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Abstract 

Water is a unique solvent that is ubiquitous in biology and present in a variety of solutions, mixtures, 
and materials settings. It therefore forms the basis for all molecular dynamics simulations of biological 
phenomena, as well as for many chemical, industrial, and materials investigations. Over the years, many 
water models have been developed, and it remains a challenge to find a single water model that 
accurately reproduces all experimental properties of water simultaneously. Here, we report a 
comprehensive comparison of structural and dynamic properties of 30 commonly used 3-point, 4-point, 
5-point, and polarizable water models simulated using consistent settings and analysis methods. For the 
properties of density, coordination number, surface tension, dielectric constant, self-diffusion 
coefficient, and solvation free energy of methane, models published within the past two decades 
consistently show better agreement with experimental values compared to models published earlier, 
albeit with some notable exceptions. However, no single model reproduced all experimental values 
exactly, highlighting the need to carefully choose a water model for a particular study, depending on 
the phenomena of interest. Finally, machine learning algorithms quantified the relationship between the 
water model force field parameters and the resulting bulk properties, providing insight into the 
parameter-property relationship and illustrating the challenges of developing a water model that can 
accurately reproduce all properties of water simultaneously.  



Introduction 
 
Water is commonly referred to as the universal solvent because it dissolves more substances than any 
other known liquid. It is also essential for life and understanding and simulating its role in all biological 
processes is extremely important. The exceptional solvating capacity of water is thought to result from 
its unique molecular properties, including high dielectric constant, hydrogen bonding structures, 
mobility, self-ionization, and strong permanent dipole moment.1 The combination of these unique 
properties allows water to facilitate many solvation and self-assembly phenomena. As such, it is a 
critical component of molecular dynamics (MD) simulations of proteins,2-5 DNA,6-8 membranes,9-12 
polymers,13-16 in solvent mixtures involving water,17-19 and water-solvated materials.20-25 MD 
simulations are a powerful tool for providing atomistic insight into experimental systems of interest. 
Moreover, these techniques are accessible to researchers with little prior experience in modeling or 
computational approaches26 due to the development of freely available force field parameterization 
tools such as CGenFF,27, 28 LigParGen,29 and others,30, 31 as well as tools for constructing systems and 
input files such as VMD32 and CHARMM-GUI.33 While this is undeniably of great benefit to the 
scientific community at large, the number and diversity of water models currently available (Figure 1) 
means it is critical that new users are aware of the potential pitfalls and concerns regarding the choice 
of water model for their MD simulations. For example, reproducing the correct dielectric constant of 
the individual components is essential for correctly describing the properties of a solvent mixture,17 and 
reproducing the surface tension of water is necessary for describing surfactants, monolayers, and 
interfaces.34, 35 For transport properties such as hydrogen bond lifetimes and viscosity, a reasonable 
value of the self-diffusion coefficient of water is desirable.36 To ensure that simulated systems involving 
water are reflective of real-world phenomena, it is crucial to validate that the chosen model can 
reproduce the intrinsic properties of water. 

 
Figure 1. Examples of water model geometry for the water models examined in this work. Oxygen and 
hydrogen are colored red and white, respectively. The offset partial charge on oxygen, M, in the 4-point 
models is colored pink. The lone pairs in the 5-point models, L, are colored cyan. The Drude oscillator 
in the polarizable model is colored purple.  
 
Here, we use the term ‘water model’ to describe the complete set of force field parameters (i.e. bond 
lengths, angles, force constants for flexible models, atomic partial charges, and Lennard-Jones sigma 
and epsilon values that describe van der Waals interactions) necessary to perform MD simulations of 
water. While simulations of water have been reported since the 1960s,37, 38 the first generation of water 
models that are still commonly in use today was developed in the 1980s. The Simple Point Charge 
(SPC) water model, with a geometry based on the tetrahedral structure of water in ice and published by 
Berendsen et al. in 1981,39 is typically used with the GROningen MOlecular Simulation (GROMOS) 
force field.40 The Transferable Interaction Potential 3-point model (TIP3P), with a geometry based on 
gas-phase water and published by Jorgensen et al. in 1983,41 is still used with both the Assisted Model 
Building with Energy Refinement (AMBER)42 and Optimized Potentials for Liquid Simulations 
(OPLS)43 force fields. The slight differences in bond lengths and angles allow for SPC-based models to 
reproduce the experimentally observed second peak in the O-O radial distribution function, whereas the 
second peak is missing entirely from the initial TIP3P model. Radial distribution functions, which 
reflect molecular structure in terms of density, are commonly used for comparison as they can be 
directly compared to experimental data extracted from X-ray scattering of molecular fluids.44 Further 
modifications to the TIP3P water model, including the addition of Lennard-Jones potentials to the 
hydrogens, resulted in the CHARMM TIP3P water model45 (also referred to as mTIP3P or TIPS3P, and 



referred to as TIPS3P hereafter in this work) which is used with the Chemistry at HARvard 
Macromolecular Mechanics (CHARMM) force field.46 In the same 1983 paper as the original TIP3P 
model, Jorgensen et al. also described a 4-point model, TIP4P, where the negative charge of the oxygen 
was offset from the Lennard-Jones potential, resulting in improved structural properties.41 The TIP4P 
water model is also commonly used with the OPLS force field. For the Consistent-Valence Force Field 
(CVFF), the CVFF water model has a geometry similar to TIP3P and non-bond parameters similar to 
SPC. It was developed concurrently with the rest of the force field, and is notable for having a flexible 
geometry, the use of a Morse potential for the O-H bond, and cross-terms to reproduce vibrational 
frequencies.47 
 
These models remain a popular choice due to their simple geometry, low computational cost, and 
relative accuracy. With the exception of CVFF, these models have a rigid geometry, which enables the 
use of a larger (e.g. 2 fs) timestep in MD simulations. While these models reproduced some 
experimental properties of water reasonably well, limited computational resources available at the time 
necessitated small system sizes of 125 to 216 water molecules, short simulation times of less than 20 
ps, and short cut-offs of non-bond interactions typically between 7.5 and 8.5 Å. Moreover, many 
structural properties, such as densities and dielectric constants, were calculated using Monte Carlo, 
rather than MD, simulations. Monte Carlo simulations rely on statistical mechanics rather than 
dynamics, and may not reproduce the collective motion of molecules the same way as MD 
simulations.48 
 
In the 1990s, Class II force fields based on ab initio potential energy surfaces were developed.49 Like 
CVFF, they include cross terms to better reproduce experimental vibrational frequencies, and in contrast 
to Class I force fields, use a 9-6 rather than 12-6 functional form for the Lennard-Jones interactions 
(Equations S1 and S2, Supporting Information). The Condensed-phase Optimized Molecular Potentials 
for Atomistic Simulation Studies (COMPASS)50 and Polymer Consistent Force Field (PCFF)51 force 
fields are the two Class II force fields most commonly still in use, primarily for polymers and materials 
applications.52-56 Like CVFF, these force fields were developed to be used with commercial software, 
but the force field parameters for the COMPASS and PCFF water models were published in 2012 as 
part of the INTERFACE force field.20 
 
