
JAX-ReaxFF: A Gradient Based Framework for

Extremely Fast Optimization of Reactive Force

Fields

Mehmet Cagri Kaymak1, Ali Rahnamoun2, Kurt A. O’Hearn1,
Adri C. T. van Duin3, Kenneth M. Merz, Jr.2, and Hasan Metin

Aktulga1

1Department of Computer Science and Engineering, Michigan State University, East
Lansing, MI 48824, USA

2Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East
Lansing, MI 48824, USA

3Department of Mechanical Engineering, The Pennsylvania State University,
University Park, State College, Pennsylvania 16802, United States

Abstract

Molecular dynamics (MD) simulations ease the study of the chem-
istry of interest. While classical models that governs the interaction
of the atoms lack reactivity, the quantum mechanics based methods in-
crease the computational cost drastically. ReaxFF fills the gap between
these two ends of the spectrum by allowing bond breaking and dynamic
charges. To achieve realistic simulations using ReaxFF, the model pa-
rameters need to be carefully tuned based on the training data created
using more accurate but expensive methods. The current optimization
methods focus on black-box optimization methods such as genetic algo-
rithms (GAs), Monte-Carlo methods and covariance matrix adaptation
evolutionary strategy (CMA-ES). Due to the stochastic behavior of these
methods, the training requires hundreds of thousands of error evaluations
for complex training tasks and each error evaluation usually involves en-
ergy minimization of the many molecules in the training data. In this
work, we propose a novel approach which takes advantage of the modern
tools developed for machine learning to improve the training efficiency
of the force field development for ReaxFF. By calculating the gradients
of the loss function using JAX library developed by Google, we are able
to use well studied local optimization methods such as the limited Broy-
den–Fletcher–Goldfarb–Shanno (LBFGS) and Sequential Least Squares
Programming (SLSQP) method. To further decrease the training time,
we skip the energy minimization of the molecules during the local op-
timization since the parameters of the model are not likely to change
drastically during a local search. JAX allows us to easily parallelize the
error evolution by compiling the code for CPUs, GPUs or TPUs. With

1

the help of the modern accelerators and the gradient information, we are
able to decrease the training time from days to minutes.

1 Introduction

Simulating atoms and their interactions are essential to study chemical and
physical properties of many interesting systems. Simulations based on quantum
mechanics (QM) allow the geometries and energies to be predicted accurately
by solving the Schrödinger equation. However, the computational complexity
and cost of the QM based methods make them only viable for simulating small
molecules for short periods of time. Molecular dynamics (MD) simulations al-
low a set of atoms to be simulated by using simple approximations based on the
Newtonian physics. In this approach, atoms are treated as unit particles and
their interactions are governed by a model called force field (FF). The simplifi-
cation greatly reduces the computational cost because the effect of the electrons
are captured by the force field model but these models rely on tedious parame-
terization of various atomic interactions corresponding to bonds, valence angles,
torsion, van der Waals, Coulomb interactions etc. based on carefully selected
quantum-chemical reference data. With the help of these approximations and
careful training, the classical MD methods have been proved to be successful
simulating systems up to billions of atoms.

One of the core limitation of classical MD methods is lack of reactivity since
they typically rely on fixed interatomic connectivity and partial charges. They
usually model chemical bond using simple parameterized harmonic oscillators
and it renders them useless for reactive systems. ReaxFF is developed by van
Duin et al. to fill the gap between QM based methods and classical MD ap-
proaches [31]. It allows bonds to form and break throughout the simulation and
dynamically assign charges to the atoms using the electronegativity equalization
method (EEM) [21].

ReaxFF divides the total potential energy of the system into various parts
similar to the nonreactive force fields as it is shown by (1). The model requires
Cartesian coordinates of the atoms and the model parameters as input to cal-
culate various potentials and respective forces. The analytical derivative of the
total potential energy with respect to the coordinates gives the atomic forces
which are fundamental to the MD simulation. Therefore, the analytical forces
are carefully implemented as a part of various software packages for ReaxFF
such as the standalone ReaxFF, PuReMD [1, 2, 17], GULP [11] and LAMMPS
[25].

Esystem = Ebond + Eover + Eunder + Eval + Epen + Etors +
Econj + EvdWaals + ECoulomb + Especific

(1)

The ReaxFF parameters are grouped by the number of atoms involved in the
interaction such as single-body, two-body, three-body and four-body parameters
besides the global parameters. Based on the distances and angles between the
atoms and corresponding model parameters, the interaction lists are created.

2

Type Training Item Target Description
Charge ID1 1 0.5 Charge for atom 1

Energy
ID1 - ID2/2 - ID3/3 50 kcal/mol

Energy differenceID1 -150 kcal/mol
ID3/2 - ID1/3 30 kcal/mol

Geometry
ID1 1 2 1.25 Å Distance between atom 1 and 2
ID2 1 2 3 120◦ Valence angle between atom 1, 2 and 3
ID3 1 2 3 4 170◦ Torsion angle between atom 1, 2, 3 and 4

Force
ID1 1 0.5 0.5 0.5 Forces on atom 1
ID2 1.0 RMSG

Table 1: Training item types. Identifiers (Ex. ID1) are used as a reference to
the molecules.

