP characterization techniques 

As expected by the bibliometric analysis13, the most used technique to characterise MPs is the infrared 

spectroscopy, with 111 experts declared to use it already. However, it has been recently outlined that 

most studies cannot be replicated due to missing experimental details47. Other techniques used by 

many experts are Raman spectroscopy48,49 and electron microscopy50,51, followed  by DSC-

TGA52,53,54, ICP55 and Chromatography56 (see Figure 12). 

 



 

Figure 12. Distribution of MP characterization techniques 

 

2.7 Inter-laboratory activities 

The survey collected suggestions for inter-laboratory activities urgently needed, namely:  

1. assessment of sampling in different matrices (air, waters and leachates, soils and sands, marine 

organisms, food) to avoid/limit sample contamination during sampling, storage, extraction 

and detection 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72; 

2. definition of reference standard MPs; 

3. definition of protocols for dispersion or homogenisation of the microplastics onto the test 

media68; 

4. detection, identification of the chemical components, 

classification73,74,75,76,77,78,79,49,68,56,48,80,50,81,52; 

5. quantification and size and mass fraction distribution in different environmental 

matrices82,83,84,85,86; 

6. biodegradation and degradation and aging87,88,89,24,90,91,92;  

7. biological effect, evaluation of inflammation (and microbiota) in juvenile organisms (fish, 

mammals, birds, invertebrates), testing the transit time of microplastics through the 

gastrointestinal tract of marine animals, bioaccumulation in each type of tissue (fats, etc.), 



toxicity and ecotoxicity tests 

assessment14,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118; 

8. assessment of sewage and waters treatment 119,120,121,122,123,124,125,126,127,75,128,129,130,131; 

9. assessment of fibers released by textiles 132,133,134; 

10. transportation models 135,102,123,136,5,137,138; 

11. isolation and identification of nano fraction in environmental samples including biota 

139,140,141,142,143; 

12. assessment of the impacts 144,145,5,75,8,146,147,148,149,150 

 

3. Implications 

The scientific community involved in MP and NP issues is growing fast since potential drawbacks 

for the environment and possible for human health are relevant. 

To have reliable data are mandatory for the society and, in particular, for the decision-makers. 

Inter-laboratory study to assess the protocols for sampling, detection and modelling the phenomena 

should be a priority to the standardisation. The evaluation of the real dangers should be assessed and 

declined in legislation acts that should be shared by all the countries to be effective. 

The new technical area of VAMAS has been proposed to give the scientific community an 

international platform to very and assessed all the scientific topics related to MPs and to support all 

the national and international projects in developing reliable protocols. 

As a fallout of the survey, a database of international experts with very different competencies who 

are already involved or would like to work on MP issues is available. 
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