While many of these water models performed well at 25 °C, few could accurately reproduce the 
temperature of maximum density of water of 4 °C.57 In 2000, Mahoney et al. published the 5-point 
TIP5P water model, which reproduced the density of water in the temperature range of −37 to 100 °C 
and a pressure range of 1 to 10,000 atm.58 Following the initial publication of these 3-point, 4-point, 
and 5-point models, many modifications have been made to improve the properties based on new 
computational techniques and/or improvements in computing power. One of the first modifications to 
the initial model resulted in the SPC/E water model,59 which improved the reproduction of 
intermolecular potential energy. In order to increase compatibility with Ewald summation techniques 
for electrostatic interactions,60 the TIP3P-Ew,61 TIP4P-Ew,62 and TIP5P-Ew63 models were developed 
in 2004. In 2005, TIP4P was reparametrized to reproduce experimental properties with MD settings 
more in line with those currently used today, resulting in the TIP4P/2005 model.64 Flexible versions of 
the rigid models were also created, including SPC/Fw,65 TIP3P/Fw66 and TIP4P/2005f.67 In 2006, the 
polarizable Simple Water Model with 4 sites and Negative Drude Polarizability (SWM4-NDP) was 
published.68 Other models were produced with the goal of maximizing a single property. The TIP4P/Ice 
model69 was developed to study the properties of ice, while the TIP4P/ε,70 SPC/ε,71 H2O-DC,72 and 
FBA/ε73 models were all developed to reproduce the experimental dielectric constant. The SPC/Eb 
model74 was developed to improve translational and rotational diffusion. The TIP4P-D model75 was 
parameterized to better reproduce London dispersion interactions, and subsequently modified for the 
a99SBdisp force field for protein simulations.4 
 
In the last decade, further additional generalized water models have been produced. The TIP3P-FB and 
TIP4P-FB models,76 based on the ForceBalance approach, were published in 2014, and updated as the 
TIP3P-ST and TIP4P-ST models77 to include surface tension in the optimization procedure in 2019. In 
2018 an update of TIP5P was published as TIP5P-2018.78 In 2014, the “optimal” point charge 4-point 



model (OPC) was published,79 followed by a 3-point variant (OPC3) in 2016,80 where it was suggested 
that the accuracy limit of a 3-point rigid non-polarizable model had been reached.  
 
Given the sheer number of available water models and reported properties under a variety of disparate 
conditions (e.g., number of molecules, simulation time, non-bond cutoffs, simulation method, etc), 
choosing an appropriate water model for a particular study can be a daunting task, particularly for those 
new to MD simulation techniques. It is therefore desirable to have a comparison of water models where 
the properties were determined under the same conditions for every model. Here, we report the density, 
coordination number, surface tension, static dielectric constant, self-diffusion coefficient, and free 
energy of hydrophobic solvation of 30 representative 3-point, 4-point, and 5-point water models, and 
one polarizable model (Table 1) using the open-source MD software LAMMPS and settings commonly 
used for simulations of biomolecules and materials today. We chose the SWM4-NDP model as a 
representative polarizable model because tools such as CHARMM-GUI and polarizer.py81 allow for the 
creation of LAMMPS input files for this model quickly and easily, even for non-expert users. This work 
serves as an update to the 2002 water model comparison by Guillot,82 and encompasses models 
published both before and after. While we don’t examine continuum solvent models (i.e. implicit 
solvent)83, 84 or coarse-grained models, we point the reader to a comprehensive review of water models 
published in 2017 by Onufriev and Izadi for further reading.85  
 
Table 1. Water models examined in this work. 
Name Type Flexible? Lennard-Jones 

on H? 
Year Published Reference 

SPC 3-point No No 1981 39 
TIP3P 3-point No No 1983 41 
TIP4P 4-point No No 1983 41 
TIPS3P 3-point No Yes 1985 45 
SPC/E 3-point No No 1987 59 
CVFF 3-point Yes No 1988 47 
PCFF Class II Yes Yes 1994a 51 
COMPASS Class II Yes Yes 1998b 50 
TIP3P/Fw 3-point Yes No 1999 66 
TIP5P 5-point No No 2000 58 
TIP3P-Ew 3-point No No 2004 61 
TIP4P-Ew 4-point No No 2004 62 
TIP5P-Ew 5-point No No 2004 63 
TIP4P/2005 4-point No No 2005 64 
TIP4P/Ice 4-point No No 2005 69 
SPC/Fw 3-point Yes No 2006 65 
SWM4-NDP Polarizable No No 2006 68 
TIP4P/2005f 4-point Yes No 2011 67 
TIP4P/ε 4-point No No 2014 70 
OPC 4-point No No 2014 79 
TIP3P-FB 3-point No No 2014 76 
TIP4P-FB 4-point No No 2014 76 
TIP4P-D 4-point No No 2015 75 
SPC/ε 3-point No No 2015 71 
OPC3 3-point No No 2016 80 
a99SB-disp 4-point No No 2018 4 
TIP5P-2018 5-point No No 2018 78 
TIP3P-ST 3-point No No 2019 77 
TIP4P-ST 4-point No No 2019 77 
FBA/ε 3-point Yes No 2020 73 

a PCFF water force field parameters were published as part of the INTERFACE force field.20 
b Approximate COMPASS water parameters without cross-terms were published in 2012 as part of the 
INTERFACE force field.20 



 
Finally, we used machine learning methods to explore the contributions of the parameters (model type, 
partial charge, Lennard-Jones parameters, bond length and angle) to the surface tension, dielectric 
constant, and self-diffusion coefficient. Machine learning can be used to predict a wide variety of 
material,86-89 chemical,90-93 and biological properties,94-97 with several commercial and non-commercial 
open-source platforms that can be used to develop machine learning algorithms such as Schrödinger,98 
SYBYL,99 TensorFlow (Google),100 and BioPPSy.101 
 
Methods 
 
Molecular dynamics simulations. All simulations were performed with the MD code Large-scale 
Atomic/Molecular Massively Parallel Simulator (LAMMPS) release 5Jun19.102 LAMMPS was chosen 
as it can run Class I, Class II, and polarizable models easily, with input files generated by CHARMM-
GUI, fftool,103 or Visual Molecular Dynamics (VMD).32 Moreover, LAMMPS provides the option of 
running 4-point water models as explicit 3-point models with the offset partial charge of the oxygen 
calculated internally. This allows 4-point models to be used from structure files that contain only 3-
point water (referred to hereafter as implicit 4-point simulations). LAMMPS is compatible with the 
PyLAT.py analysis tool, which facilitates the direct calculation of self-diffusion coefficients, dielectric 
constants, and radial distribution functions, among other properties.104 
 