For every interaction, the respective parameters are selected by the group and
the types of the atoms in the interaction to calculate Esystem. As the number
of the atom types increases, the training the force field gets harder due to the
increased number of parameters. Even though there are already tuned param-
eter sets for various systems, they might require further tuning if an existing
parameter set is not performing well for chemistry of interest. In some cases, the
model needs to be trained from scratch which highly increases the complexity of
the process. As it is originally designed for the standalone ReaxFF, the training
procedure requires three different inputs: a file containing various atom clusters
related to the system of interest, a file containing the training data which uses
the properties of these atom clusters such as geometric properties (angles and
distances), forces on atoms, root mean square of the forces (RMSG), relative
potential energies or charges with their target values and lastly selected model
parameters to tune to minimize the error on the training data. While calculat-
ing model predictions, some molecules might require energy minimization before
the final calculation to prevent overfitting and also to tune the parameters based
on more likely states of the atom clusters since the lower energy states are more
likely to be observed. The error function combines different types of training
items in the following format

Error(m) =

N∑
i=1

(
xi − yi
σi

)2

(2)

where m is the model, xi is the model prediction, yi is the ground truth and
σ−1
i is the weight of the corresponding training item. The supported item types

are shown in Table 1. An energy based item could be formed using a linear
relationship of up to 5 molecules using their identifiers. It helps the model to
capture the relative potential energies of the molecules rather than the exact
potential energies since the MD is driven by the former ones. Also there can
be charge and geometry based items. For geometry based items, the molecules
are expected to be energy minimized since it is essential to observe the effect
of the force field on the geometry. For the other types, energy minimization is
optional but usually preferred for the reasons mentioned previously.

As it is further discussed in Section 2, the current force field optimization

3

methods for ReaxFF employ gradient free black-box optimization methods such
as Genetic Algorithms (GA) and Evolutionary Algorithms (EA). These meth-
ods could enable a global search with the cost of more error evaluations since
they assume the error function is a black box and only the final output can be
observed. The proposed method takes a peek inside the block box and learns
more about the local surface to increase the training efficiency. By calculating
the derivative of the error on the training set with respect to the selected force-
field parameters using JAX [3], well tested local optimization methods such as
the Limited Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm
[33] and Sequential Least Squares Programming (SLSQP) [16] optimizer, both
are implemented in the SciPy library [32], could be employed. The local deriva-
tive information might cause the optimizers to get stuck in a local minima but
when combined with a multi-start approach, we can greatly improve the training
efficiency and reduce the time spent on training a force field. By leveraging mod-
ern tools, the analytical derivative of the Error(m) with respect to the model m
can be taken without explicitly implementing it and the overall training time
could be greatly reduced by up to three of magnitude without sacrificing much
accuracy as it is demonstrated in Section 4.

Beyond speeding up force field optimization, it should be noted that JAX-
ReaxFF provides the ideal sandbox environment for domain scientists, as they
can go beyond parameter optimization and start experimenting with the func-
tional forms of the ReaxFF interactions, or add/remove interactions as desired.
Through automatic differentiation, parameter optimization for the new set of
functional forms can be performed without any additional effort by the domain
scientist. Also, since evaluating the gradient with respect to atom positions gives
forces, scientists are freed from the burden of coding the lengthy and bug-prone
force calculation parts, and they can easily test the macro-scale properties pre-
dicted by the modified set of functional forms as a further validation test before
production-scale simulations.

2 Related Work

The earliest method used to train a force field for ReaxFF is sequential one-
parameter parabolic interpolation method (SOPPI) [7]. The algorithm uses
a well known one parameter-at-a-time approach where the consecutive single
parameter searches are done until a certain convergence criteria is met. The
algorithm is preferred for its simplicity but as the total number of parameters
increases, the number of one-parameter optimization steps needed for conver-
gence increases drastically since only a small portion of the search space is
explored in each round. Also the performance of this method is very dependent
on the initial guess and the order of the parameters to be optimized in each
step. Due to the drawbacks of this approach and need for a more efficient,
global and automated algorithms, various global optimization methods such as
genetic algorithms (GAs) [6, 15, 19], simulated annealing (SA) [13, 14], evo-
lutionary algorithms (EAs) [30], particle swarm optimization (PSO) [10] and

4

Initial
Geometries

Neighborhood and
interaction lists

Generate
required data
structures Clustered

and aligned
geometries

Clustering
and aligning

Error
Minimization

Energy
Minimization

Calculate
True Error

FFcur

Geomin

Geomin & FFcur

Save if best

Geoinit

Geoinit

FF parameters to be
optimized,
Training data

Figure 1: Proposed method

machine learning based search methods [5, 12, 24] have been investigated in
the context of force field optimization. Due to the sheer amount of different
methods, a thorough explanation and evaluation of these methods are out of
scope of this paper. Several studies have been done to compare these methods
[28, 29]. When there is no gradient information available, these methods are
proven to be successful for many black box optimization problems. However,
due to the nature of the global search algorithms, they require high number of
error evaluations and depending on the size of the problem, they could be very
costly compared to the methods using gradients to help the search.

After the emergence of the highly optimized tools for machine learning to cal-
culate gradients of complex functions automatically, a method called Intelligent-
ReaxFF has been proposed to take advantage of these tools to train a force field
for ReaxFF [12]. They use the TensorFlow library to calculate the gradients
and optimize a force field. However, the method does not have the flexibility
of the previously mentioned methods in terms of the training data. The force
field only can be trained to match the ReaxFF potentials to the reference data.
The energy differences between different geometries or charges cannot be used
to train the force field which limits the usability. More general framework has
been developed to provide end-to-end differentiable MD simulations [27]. Unlike
this work, the main focus is to provide a unifying framework to study different
potential functions including machine learning potential.