Initial configurations of 2,000 water molecules in a cubic box with approximate dimensions of 40 × 40 
× 40 Å3 were constructed using PACKMOL version 18.169,105 and converted to LAMMPS data files 
using TopoTools106 release 1.7 in VMD version 1.9.3. All 3-point and implicit 4-point models used the 
same initial configuration, with a conjugate gradient energy minimization step in LAMMPS to optimize 
the initial geometry for each model, using force constants of 500 kcal/Å² for the O-H bond and 50 
kcal/radian² for the H-O-H angle with the rigid models, while flexible models used their default 
parameters. Explicit 4-point models, which were necessary for the calculation of dielectric constants, 
were constructed individually using PACKMOL, as were the 5-point models. The polarizable SWM4-
NDP model was constructed as an explicit 4-point model using PACKMOL, with the Drude oscillator 
added by the Python tool polarizer.py.81 The full set of force field parameters for the water models 
employed in this study are shown in Table 2 and Table 3 for 3-point and 4-point models, respectively, 
Table 4 for 5-point and the polarizable model, and Table 5 for the force field parameters for flexible 
models. 
 
 
Table 2. Force field parameters for 3-point models. 

Model O sigma 
(Å) 

O epsilon 
(kcal/mol) 

O charge 
(e) 

H charge 
(e) 

O-H bond 
(Å) 

H-O-H angle 
(°) 

SPC 3.166 0.15535 -0.82 0.41 1.0 109.466667 
TIP3P 3.15061 0.1521 -0.834 0.417 0.9572 104.52 

TIPS3P 3.1506 0.1521 -0.834 0.417 0.9572 104.52 
 H: 0.4 H: 0.046     

SPC/E 3.166 0.15535 -0.8476 0.4238 1.0 109.466667 
CVFF 3.16552 0.155416 -0.82 0.41 0.96 104.5 
PCFF 3.608 0.274 -0.7982 0.3991 0.97 103.7 

 H: 1.098 H: 0.013     
COMPASS 3.84 0.08 -0.82 0.41 0.9572 104.52 

 H: 1.087 H: 0.008     
TIP3P/Fw 3.1506 0.1522 -0.834 0.417 0.96 104.5 
TIP3P-Ew 3.188 0.102 -0.83 0.415 0.9572 104.52 
SPC/Fw 3.165492 0.155425 -0.82 0.41 1.012 113.24 

TIP3P-FB 3.178 0.155865 -0.84844 0.42422 1.0118 108.15 
SPC/ε 3.1785 0.168704 -0.89 0.445 1.0 109.45 
OPC3 3.17427 0.163406 -0.89517 0.447585 0.97888 109.47 

TIP3P-ST 3.19257 0.143858 -0.85112 0.42556 1.023 108.11 
FBA/ε 3.1776 0.18937 -0.845 0.4225 1.027 114.7 

 



Table 3. Force field parameters for 4-point models. 
Model O sigma 

(Å) 
O epsilon 
(kcal/mol) 

M charge 
(e)a 

H charge 
(e) 

O-H bond 
(Å) 

H-O-H angle 
(°) 

O-M bond 
(Å) 

TIP4P 3.15365 0.155 -1.04 0.52 0.9572 104.52 0.15 
TIP4P-Ew 3.16435 0.16275 -1.04844 0.52422 0.9572 104.52 0.125 

TIP4P/2005 3.1589 0.185207 -1.1128 0.5564 0.9572 104.52 0.1546 
TIP4P/Ice 3.1668 0.210839 -1.1794 0.5897 0.9572 104.52 0.1577 

TIP4P/2005f 3.1644 0.185207 -1.1128 0.5564 0.9419 107.4 0.15555 
TIP4P/ε 3.165 0.18481 -1.054 0.527 0.9572 104.52 0.105 

OPC 3.16655 0.212801 -1.3582 0.6791 0.8724 103.6 0.1594 
TIP4P-FB 3.1655 0.179082 -1.05174 0.52587 0.9572 104.52 0.10527 
TIP4P-D 3.165 0.223841 -1.16 0.58 0.9572 104.52 0.1546 

a99SB-disp 3.165 0.238764 -1.18 0.59 0.9572 104.52 0.1546 
TIP4P-ST 3.1661 0.176936 -1.04344 0.52172 0.9572 104.52 0.0989 

a In 4-point models the oxygen center of mass carries a charge of 0, and the charge is offset at point M 
(Figure 1). 
 
 
Table 4. Force field parameters for 5-point and polarizable models. 

5-point 
model 

O sigma 
(Å) 

O epsilon 
(kcal/mol) 

O charge 
(e) 

H charge 
(e) 

L charge 
(e) 

O-H bond 
(Å) 

H-O-H 
angle 

(°) 

O-L 
bond 
(Å) 

L-O-L 
angle (°) 

TIP5P 3.12 0.16 0.0 0.241 -0.241 0.9572 104.52 0.70 109.47 
TIP5P-Ew 3.097 0.178 0.0 0.241 -0.241 0.9572 104.52 0.70 109.47 

TIP5P-2018 3.145 0.188815 -0.641114 0.394137 -0.07358 0.9572 104.52 0.70 109.47 

Polarizable 
model 

O sigma 
(Å) 

O epsilon 
(kcal/mol) 

O charge 
(e) 

H charge 
(e) 

M charge 
(e) 

Drude 
charge (e) 

O-H 
bond 
(Å) 

H-O-H 
angle 

(°) 

O-M 
bond (Å) 

SWM4-NDP 3.18395 0.210939 1.71636 0.55733 -1.11466 -1.71636 0.9572 104.52 0.24034 
 
 
Table 5. Additional force field parameters for flexible models. 

Model Kb  
(kcal mol-1 Å-2) 

Kθ  
(kcal mol-1 rad-2) 

      

CVFF 540.6336 50.0       
TIP3P/Fw 529.581 34.0435       
SPC/Fw 529.581 37.95       
FBA/ε 358.509 45.77       
Model K2b K3b K4b K2θ K3θ K4θ  Kbb’ Kbθ 
PCFF 563.28 -1428.22 1902.12 49.84 -11.6 -8.0 -9.5 22.35 
COMPASS 552.0 -1276.0 1787.0 46.65 -11.7 -8.79   
Model D (kcal/mol) α Kθ    Kbb’  Kbθ 
CVFF(cm)a 104.0 2.28 50.0    -14.5 31.3 
TIP4P/2005f 103.389340 2.287 43.95435      

a The CVFF has two variations: a standard flexible model, and a model with cross terms and a Morse 
potential for the O-H bond. The latter is referred to here as the CVFF(cm) model. 
 