3 Proposed Method

The ReaxFF energy expression is implemented in Python using JAX library
which is developed by Google [3]. JAX offers hassle free gradient calculation

5

with automatic differentiation (auto-diff). After providing the energy calcula-
tion, we can easily calculate the gradients of the training error with respect to
the parameters to be optimized using auto-diff functionality of the framework.
The same auto-diff functionality is also used to calculate the forces. Besides
that, JAX uses Accelerated Linear Algebra (XLA), a domain specific compiler
for linear algebra, to accelerate the computation. The Python code using JAX
can be run on CPUs, GPUs or TPUs without any changes on the code which is
another big advantage. The Python code gets compiled only once using XLA if
the input array shapes do not change.

Molecular systems used for force field training tend to have a small number
of atoms compared to regular MD runs. Using a software designed for running
simulations with thousands of atoms to run multiple small scale simulations in-
troduces a lot of overhead. The optimizations such as iterative preconditioned
and sparse solvers to calculate the atomic charges, fast neighbor list generation
algorithms, distributed computation etc. could potentially increase the run-time
and complicate the implementation when the number of atoms per geometry is
low. Even though vanilla Python code tends to be slower than efficient Fortran
or C code, when the just-in-compiled XLA support, auto-diff functionality and
benefits of targeting small geometries are considered, it is beneficial to imple-
ment the ReaxFF model in Python using JAX.

3.1 ReaxFF Model Implementation

The design goal is that instead of running one big geometry in parallel, many
small geometries could be run parallel on many-core architectures. JAX offers
vectorization (vmap) and parallelization (pmap) to take advantage of the un-
derlying architecture fully. To better utilize processing units with high level of
Single Instruction Multiple Data (SIMD) parallelism, JAX offers vmap so that
multiple small systems can be merged into a batch to yield high device utiliza-
tion. While the target parallelism for vmap is SIMD, pmap targets Multiple
Instruction Multiple Data (MIMD) parallelism. The current implementation
takes advantage of vmap to further accelerate the energy and gradient calcu-
lations. To be able to use vectorization, the interaction lists are precalculated
and aligned.

BO
′

ij = BOσij +BOπij +BOππij = exp

[
pbo1

(
rij
rσo

)pbo2]
+ exp

[
pbo3

(
rij
rπo

)pbo4]
+ exp

[
pbo5

(
rij
rππo

)pbo6]
(3)

In regular ReaxFF implementations, the interaction and neighborhood lists
are created based on the initial atom positions and the fixed force field param-
eters. As it can be seen in Figure 2, the bonded interactions depend on the
corrected bond order term. Initially, If the distance between two atoms is less

6

than the given cutoff, typically 5 A, the bond order (BO) term is calculated
based on Equation 3. In the given equation, rij is the distance between the
atoms and pbo1, pbo2, pbo3, pbo4, pbo5, pbo6, rσo , rπo , and rππo are the model pa-
rameters selected based on the atom types. If the calculated term is greater than
a potential based cutoff, the interaction is added to the interaction list and the
bond order term is corrected based on the neighborhood of the atoms forming
the bond. 3-body and 4-body interaction lists are built using the corrected BO
term. To limit the number of interactions, another cutoff parameter is used
based on the bonds forming multi-bond interactions while creating 3-body and
4-body interaction lists.

Differently from the regular ReaxFF MD simulations, the force field is dy-
namic during the optimization. Based on the updated FF parameters, the inter-
actions change because of the potential based cutoffs even if the atom positions
stay constant. Also when a given molecular structure in the training data re-
quires energy minimization, the positions change as well. Because JAX requires
recompilation if the input array shapes change and also recreating interaction
lists is costly, we have decided to create the interaction lists once before the opti-
mization starts and use masks to ignore the unwanted elements throughout the
optimization and/or energy minimization. To achieve that purpose, for every
unique atom type pair, the maximum possible distance where a given pair can
have a valid bonded interaction is found. If some BO related parameters need
to be optimized, the values which maximize the BO term is selected from the
given ranges. Then by simply scanning the possible distance values, the maxi-
mum possible distance is determined as the cutoff for the interactions between
that pair. Similar logic is applied for the other types of interactions. For the
geometries that require energy minimization, the maximum calculated distance
is extended by a fixed value to create room for atom positions to change.

It is assumed that there is a non-bonded interaction between every atom
in the system since the non-bonded interaction cutoff, typically 10 A, is a lot
larger the bonded interaction cutoff and the molecules used for training are
quite small. Therefore, non-bonded interactions form an N ∗N matrix. If the
system has periodic boundary condition and the box dimensions are a, b and c
Angstrom (A) and cutoff is 10 A, then the size of the tensor for non-bonded
interactions will become N ∗N ∗

⌈
10
a

⌉
∗
⌈

10
b

⌉
∗
⌈

10
c

⌉
.

Once the arrays for the interactions are created, their sizes do not change.
The unwanted elements in the interaction arrays are masked. Although this
approach wastes some of the computational power, it does not require reneigh-
boring, recreation of the interaction lists and recompilation. It helps us to
separate the interaction list generation part from the force field optimization
to simplify the process. The interaction lists are generated on the CPU using
multiprocessing.

To calculate the potential energy, a similar approach to the standalone
ReaxFF code is followed with an only exception of the charge calculation.
The Electronegativity-equalization method (EEM) based charge model assigns
charges to the atoms after solving a linear equation of Ax = b where A is an
NxN matrix, the details can be found in [21]. Typically, the linear system is

7

Atom
Positions

Determine
Charges

Determine
bond orders

(BO)

System
specific terms

EvdWaals EBond EOverECoulomb EAngle ETorsion

Determine
angles and

torsions

Correct (BO) for
local

overcoordination

Esystem
Non-bonding Bonding

Non-bonded
Interaction List

2-body
Interaction List

3-body and 4-body
Interaction Lists

Figure 2: ReaxFF Model

solved using a pre-conditioned and iterative solving scheme. Since, N, the num-
ber of atoms, is low for the training items, we use a direct method based on LU
factorization which is easier to implement and differentiate.

3.2 Data Preprocessing

Since one geometry is not enough to use all of the available cores, multiple
geometries are clustered together, aligned and fed into the processing unit using
the vectorization (vmap) functionality of the framework. For each cluster, the
interaction lists of the geometries are aligned by padding and the newly added
elements are masked later during the energy and gradient calculations so that
they do not affect the output. To cluster the geometries for easy vectorization,
a modified version of K-Means algorithm [20] is used. The distance formula for
geometry x and cluster center y with size sy is shown below

Dist(x, y) = sy(c1max(n{2,x}, n{2,y}) + c2max(n{3,x}, n{3,y})+
c3max(n{4,x}, n{4,y}) + c4max(n{5,x}n

2
{1,x}, n{5,x}n

2
{1,y}))

(4)

where n1, n2, n3, n4 and n5 are the number of atoms, the number of 2-body
interactions, the number of 3-body interactions, the number of 4-body interac-
tions and the number of periodic boxes within long range cutoff respectively.
c1 through c4 are the constants. Each term in the equation is a indicator of
computational cost of a kernel. The constants are currently chosen to be 1,
but their relative weights could be learned empirically to better represent the

8

computational costs in a given training set. Since the cost of each cluster is
determined by the largest instruction list size within the cluster, the max value
between the the current cluster center y and geometry x is chosen.

After initializing k cluster centers randomly, each geometry is assigned to
these clusters based on the unique distance metric where the distance is an indi-
cator of the change in computational load after assigning geometry x to cluster
center y as it is shown in (4). The new center for each cluster is determined by
the largest interaction lists within the cluster, since they determine the amount
of padding needed for alignment of the geometries in that cluster. After centers
are updated, a new iteration is performed where each geometry is reassigned to
the closest cluster. Unlike the original K-Means algorithm, the order of the ge-
ometries affects the result, so they are shuffled after each iteration to randomize
the algorithm. The process continues until the cluster centers do not change
anymore. Also to increase the performance of the algorithm for a given number
of clusters, the clustering algorithm is run multiple times starting from different
random initial cluster centers and the one where the total wasted computation
is minimal is chosen as the final clustering of the geometries. Although the algo-
rithm does not guarantee optimality, empirical results are satisfactory. Finally,
another set of clusters are created after removing the geometries that do not
require energy minimization. This cluster set is used to vectorize the energy
minimization procedure.

Algorithm 1 Clustering Algorithm

1: Cbest ← Keep track of the best so far
2: for r = 1, 2, . . . R do
3: Ccur ← Initialize the cluster centers by selecting a random geometry as

the center for each cluster
4: for i = 1, 2, . . . I do
5: Cprev ← Ccur
6: Shuffle G
7: for each g ∈ G do
8: Assign g to ci where Dist(g, ci) is minimum
9: Update the cluster centers

10: end for
11: if Ccur == Cprev then
12: Break
13: end if
14: end for
15: if Cost(Ccur) < Cost(Cbest) then
16: Cbest ← Ccur
17: end if
18: end for

The total compilation time of JAX increases exponentially with the number
of clusters. Also if the wasted computation does not change drastically, small

9

number of clusters is more favorable for GPUs because of easy vectorization.
For these reasons, the number of clusters is selected automatically based on
algorithm 2. If the computational gain is not significant, smaller number of
clusters is preferred.

Algorithm 2 Clustering Algorithm 2

1: kmax ← Maximum number of clusters
2: R← Number of repetitions for the clustering algorithm
3: I ← Number of iterations for the clustering algorithm
4: Cselected ← Selected clustering of the geometries
5: for k = 1, 2, . . . kmax do
6: Costk, Ck ← Clustering(G, k, I, R)
7: if |Costk − Costk−1|/Costk−1 < 0.10 or k == kmax then
8: Cselected ← Ck
9: Break

10: end if
11: end for

3.3 Force Field Training

After the final clusters are formed, the training is done using the logic described
in Figure 1. Training is done using gradient based local optimizers with multi-
start. For energy minimization, a simple gradient descent algorithm is used
because of its simplicity. Previously mentioned vectorization method is used for
both energy minimization and force field optimization to allow calculations to
be parallelized on a GPU.