 
For the 3-point and implicit 4-point simulations, initial random velocities with a Gaussian distribution 
at 1 K were assigned to each atom, and 500 ps of MD simulation was performed in the NVT (constant 
volume, constant temperature) ensemble with the system heated linearly from 1 K to 298.15 K. This 
was followed by 500 ps of NVT simulation at 298.15 K, and 4 ns of NPT (constant pressure, constant 
temperature) simulation at 298.15 K and 1.0 atm. Production runs were performed for 20 ns, with 
simulation snapshots saved every 10 ps.  
 
Densities and radial distribution functions (RDFs) were determined from the 20 ns NPT simulations. 
Following this, the simulation box length was set to the average value from the NPT simulations and 
additional NVT simulations were run in triplicate for 20 ns. These simulations were used for the 
calculation of coordination number, self-diffusion coefficient, and dielectric constant using PyLAT.py. 
For 5-point and polarizable models, PyLAT.py did not calculate the correct self-diffusion coefficient, 
and for these models the calculation was performed using the mean-squared displacement of oxygen 



atoms from LAMMPS and the Einstein relation.107 For the calculation of coordination number, it was 
necessary to output trajectories containing only atoms (i.e. no lone pairs) for the 5-point models. For 
the calculation of dielectric constant, it was necessary to run additional NVT simulations with explicit 
4-point models, as the implicit 4-point model trajectories would not produce the correct dipole moments 
for 4-point models. PyLAT.py also failed to calculate the correct dielectric constant for the polarizable 
model, which we calculated with our in-house code. For the determination of surface tension, the box 
was extended to 120 Å in the z dimension and NVT simulations were run for each model, with the 
surface tension determined from the pressure tensors calculated in LAMMPS by the virial method.108 
 
The solvation free energy of model solutes into each water model can be probed using Widom’s test 
particle insertion method.109, 110 The solute is inserted into an equilibrated configuration of the pure 
solvent at position xs. The change in the potential energy ΔU upon insertion, without allowing the 
system to relax, is then calculated. For MD simulations in the NpT ensemble, the solvation free energy, 
ΔGsol, equivalent to the excess chemical potential, is given by 
 

∆𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = −𝑘𝑘𝐵𝐵𝑇𝑇 log�
1
𝑉𝑉

 〈� 𝑑𝑑𝒙𝒙s exp �−
∆𝑈𝑈
𝑘𝑘𝐵𝐵𝑇𝑇

�
𝑉𝑉

〉�  (1) 

 
Where 〈… 〉 represents the ensemble average, V the volume of the simulation cell. The simplest 
numerical scheme for approximating the integral in Equation 1 is by integrating over an evenly spaced 
grid of insertion points.111 A regular grid for xs with a mesh spacing of about 1 bohr was chosen. A 
successful insertion was defined as an insertion that gives a non-zero exp �− ∆𝑈𝑈

𝑘𝑘𝐵𝐵𝑇𝑇
�, evaluated from the 

Lennard-Jones potential. The solute-water cross parameters were deduced from the Lorentz-Berthelot 
mixing rules, where 𝜀𝜀𝑖𝑖𝑖𝑖 = � 𝜀𝜀𝑖𝑖𝑖𝑖  𝜀𝜀𝑗𝑗𝑗𝑗, and 𝜎𝜎𝑖𝑖𝑖𝑖 = (𝜎𝜎𝑖𝑖𝑖𝑖 + 𝜎𝜎𝑗𝑗𝑗𝑗)/2. At least 1000 particle insertions were 
performed for every other snapshot of each NPT simulation trajectory (i.e., 20 ps between snapshots, 
1,000 snapshots total). As the Class II models COMPASS and PCFF use a 9-6 functional form for the 
Lennard-Jones interactions, 12-6 parameters were extrapolated for the solute-solvent interactions from 
energy vs. distance plots of the 9-6 functional. For the PCFF model, the values were 3.155 Å for sigma 
and 0.274 kcal/mol for epsilon for the oxygen, and 0.96 Å for sigma and 0.013 kcal/mol for epsilon for 
the hydrogen. For the COMPASS model, the values were 3.355 Å for sigma and 0.0.08 kcal/mol for 
epsilon for the oxygen, and 0.95 Å for sigma and 0.008 kcal/mol for epsilon for the hydrogen. 
 
Machine learning models. We used QSPR (quantitative structure property relationship)112 algorithms 
to explore the quantitative relationship between the force field parameters of the water models in this 
study and the dielectric constant, diffusion coefficient and surface tension. In a conventional QSPR 
machine learning technique, descriptors are mathematical values which can define the physical and 
chemical properties of compounds in dataset. In this study, we considered six force field parameters of 
the water models as descriptors: O sigma, O epsilon, O charge, O-H bond length, H-O-H angle, M-O 
distance. Also, to consider the effect of 3-point, 4-point, and flexible models on the resultant properties, 
we applied a 1-hot binary matrix, where the descriptor was given a value of 1 if present and 0 if absent. 
A schematic of these descriptors is provided in Figure S1, Supporting Information. To generate the 
quantitative relationship between dielectric constant, diffusion coefficient and surface tension with 
water models, we employed the linear algorithm MLREM (Multiple Linear Regression with 
Expectation Maximization)113 implemented in the CSIRO-BioModeller package.114-116 To evaluate the 
quality of models the correlation coefficient between experimental and calculated values (by machine 
learning) for the data set (R2)  were computed. The closer the R2 value was to 1.0, the better the model. 
In addition to R2 values, the standard error of estimation (SEE) was calculated, where SEE represents 
the root mean square error between the calculated and measured values of data points, adjusted for 
degrees of freedom.117, 118 Thus, the SEE is a more robust description of model quality than the R2 

value.119 
  



Results and discussion 
 
Results for density, coordination number, surface tension, dielectric constant, and self-diffusion 
coefficient are presented in Table 6, and the percent difference between the calculated and experimental 
value is shown in Figure S2, Supporting Information. For the settings employed in this work, the OPC 
model provided the best average agreement with experimental data for these properties, while the 
TIP4P/ε and TIP4P-FB models were the only models with all properties within 10% of experimental 
values. Subdividing the data by model type, the OPC3, OPC, TIP5P, and SPC/Fw models provided the 
best agreement for 3-point, 4-point, 5-point, and flexible models, respectively. The only polarizable 
model examined in this work, SWM4-NDP, also performed reasonably well, with an average difference 
from experimental values of less than 10%. Although many models were not specifically parameterized 
or tested for all of the properties examined here, we note a general improvement in agreement with 
experimental values as a function of publication year.  
 
Table 6. Calculated properties of water models using consistent simulation settings. Uncertainties are 
reported as standard deviations except for surface tension, where the uncertainty is reported as standard 
error. 

Model Density 
(g/cm3) 

Coordination 
number 

Surface 
tension 
(mN/m) 

Dielectric 
constant 

Self-diffusion 
coefficient 

(× 10-5 cm2/s) 

ΔGmethane 
(kJ/mol) 

SPC 0.972 ± 0.006 5.585 ± 0.001 50.3 ± 0.2 65 ± 1 4.32 ± 0.04 8.88 ± 0.08 
TIP3P 0.980 ± 0.006 6.239 ± 0.001 47.0 ± 0.2 95 ± 3 5.72 ± 0.04 8.51 ± 0.08 
TIP4P 0.994 ± 0.006 5.14 ± 0.001 52.2 ± 0.2 51.3 ± 0.5 2.57 ± 0.04 8.91 ± 0.08 
TIPS3P 1.007 ± 0.006 7.5 ± 0.3 51.1 ± 0.2 106 ± 1 5.55 ± 0.06 10.0 ± 0.1 
SPC/E 0.993 ± 0.006 4.9 ± 0.2 57.6 ± 0.2  73 ± 1 2.60 ± 0.03 9.64 ±0.08 
CVFF 0.978 ± 0.006 6.4 ± 0.3 47.3 ± 0.4 135 ± 3 5.95 ± 0.05 7.9 ± 0.2 
CVFF(cm) 0.989 ± 0.006 5.761 ± 0.001 49.8 ± 0.4 151 ± 2 5.2 ± 0.2 8.9 ± 0.1 
PCFF 1.008 ± 0.005 13.5 ± 0.4 69.5 ± 0.4 159 ± 2 7.7 ± 0.2 11.9 ± 0.2 
COMPASS 0.958 ± 0.006 4.953 ± 0.001 40.7 ± 0.4 118 ± 2 6.4 ± 0.1 11.59 ±0.06 
TIP3P/Fw 1.027 ± 0.006 5.3 ± 0.3 55.2 ± 0.4 197 ± 2 3.8 ± 0.1 9.38 ± 0.09 
TIP5P 0.985 ± 0.006 4.991 ± 0.001 48.9 ± 0.2 94 ± 3  2.79 ± 0.03 8.00 ± 0.06 
TIP3P-Ew 0.996 ± 0.006 4.7300 ± 0.0004 47.1 ± 0.2 92 ± 1 4.11 ± 0.05 9.38 ± 0.09 
TIP4P-Ew 0.996 ± 0.005 4.6900 ± 0.0005 59.2 ± 0.2 65 ± 1 2.54 ± 0.01 8.8 ± 0.2 
TIP5P-Ew 1.003 ± 0.006 5.143 ± 0.001 52.2 ± 0.2 100 ± 2 2.92 ± 0.04 8.25 ± 0.03 
TIP4P/2005 0.997 ± 0.005 4.7053 ± 0.0001 63.5 ± 0.2 58 ± 1 2.18 ± 0.04 8.4 ± 0.1 
TIP4P/Ice 0.993 ± 0.006 4.634 ± 0.001 73.4 ± 0.2 63 ± 2 1.21 ± 0.03 7.93 ± 0.07 
SPC/Fw 1.007 ± 0.006 4.743 ± 0.001 58.6 ± 0.4 80 ± 3 2.57 ± 0.06 8.99 ± 0.05 
SWM4-NDP 0.990 ± 0.005 5.209 ± 0.001 63.1 ± 0.5 75 ± 1 2.57 ± 0.05 9.4 ± 0.2 
TIP4P/2005f 0.996 ± 0.005 5.0 ± 0.2 60.3 ± 0.4 59 ± 2 2.76 ± 0.04 8.68 ± 0.05 
TIP4P/ε 0.996 ± 0.006 4.717 ± 0.001 64.6 ± 0.2 79 ± 2 2.16 ± 0.01 9.2 ± 0.1 
OPC 0.997 ± 0.005 5.1971 ± 0.0005 70.1 ± 0.2 78 ± 1 2.27 ± 0.02 9.34 ± 0.09 
TIP3P-FB 0.990 ± 0.006 4.6786 ± 0.0004 60.3 ± 0.2 79 ± 4 2.14 ± 0.05 8.39 ± 0.06 
TIP4P-FB 0.997 ± 0.006 4.702 ± 0.001 64.7 ± 0.2 77 ± 1 2.10 ± 0.03 9.9 ± 0.1 
TIP4P-D 0.993 ± 0.006 5.149 ± 0.001 70.8 ± 0.2 63 ± 1 2.01 ± 0.07 8.86 ± 0.06 
SPC/ε 0.991 ± 0.005 4.672 ± 0.001 65.3 ± 0.2 80 ± 3 1.55 ± 0.05 9.12 ± 0.09 
OPC3 0.991 ± 0.006 4.9 ± 0.2 61.0 ± 0.2 79 ± 1 2.28 ± 0.02 8.54 ± 0.03 
a99SB-disp 0.996 ± 0.006 5.173 ± 0.001 74.4 ± 0.2 67 ± 1 1.78 ± 0.03 9.20 ± 0.03 
TIP5P-2018 0.997 ± 0.006 5.175 ± 0.001 61.6 ± 0.2 129 ± 2 2.31 ± 0.09 8.3 ± 0.1 
TIP3P-ST 0.993 ± 0.005 4.6009 ± 0.0005 63.8 ± 0.2 81 ± 2 1.24 ± 0.02 9.38 ± 0.05 
TIP4P-ST 0.999 ± 0.006 4.7034 ± 0.0003 64.5 ± 0.2 82 ± 4 2.02 ± 0.01 9.5 ± 0.3 
FBA/ε 0.991 ± 0.005 4.64 ± 0.001 68.0 ± 0.4 75 ± 1 1.56 ± 0.02 8.8 ± 0.1 
Experimental 0.997120 4.7121 71.99122 78.3123 2.30124 8.083125 

 
One notable exception is the SPC/E model, which despite being published in 1987 still performs quite 
well under the conditions employed in this work. We emphasize here that we are not claiming to have 
found the “best” models, but rather for the system size and simulation settings we chose for this study, 



these are the models that present the best agreement with the experimental values we chose to compare 
to. We will discuss each property in more detail in the following sections. 
 