3.3.1 Gradient Based Local Optimization

For each iteration of the training loop, two different local optimizations are
performed, one to locally minimize the energy by updating the atom positions
using steepest descent and the other one to minimize the fitness error on the
energy minimized geometries by updating the selected force field parameters
using various local optimization methods such as L-BFGS-B [33, 4] and SLSQP
[16]. The true error is calculated after the energy minimization step, if there
are any geometries that require energy minimization. The local optimization
step uses the single point charge, energy and force calculations using the mini-
mized geometries from the previous step as a surrogate model to accelerate the
training. The error on the surrogate gets closer to the true error as the param-
eters converge because the changes in the parameters become minimal. Besides
the computational cost of energy minimizing the structures, it is also more er-
ror prone to calculate derivatives in that way using the auto-diff functionality
because of the complex functional form of the ReaxFF. One disadvantage of
separating the energy minimization from the local optimization is that the fit-
ness score for the geometry items will be be ignored by the local optimization

10

since the atom positions will not change. It introduces a discrepancy between
the true error and the surrogate one. However, if the training data has multiple
items related to the geometry based items as a result of potential energy surface
scans (PES), the discrepancy could be minimized. As it is demonstrated in the
later sections, the surrogate approach works well in practice for a variety of
training tasks which have geometry based items.

Algorithm 3 Gradient Based Local Optimization

1: for iteration = 1, 2, . . . do
2: FF cur ← Locally minimize the error using selected gradient based algo-

rithm using Geomin and starting from FFcur
3: Geomin ← Geometry optimize the structures starting from the initial

geometries Geoinit with the current model FFcur
4: Eprev ← Ecur
5: Ecur ← Calculate the current error using Geomin and FFcur
6: if Ecur < Ebest then
7: Ebest ← Ecur
8: FFbest ← FFcur
9: end if

10: if |Ecur − Eprev|/Eprev < 0.001 then
11: FF cur ← Add small uniform noise to FF best
12: end if
13: end for

4 Evaluation

4.1 Datasets

To evaluate the performance of the proposed method, the following training
sets are evaluated and the results are compared against CMA-ES, MCFF and
GA, which are studied in [28]. The selected training sets are relatively different
in terms of the number of parameters and the training item types. Also while
the geometries in the Cobalt and Silica training sets mostly require energy
minimization, the geometries in the Disulfide one are mostly single step. As
shown in Table 1, the proposed method does not handle cell parameter based
training items. During the training, these items are ignored. It only affects the
Silica dataset which have 5 of them. When all of these are considered, they
form a well rounded test-bench for the novel method we have developed.

11

Training Data Npar Ngeo Nminim C G F P E

Cobalt [18] 12 146 130 0 0 0 0 144
Silica [8] 67 302 221 5 26 0 6 265

Disulfide [23] 87 231 10 0 255 4401 0 219

Table 2: Datasets. Npar is the number of parameters to optimize, Ngeo is the
number of geometries and Nminim is the number of geometries to be energy
minimized. C, G, F, P and E are the number of charge based training items,
geometry based items, force based items, cell parameter based items and energy
based items, respectively.

4.2 Runtime and Training Evaluation

Usually when a new force field needs to be developed for a certain domain or
task, multiple passes over the training data is needed. Based on the performance
of the force field, the training data might be changed. If there is a pre-existing
force field, it might just require a simple fine-tuning for the target domain. If
a force field is being trained from scratch, multiple updates could be done to
the training data. For both of these scenarios, the training efficiency of the
optimizers play an important role and need to be analyzed.

The initial guess is another important factor which could change the results
drastically. It is especially important for gradient based method since it can-
not move through the space freely since we need to follow the direction of the
gradients. To show the capabilities of the proposed approach better, different
initialization methods are used. For each experiment, the initialization methods
from the Shchygol et al [28] are repeated. The initial guess types are divided
into three categorises including random, educated and literature based initial
guesses. For the random initial guesses, the initial parameters are sampled from
a uniform distribution based on the given parameter ranges. To produce edu-
cated guesses, prior information comes from the previous related force fields is
used as it is described in further details in [28]. For the literature based initial
guesses, the force fields developed previously using the same training data are
used. To give more reliable results, each initialization method is repeated ten
times. For the educated and literature based initial guesses, small amount of
uniform random noise is added to the parameters without violating the range
restrictions. For each parameter p, the noise value is sampled from [−1k

10 ,
1k
10]

where k is the length of the given range for parameter p. For the random initial
guesses, uniform sampling is done ten times to produce the guesses.

For the training, 2 different gradient based optimization algorithms, L-
BFGS-B and SLSQP, are used and the results are compared against black-box
optimizers including CMA-ES, GA and Monte Carlo based force field optimizer
(MCFF). The settings for the black-box optimizers are given in [28]. For both
L-BFGS-B and SLSQP, the maximum number iterations is set to 100. For L-
BFGS-B, the maximum number of iterations for the line search is set to 20 and
the maximum number of variable matrix corrections to approximate the Hessian

12

matrix is set to 20. For the rest of the control parameters, the default values
from the SciPy library are used. The iteration count is set to 20 for Algorithm
3 where the local error minimization and the energy minimization is done iter-
atively. Therefore, for all of the experiments, the full energy minimization and
the true error calculation is done 20 times. The local error minimization only
uses single step calculations.

For the hardware, we have used single 1080-TI GPU and Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40GHz (28 cores) CPU. To approximate the execution
times for the black-box methods, we calculated the per iteration time on the
mentioned CPU and multiplied it by the number of iterations provided for each
method in [28]. This approximation is a lower bound for CMA-ES and MCFF
since they have lower level of parallelism unlike genetic algorithm where each
evaluation is independent from each other.

4.2.1 Cobalt

As shown in Table 5, the proposed method converges faster than the black box
approaches while producing similar error on the Cobalt training data which
only have energy based training items. Although close to 90% of the geometries
require energy minimization, the error does not fluctuate as seen in Figure 3.
It shows that the surrogate error is close to the true error for this dataset.
Otherwise the error would fluctuate between iterations since the surrogate error
is used for the error minimization in each iteration. For some of the random
runs, SLSQP does not show any progress initially. One possible explanation is
that when the initial parameters are from a non-smooth part of the error surface
which cause high gradients, the optimizer fails to escape (Figure 6b). When the
progress stops, small noise is added to stimulate the progress.

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B
rand 1368 2334 480

20 23.5 1.2edu 1352 1499 418
lit 1366 1446 450

SLSQP
rand 1191 2253 513

20 24.8 1.3edu 1168 1188 618
lit 1187 1189 637

Genetic
Algorithm

rand 1346 1645
- 200k 3913 -edu 1349 1424

lit 1345 1483

CMA-ES
rand 1150 1894

- 45k 880 -edu 1159 1491
lit 1180 2320

MCFF
rand 1422 2104

- 45k 880 -edu 1532 2092
lit 1360 1405

Table 3: Cobalt training results.

13

0 5 10 15 20
Iteration

103

104

105

106

107

108
Er

ro
r

Cobalt: Random Initial Guess and L-BFGS-B

(a) L-BFGS-B

0 5 10 15 20
Iteration

103

104

105

106

107

108

109

Er
ro

r

Cobalt: Random Initial Guess and SLSQP

(b) SLSQP

Figure 3: Convergence of the local optimizers for the Cobalt dataset

4.2.2 Silica

The silica training set includes energy, charge and geometry based items. 73%
of the geometries require energy minimization. Although the single point eval-
uation based surrogate model ignores the geometry based items, the proposed
method is able to minimize the error comparable to the black box method while
taking fraction of the execution time. For the true error which is calculated
after energy minimization, the geometry based items are calculated. For this
dataset, the cell based items are fully ignored for both the true error and sur-
rogate error calculations. Unlike the Cobalt case, the error fluctuates more
between iterations possibly because of unstable geometries and geometry based
items.

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B
rand 3901 5214 1865

20 25.0 1.6edu 4143 4467 1385
lit 4315 5068 1929

SLSQP
rand 3870 4498 2962

20 31.9 2.0edu 3977 4540 2839
lit 3857 4534 2938

Genetic
Algorithm

rand 3577 3738
- 200k 1632 -edu 3705 3817

lit 3593 3721

CMA-ES
rand 3739 4753

- 45k 367 -edu 3747 4122
lit 3793 4298

MCFF
rand 5059 6584

- 45k 367 -edu 5632 7127
lit 4885 6126

Table 4: Silica training results.

14

0 5 10 15 20
Iteration

104

105

Er
ro

r
Silica: Random Initial Guess and L-BFGS-B

(a) L-BFGS-B

0 5 10 15 20
Iteration

104

105

Er
ro

r

Silica: Random Initial Guess and SLSQP

(b) SLSQP

Figure 4: Convergence of the local optimizers for the Silica dataset

4.2.3 Disulfide

The disulfide training data is drastically different from the previous one since it
uses force matching to fit the ReaxFF model to the data. As it is shown below,
the forces are calculated by taking the derivative of the potential energy with
respect to the positions and the local optimizers require the derivative of the
forces with respect to the force field parameters.

Fx =
∂Ep
∂x

(5)

∂(Fx − Ft)2

∂p
=
∂(

∂Ep

∂x − Ft)
2

∂p
(6)

where Fx is the 3-dimensional force vector on atom x, Ft is the target force

vector and p is the model parameters to be optimized. ∂(Ft−Fx)2

∂p gives the
gradients for the force based items required to minimize the error. The auto-
differentiation functionality of the JAX library handles this easily without pro-
viding any derivative calculations by hand. However, the final gradients for the
parameters from Equation 3 result in high values, ∼ 1017, while the other gra-
dients are much lower. The high gradients stop the local optimizers from doing
any progress as seen in Figure 5. Therefore, we excluded these parameters and
fixed their values to the literature ones. Among 87 parameters, 18 parameters
are removed and the optimization is performed again with the remaining 69
parameters. As shown in Figure 6, the results are improved drastically. The
high gradients might be related to the bond order issues described in [9] but it
requires further investigation.

15

Method
Initial
Guess

Best
Score

Median
Score

Avg. #
Single

Step Eval.

True
Eval.

Avg. CPU
Exec. Time

(min)

Avg. GPU
Exec. Time

(min)

L-BFGS-B*
rand 10198 10920 1660

20 9.7 0.9edu 10313 10631 1600
lit 10438 10803 1503

SLSQP*
rand 6986 9488 1187

20 8.9 0.8edu 9306 9635 1234
lit 10304 10494 1901

Genetic
Algorithm

rand 19285 20384
- 340k 878 -edu 18054 20150

lit 18524 21206

CMA-ES
rand 8052 11371

- 45k 116 -edu 8727 11105
lit 9284 11120

MCFF
rand 8507 11893

- 45k 116 -edu 9608 13393
lit 10605 13625

Table 5: Disulfide training results. *The results are from the modified version
of the training.