Density. All models reproduced the experimental density of water reasonably well, with no model 
published after 2006 presenting a difference from experimental value above 0.7%. This is perhaps 
unsurprising, as density is one of the properties almost every water model is parametrized to reproduce. 
Models published before 2000 tended to reproduce the experimental density value more poorly in this 
study, at least in part due to the use of the particle-particle particle-mesh (PPPM)126 treatment of long-
range electrostatics used here. While PPPM and the related particle-mesh Ewald (PME)127 are 
commonly used in simulations today, many of the older water models were developed with a relatively 
short non-bond cutoff and no treatment of long-range electrostatics. The TIP3P-Ew, TIP4P-Ew, and 
TIP5P-Ew models, published in 2004, represent reparameterizations of the original TIP3P, TIP4P, and 
TIP5P models, respectively, for use with Ewald summation for long-range electrostatics. All three 
Ewald models improved the reproduction of experimental density without changing the water model 
geometry, with the TIP3P-Ew and TIP4P-Ew models changing both charge and Lennard-Jones 
parameters, and the TIP5P-Ew changing only the Lennard-Jones parameters. The COMPASS water 
model exhibited the greatest deviation from the experimental density in this study, but like the TIP-
family models this is most likely due to the PPPM treatment of long-range electrostatics. Indeed, a 2004 
paper found the density error to be 0.34% when a group-based cutoff scheme was used, and 3.25% 
when an Ewald summation was used.128 Overall, these results suggest caution when combining older 
water models with current long-range electrostatic treatments like PPPM and PME if accurate 
reproduction of water density is desirable. 
 
Coordination number. Water models published after 2000 exhibited a fairly narrow range of values 
for the average number of water molecules in the first coordination shell of a given water molecule, 
with a minimum value of 4.6 for the TIP3P-ST water model, and a maximum of 5.2 for the SWM4-
NDP polarizable water model (Figure 2). We chose an experimental value of 4.7 for comparison, which 
was based on X-ray scattering data and supported by molecular dynamics simulations with a polarizable 
force field.121 
 

 
Figure 2. Coordination number of the first solvation shell for each water model. The horizontal green 
line corresponds to the experimental coordination number of 4.7.121 
 
The PCFF water model exhibited the greatest deviation from the experimental value, with an average 
of 13.5 ± 0.4 water molecules in the first coordination shell. Indeed, the O-O RDF for PCFF is 
significantly different from the other water models (Figure S3, Supporting Information), with a much 
broader peak and first minimum at 4.6 Å, compared to ~3.3-3.4 Å for most other water models. As the 
coordination number is found by integrating to the first minimum in the RDF, this creates a significant 



difference in the calculated coordination number for the water molecule. However, despite this large 
difference, the O-O, O-H, and H-H RDFs for PCFF are in general qualitatively similar to the other 
models. The PCFF force field, as part of the CFF force field family,129 was parameterized to reproduce 
the structure and vibrational frequencies of isolated molecules in the gas phase,128 not bulk properties, 
which may account for some of the observed discrepancies. The original SPC and TIP3P-based models 
(including CVFF) also produced larger coordination numbers compared to the experimental value. The 
SPC/E model provided greater agreement compared to SPC by changing the partial charges only, while 
TIP3P-Ew improved agreement by changing both partial charges and Lennard-Jones parameters. The 
SPC/Fw provided greater agreement for flexible models by small changes to the Lennard-Jones 
parameters and changes to the water geometry, while retaining the original SPC partial charges. 
 
Surface tension. Historically, surface tension was not considered as part of the target data in the force 
field parameterization process. It is therefore not surprising that water models published before 2005 
exhibited poor agreement with the experimental surface tension (Figure 3). In contrast to density and 
coordination number, the Ewald correction to the TIP-family models did not significantly improve the 
surface tension. One notable exception was the PCFF force field, which had one of the closest values 
to experiment of any water model studied here. This is most likely due to the Lennard-Jones epsilon 
value for the oxygen, which is the largest of any water model in this study. It is known that epsilon 
values generally correlate positively with surface tension, and one force field parameterization strategy 
is to simply scale all epsilon values until the experimental surface tension is reproduced.130 However, 
this is not the only factor, as one of the best models for surface tension, TIP3P-ST, has one of the 
smallest epsilon values of any model tested in this work. 
 

 
Figure 3. Surface tension at the liquid-vapor interface for each water model. The horizontal green line 
corresponds to the experimental surface tension of 71.99 mN/m.122 
 
The analytical tail correction to the surface tension due to the Lennard-Jones cutoff, which generally 
increases the value of the calculated surface tension by ~3-4 mN/m,108 was not performed in this study, 
as it has been shown recently131 to perhaps overestimate the surface tension by ~2 mN/m. Nevertheless, 
the surface tension has been shown to increase as the Lennard-Jones cutoff is increased, and by 
extrapolating to an infinite cutoff, the TIP3P-ST model was found to have a surface tension within 1 
mN/m of the experimental value,77 while in this study it was found to be ~8 mN/m below the 
experimental value. Therefore, despite appearing to systematically underestimate the surface tension 
(Figure 3), nearly all models published in 2005 or later can be considered to reproduce the experimental 
surface tension reasonably well, with the TIP4P/Ice and a99SB-disp overestimating the surface tension 
somewhat. Long-range corrections to the Lennard-Jones interactions, similar to long-range corrections 
to the electrostatics like PPPM and PME, may improve the calculated surface tension as well. The 
absence of ions and dissolved gas in the simulated systems could also contribute to a lower surface 



tension compared to experiment.132 For additional discussion of the use of surface tension as target data 
in force field parameterization, we refer the reader to the publication of the TIP3P-ST and TIP4P-ST 
models.77 
 
Dielectric constant. Liquid water exhibits a high dielectric constant, εs, that is unique amongst most 
polar liquids. The macroscopic dielectric constant contains information on the collective orientational 
correlations between molecules and their permanent dipole moments, where the dielectric constant is 
directly linked to the strength of dipolar forces between water molecules.133 Computationally, the 
dielectric constant can be readily accessed from the total dipole moment of the system, M, via 
 

𝜀𝜀𝑠𝑠 = 1 +
〈𝑀𝑀2〉 −  〈𝑀𝑀〉2

3 𝜀𝜀0𝑉𝑉 𝑘𝑘𝐵𝐵𝑇𝑇
(2) 

 
where ε0 is the permittivity of free space, and V the system volume. Since the dielectric constant results 
from the cooperative motion and structure between water molecules, it is one of the most important 
properties a water model should reproduce.134 The results for the dielectric constant are presented in 
Figure 4. As with the other properties discussed so far, there is a general improvement in the 
reproduction of the dielectric constant as a function of publication year. One notable exception is the 
TIP5P-2018 model, which exhibits a 63% overestimate of the experimental value, despite being one of 
the most recent models published. Designed to improve the density and self-diffusion coefficient over 
a range of temperatures, the TIP5P-2018 model does represent an improvement for 5-point models in 
self-diffusion coefficient, density, surface tension, and other properties not examined in this study, but 
the authors report that in order to reproduce the dynamic properties of water, it was necessary to 
downscale the charges, which resulted in an anomalously high dielectric constant.78 
 

 
Figure 4. Static dielectric constant for each water model. The horizontal green line corresponds to the 
experimental dielectric constant of 78.3.123 
 