0 5 10 15 20
Iteration

105

106

Er
ro

r

Disulfide: Random Initial Guess and L-BFGS-B

(a) L-BFGS-B

0 5 10 15 20
Iteration

105

106

Er
ro

r

Disulfide: Random Initial Guess and SLSQP

(b) SLSQP

Figure 5: Convergence of the local optimizers for the Silica dataset before the
modification

16

0 5 10 15 20
Iteration

104

105

106

Er
ro

r
Disulfide: Random Initial Guess and L-BFGS-B

(a) L-BFGS-B

0 5 10 15 20
Iteration

104

105

106

Er
ro

r

Disulfide: Random Initial Guess and SLSQP

(b) SLSQP

Figure 6: Convergence of the local optimizers for the Silica dataset after the
modification

4.3 Force Field Evaluation

To validate the fitted Si/O and Co ReaxFF parameters, the optimized force
fields were evaluated by various molecular dynamics (MD) simulations. MD
simulations in this work are performed using Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) that is a molecular dynamics pro-
gram from Sandia National Laboratories [25]. A relatively short time step of
0.5 fs was used in all the simulations. This is the recommended setting for
ReaxFF simulations of systems that don’t include light atoms like Hydrogen.
All NVT ensemble (constant number of atoms, volume and temperature) simula-
tions were performed using Nosé-Hoover thermostat to control the temperature
with a temperature damping parameter of 100 fs which determines how rapidly
the temperature is relaxed. All NPT ensemble (constant number of atoms,
pressure and temperature) simulations were performed using Nosé-Hoover ther-
mostat to control the temperature with a temperature damping parameter of
100 fs and Nosé-Hoover barostat to control the pressure with a temperature
damping parameter of 1000 fs.

4.3.1 Molecular Dynamics Simulations of Pure Silica Structure

To evaluate the quality of the optimized force field for the Si/O parameters,
the amorphous silica structure introduced in the Fogarty et al [8] was recon-
structed. The amorphous silica system included 2000 SiO2 molecules with an
initial density of 2.2 g/cm3 (Figure 7).

The amorphous silica system was energy-minimized to eliminate initial bad
contacts. The system was then annealed twice between 300K and 4000K. The
first annealing loop was performed using NVT ensemble with heating and cool-
ing rate of 37 K/ps. The second annealing loop was performed in NPT ensem-
ble between 300K-4000K using Nose–Hoover thermostat and barostat 1.01325
bar pressure. Similar to the NVT annealing, the heating and cooling rate was

17

Figure 7: The amorphous silica structure including 2000 SiO2 molecules and
total of 6000 atoms. Silicon atoms are shown with yellow color and Oxygen
atoms are shown with red color.

37 K/ps. Finally, the silica system was equilibrated in NPT ensemble using
T=300K and P=1.01325 bar for additional 200 ps as the production run. These
calculations were performed using our fitted force field and two previous ReaxFF
force fields introduced for such systems. The properties of the final configuration
of these silica structures are compared in Table 6. The radial distributions of
the final configuration of silica structure equilibrated using our fitted force field
for Si-O, O-O and Si-Si are shown in Figure 8. These results show acceptable
force field training quality for silica structure using our proposed method for
force field optimization.

Property 2010 FF [8] 2019 FF [28] New FF

Density (g/cm3) 2.19 2.31 2.23
Si coordination 3.99 3.94 3.97
O coordination 1.99 1.97 1.99

Table 6: Silica properties calculated using three different force fields. The ex-
perimental value reported for silica density is 2.2 g/cm3 [22]

4.3.2 Molecular Dynamics Simulations of Pure Cobalt Structure

The LAMMPS molecular dynamics code was employed to investigate crystal
lattice constant correlation with cohesive energy in crystals of fcc Cobalt. The
lattice constant was changed from 3Å to 5Å and the associated lattice cohesive
energies were recorded (Figure 9). The results of the fitted force field were

18

Figure 8: Radial distribution function of silicon-oxygen, oxygen-oxygen, and
silicon-silicon for silica structure at the end of annealing and equilibration.

compared to two previously trained ReaxFF force fields for Cobalt [18, 28] and
embedded atom method (EAM) force field [26].

To validate the quality of the force field in capturing the dynamics behavior,
the annealing loop was generated for a pure Cobalt crystal structure and was
compared to the available force fields. A cubic simulation box of 5x5x5 ideal fcc
Cobalt unit cells was generated for annealing simulations using NPT ensemble
between 1000K-3000K. After the NPT equilibration of the pure Cobalt crystal at
1000K, the system was subjected to NPT ensemble annealing between 1000K-
3000K by 10 K/ps heating and cooling rate. A time step of 0.5 fs was used
for the simulations. The changes in the system energy during this annealing
loop is shown in Figure 10. Three ReaxFF force fields showed similar dynamic
evolution behavior for the pure Cobalt structure while the EAM force field
showed a different dynamic evolution (Figure 11).

19

Figure 9: Variations in pure Cobalt single fcc crystal cohesive energy by varia-
tions of the lattice constant.

Figure 10: Annealing loop of a 5x5x5 fcc Cobalt crystal including 500 atoms
using fitted ReaxFF force field with heating and cooling rate of 10 K/ps.

20

Figure 11: Annealing loop of a 5x5x5 fcc Cobalt crystal including 500 atoms
using EAM force field with heating and cooling rate of 10 K/ps.

After completion of the annealing loop, structural evaluation showed that
using the ReaxFF force fields resulted a considerable recrystallization in the pure
Cobalt structure, while recrystallization was not observed when EAM force field
was utilized (Figure 12).

Figure 12: Final configurations of pure Co fcc crystals after annealing loop with
1000K-3000K temperature range.