In general, models published before 2006 reproduce the experimental dielectric constant poorly, with 
TIP3P, TIP5P, and Class II models overestimating and SPC and TIP4P models underestimating the 
dielectric constant. This is likely due to the fact that dielectric constant was generally not part of the 
target data in the force field parameterization process, rather than due to the use of PPPM for long-range 
electrostatics here. In fact, values for the dielectric constant for TIP4P and SPC/E calculated in the 
1990s agree quite well with the values calculated in this work.135 On the other hand, values for TIP3P 
calculated in the 1990s varied from 73 to 82 using different methods,136, 137 which while quite close to 
the experimental value differ significantly from the value calculated here. This further emphasizes the 
need for properties to be calculated within a consistent framework, using consistent methods. Three of 
the models in this study were specifically parameterized to reproduce the dielectric constant: TIP4P/ε, 



SPC/ε, and the flexible FBA/ε. As expected, all reproduce the experimental dielectric constant quite 
well, although for the SPC/ε and FBA/ε models it appears to come at the cost of the self-diffusion 
coefficient, which is discussed in the next section. For the SWM4-NDP polarizable model, the Drude 
induced dipole represents (in a very simplified manner) electronic degrees of freedom, and the 
polarization terms are expected to be relevant for the dielectric constant. It is therefore not surprising 
that it performs well for the reproduction of the experimental dielectric constant. 
 
Self-diffusion coefficient. As with the other properties examined in this work, significant improvement 
in the reproduction of the experimental self-diffusion constant occurred from about 2005 onwards 
(Figure 5). Notable exceptions occurred where structuring was of higher priority, such as TIP4P/Ice 
(for better reproduction of the phase diagram), SPC/ε and FBA/ε (for better reproduction of the 
dielectric constant), and TIP3P-ST (for better reproduction of the surface tension). Conversely, the 
TIP5P-2018 model deliberately sacrificed good agreement with the experimental dielectric constant in 
order to better reproduce the experimental self-diffusion coefficient. 
 

 
Figure 5.  Self-diffusion coefficient for each water model. The horizontal green line corresponds to the 
experimental self-diffusion coefficient of 2.30 × 10-5 cm2/s.124 
 
With the exception of TIP3P-FB, the TIP3P-based models consistently failed to reproduce the 
experimental self-diffusion coefficient of water. This is perhaps not surprising, as the original TIP3P 
model was developed for Monte Carlo, not MD, simulations, and the self-diffusion coefficient was not 
part of the parameterization process or reported in the original paper.41 The CVFF, PCFF, and 
COMPASS models also failed to reproduce the experimental self-diffusion coefficient. These models 
were parameterized to be used with the commercial simulation package Discover,138 and indeed a self-
diffusion coefficient of 2.45 × 10-5 cm2/s was reported for CVFF water when a quintic spline switching 
function (not currently available in LAMMPS) was used for the non-bonded interactions.139 While an 
anomalously high diffusion coefficient is not generally desirable, it can be used in some cases to 
deliberately speed up conformational sampling,15, 16, 25, 140, 141 as an alternative to other advanced 
sampling methods.142-144 Self-diffusion coefficients depend on the size of the simulation box, and 
calculated values increase as the box size increases.145 
 
Machine learning analysis of the parameter-property relationship. The main aim of using machine 
learning was to investigate and quantify the effect of the water model force field parameters on the 
resulting dielectric constant, diffusion coefficient, and surface tension, rather than prediction for models 
not studied here. Therefore, we did not partition the dataset into a training set and test set, and instead 
used the entire dataset as the training set. Because there were too few Class II, 5-point, or polarizable 
models in this study, only Class I 3-point and 4-point models were used for the machine learning 
analysis. This provided 24 water models for machine learning analysis, which was sufficient for surface 



tension, dielectric constant, and self-diffusion coefficient, but not for density, coordination number, or 
free energy of solvation (see below), as the range in values of these properties was too small. 
 
Table 7. Performance of MLREM for surface tension, dielectric constant, and self-diffusion coefficient 
by applying 100% of the dataset to the training set. Scaled values are reported for standard error 
estimation. 

Property R2 Standard error estimation 
Surface tension 0.95 0.084 mN/m 
Dielectric constant 0.92 0.073 
Self-diffusion coefficient 0.92 0.108 × 10-5 cm2/s 

 
Table 7 presents the performance of MLREM for surface tension, dielectric constant, and self-diffusion 
coefficient. With only nine descriptors (oxygen sigma, epsilon, and charge; O-H bond; H-O-H angle; 
M-O distance; 3-point yes/no; 4-point yes/no; and flexible yes/no), the MLREM algorithm was able to 
describe the relationship between the water model parameters and resultant properties with an R2 greater 
than 0.9 and standard error estimation of ~0.1. 

 
Figure 6. Scaled contributions of the water model force field parameters to the resulting properties. 
 
Figure 6 presents the contribution as well as the effect of descriptors on each property, where the 
parameters with positive and negative sign led to an increase or decrease in the value of the property, 
respectively. By comparing these three graphs, it can be seen that the partial charge on the oxygen (O 
charge) has a significant effect on each property, with more negative values decreasing the surface 
tension and dielectric constant, and more positive values increasing the diffusion coefficient. 
Interestingly, the distance between the partial charge and the center of mass of the oxygen (M-O 
distance) had a large effect on all properties, with a shorter M-O distance associated with a lower surface 
tension and dielectric constant, and a longer M-O distance associated with a greater self-diffusion 
coefficient. Critically, no single parameter simultaneously increased or decreased all properties, 
illustrating the difficulties in parameterizing a water model that reproduces all experimental properties 
well. 
 
Particle insertion. Hydrophobic effects are considered to play an important role in solvation 
phenomena such as protein stability and other self-assembly phenomena.110 Therefore, it is important 
to validate the capacity of each water model to reproduce hydrophobic behavior. Here, we probe the 
solvation free energies of methane for each water molecule by particle insertion methods.109 



 
Figure 7. Solvation free energy of methane for each water model at 300 K, obtained via particle 
insertion methods. The horizontal green line corresponds to the experimental solvation free energy of 
methane of 8.083 kJ/mol.125 
 
The free energy of hydrophobic solvation for the insertion of the methane bead into each water model 
is presented in Figure 7. In general, most water models were within 2 kJ/mol of the experimental value, 
although there was a systematic overestimation of the value. The Class II models were an exception, 
but this may be due to the fact that it was necessary to extrapolate 12-6 Lennard-Jones parameters for 
these models in order to perform particle insertion. Interestingly, all of the 5-point models as well as 
some models with poorer overall agreement with the structural and dynamic properties studied here 
such as TIP3P and CVFF reproduced the free energy of hydrophobic solvation reasonably well. TIP3P 
has been found previously to predict hydration free energies of a range of small neutral organic 
molecules with an rms error of 1.24 kcal/mol.146 This further illustrates the difficulties in parameterizing 
a water model for all possible properties. 
 
Timing. One final consideration in the choice of water model is the computational efficiency. The 
average timing for each water model type, reported in ns/day, when run on a single 48-CPU node 
(comprising two 24-core Intel Xeon Scalable ‘Cascade Lake’ processors) of the Australian National 
Computational Infrastructure supercomputer Gadi is listed in Table 8. 
 
Table 8. Average timings for each water model type in ns/day. 

Model type Average computational efficiency (ns/day) 
Rigid 3-point 33.6 
Flexible 3-point 32.0 
Class II 29.7 
Implicit 4-point 18.1 
Explicit 4-point 18.6 
5-point 16.4 
Polarizable 9.1 

 
In terms of computational efficiency, 3-point models were significantly faster to run than 4-point, 5-
point, or polarizable models. The additional force constants and cross-terms in the flexible and Class II 
models only slightly decreased their efficiency, as the most time-consuming step is the calculation of 
non-bonded interactions. For the 4-point models there was little difference, on average, between running 
them as explicit 4-point models or as 3-point models with an internal calculation for the offset partial 
charge on oxygen (implicit 4-point model). While all of the models in this study were run with a 1 fs 
timestep, for the rigid non-polarizable models it is possible to run with a 2 fs timestep, effectively 



doubling the computational efficiency reported here. The purpose of this study was to run all models 
under the same conditions, but presumably improvements in efficiency can be gained by fine-tuning 
the non-bond settings, utilizing GPUs, or other methods. 
 
Conclusions and outlook 
 
We present these results as a broad comparison of water models performed under consistent simulation 
conditions. We anticipate that this will be a useful reference for the properties of these models (some 
of which are not found elsewhere), and as a benchmarking and comparison dataset for future studies. 
We deliberately have not classified the models in terms of ‘best’ or ‘worst’, as the ‘best’ water model 
will depend on the specific application. This work also serves as an update to other excellent water 
model comparisons.82, 147, 148 For example, in 2011 Vega and Abascal performed a comprehensive 
comparison of water models for a variety of properties and ranked TIP4P/2005 as the best,149 but every 
4-point model published since 2011 exhibits a better average agreement with experimental values for 
the structural and dynamic properties studied here. 
 
While it is unfortunate that some of the water models exhibiting the poorest agreement with 
experimental properties are some of the ones most commonly used with biological and materials force 
fields today, it does not necessarily invalidate such studies. In the case of the CHARMM force field, 
traditionally all other molecules are parameterized relative to the CHARMM TIP3P (TIPS3P in this 
study) water model and subsequently adjusted to reproduce other experimental data,46 which should 
ameliorate some of the deficiencies in that model. The CHARMM developers themselves have tested 
adjustments to the water model to improve agreement with experimental data.150 Moreover, as discussed 
by Onufriev and Izadi,85 water models that perfectly reproduce the bulk properties of water may in fact 
be poorer for some of the wide variety of hydrophobic and hydrophilic environments where water can 
be found, and the only solution is to carefully benchmark the system of interest to as much available 
experimental data as possible, regardless of the specific water model used. While the Class II force 
fields did not generally reproduce well the experimental properties examined in this study, these force 
fields are still potentially useful due to the variety of atom types available, transferrable nature of their 
parameters, and ability to reproduce other experimental phenomena. The PCFF force field, for example, 
was able to reproduce the triple helix stereocomplex of poly(methyl methacrylate) in agreement with 
experimental X-ray diffraction profiles.53, 151 However, when used outside the commercial software they 
were parameterized for, Class II force fields should be used with caution, and may be better for 
comparison purposes between systems rather than for attempting to find absolute values.16, 35, 152 
 
In the past decade, many studies have examined the feasibility of using some of the more recently 
developed water models with existing force fields.153, 154 When done properly this can represent a 
significant advancement in the modeling of solvated systems, but it must be done with care. For 
example, it was found that when a force field that used arithmetic mixing rules for the Lennard-Jones 
interactions was mixed with ion parameters that were parameterized for geometric mixing rules, the salt 
spontaneously and unphysically crystalized from solution.155 Fortunately, new compatible ion 
parameters have been developed for the OPC, OPC3, TIP3P-FB, and TIP4P-FB water models.156-158 
While the careful testing of newer water models with older force fields for biomaterials and other 
molecules is one solution, another current solution is to develop new force fields for compatibility with 
the more recently developed water models.4, 159, 160 
 
Finally, while the accuracy limit may indeed have been reached for 3-point and 4-point non-polarizable 
models, other models for water are continually in development, such as the 7-point TIP7P,161 the 
reactive force field ReaxFF,162 the FFLUX polarizable and multipolar model,163 as well as others based 
on DFT and machine learning,164-166 to name a few.85, 167 As computing power increases over the coming 
years, we expect that the ability to predict and reproduce the observed properties of water molecules 
will also continue to improve, which in turn will improve our understanding of this remarkable solvent. 
 
 
 



Data and Software Availability 
 
The MD code LAMMPS is freely available at: https://lammps.sandia.gov/. The analysis tool PyLAT.py 
is freely available at: https://github.com/MaginnGroup/PyLAT. The initial configuration generator 
PACKMOL is freely available at: http://leandro.iqm.unicamp.br/m3g/packmol/home.shtml. The 
visualization and modelling software VMD is freely available at: 
https://www.ks.uiuc.edu/Research/vmd/. The software for generating Drude polarizable models is 
freely available at: https://github.com/paduagroup/clandpol. Widom insertion can be performed using 
the fix widom command in LAMMPS. LAMMPS input files can also be freely generated directly by 
CHARMM-GUI: https://charmm-gui.org/. Multiple Linear Regression is available in many commercial 
and free software packages, including statsmodels (Python): 
https://www.statsmodels.org/stable/index.html. All files necessary to reproduce the simulations in this 
work may be found at: https://github.com/VisualizationAndModelProduction/WaterModelComparison 
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The functional form of the Lennard-Jones 12-6 potential is  
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whereas that for the Lennard-Jones 9-6 potential is  
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where r is the distance between interacting atoms, ε (epsilon) describes the depth of the attractive 
well, and σ (sigma) the inter-atom distance where the potential changes sign. Some papers report rmin 
rather than σ, where rmin = σ × 21/6. 

 

Figure S1. A schematic of the descriptors used for machine learning. 



 
Figure S2. Color gradient depiction of the percent difference of the calculated value compared to the 
experimental value for the calculated structural and dynamic properties of each model. The minimum, 
maximum, and mean values are colored green, yellow, and red, respectively. 
 
 
 
 
 



 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

Figure S3. Radial distribution functions (RDFs) for the water models examined in this work. The 
experimental RDFs are taken from: https://doi.org/10.1155/2013/279463. 
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