4.3.3 Molecular dynamics simulations of molecules with Sulfur bonds

To test the validity of the force field containing Sulfur parameters updated using
our proposed training method, we performed minimum energy structure search
for single molecules with different restraints. The results of the fitted force

21

field were compared to two previously trained ReaxFF force fields[4, 7]. The
restraints are applied on S-S bond of dimethyl disulfide (DMDS), S-C bond of
dimethyl thioether (DMTE), H-S-H angle of Hydrogen sulfide (H2S) and H-S-
S-H torsion angle of Hydrogen disulfide (H2S2). These potential energy graphs
are shown in Figure 13.

Figure 13: Potential energy graphs of energy minimized molecules including
Sulfur bonds with different restraints, calculated with the updated force field
and previously trained force fields.

5 Conclusion

Based on the experiments, we have seen that even if the starting force field is
bad, gradient based local optimizers are able to increase the fitness of the force
field drastically. As it is described in Algorithm 3, by using single step energy
evaluation based approximations to the error function and gradient information
about the search space, we are able to decrease the convergence time significantly
with the help of GPU acceleration. This allows users to generate the force fields
in minutes. Auto-diff functionality enables the study of the new functional forms
for the various parts of the ReaxFF model without explicitly implementing the
force calculations. JAX-ReaxFF provides a sandbox environment for domain
scientists to tinker with the ReaxFF model and also enables accelerated force
field optimization.

22

References

[1] Hasan Metin Aktulga et al. “Parallel reactive molecular dynamics: Numer-
ical methods and algorithmic techniques”. In: Parallel Computing 38.4-5
(2012), pp. 245–259.

[2] Hasan Metin Aktulga et al. “Reactive molecular dynamics: Numerical
methods and algorithmic techniques”. In: SIAM Journal on Scientific
Computing 34.1 (2012), pp. C1–C23.

[3] James Bradbury et al. “JAX: composable transformations of Python+
NumPy programs, 2018”. In: URL http://github. com/google/jax (2020),
p. 18.

[4] Richard H Byrd et al. “A limited memory algorithm for bound con-
strained optimization”. In: SIAM Journal on scientific computing 16.5
(1995), pp. 1190–1208.

[5] Chaitanya M Daksha et al. “Automated ReaxFF parametrization using
machine learning”. In: Computational Materials Science 187 (), p. 110107.

[6] Mark Dittner et al. “Efficient global optimization of reactive force-field pa-
rameters”. In: Journal of computational chemistry 36.20 (2015), pp. 1550–
1561.

[7] Adri CT van Duin, Jan MA Baas, and Bastiaan Van De Graaf. “Delft
molecular mechanics: a new approach to hydrocarbon force fields. In-
clusion of a geometry-dependent charge calculation”. In: Journal of the
Chemical Society, Faraday Transactions 90.19 (1994), pp. 2881–2895.

[8] Joseph C Fogarty et al. “A reactive molecular dynamics simulation of the
silica-water interface”. In: The Journal of chemical physics 132.17 (2010),
p. 174704.

[9] David Furman and David J Wales. “Transforming the accuracy and nu-
merical stability of ReaxFF reactive force fields”. In: The journal of phys-
ical chemistry letters 10.22 (2019), pp. 7215–7223.

[10] David Furman et al. “Enhanced particle swarm optimization algorithm:
Efficient training of reaxff reactive force fields”. In: Journal of chemical
theory and computation 14.6 (2018), pp. 3100–3112.

[11] Julian D Gale, Paolo Raiteri, and Adri CT van Duin. “A reactive force field
for aqueous-calcium carbonate systems”. In: Physical Chemistry Chemical
Physics 13.37 (2011), pp. 16666–16679.

[12] Feng Guo et al. “Intelligent-ReaxFF: Evaluating the reactive force field
parameters with machine learning”. In: Computational Materials Science
172 (2020), p. 109393.

[13] Pierre O Hubin et al. “Parameterization of the ReaxFF reactive force
field for a proline-catalyzed aldol reaction”. In: Journal of Computational
Chemistry 37.29 (2016), pp. 2564–2572.

23

[14] Eldhose Iype et al. “Parameterization of a reactive force field using a
Monte Carlo algorithm”. In: Journal of computational chemistry 34.13
(2013), pp. 1143–1154.

[15] Andres Jaramillo-Botero, Saber Naserifar, and William A Goddard III.
“General multiobjective force field optimization framework, with applica-
tion to reactive force fields for silicon carbide”. In: Journal of Chemical
Theory and Computation 10.4 (2014), pp. 1426–1439.

[16] Dieter Kraft et al. “A software package for sequential quadratic program-
ming”. In: (1988).

[17] Sudhir B Kylasa, Hasan Metin Aktulga, and Ananth Y Grama. “PuReMD-
GPU: A reactive molecular dynamics simulation package for GPUs”. In:
Journal of Computational Physics 272 (2014), pp. 343–359.

[18] Matthew R LaBrosse, J Karl Johnson, and Adri CT van Duin. “Develop-
ment of a transferable reactive force field for cobalt”. In: The Journal of
Physical Chemistry A 114.18 (2010), pp. 5855–5861.

[19] Henrik R Larsson, Adri CT van Duin, and Bernd Hartke. “Global opti-
mization of parameters in the reactive force field ReaxFF for SiOH”. In:
Journal of computational chemistry 34.25 (2013), pp. 2178–2189.

[20] Stuart Lloyd. “Least squares quantization in PCM”. In: IEEE transactions
on information theory 28.2 (1982), pp. 129–137.

[21] Wilfried J Mortier, Swapan K Ghosh, and S Shankar. “Electronegativity-
equalization method for the calculation of atomic charges in molecules”.
In: Journal of the American Chemical Society 108.15 (1986), pp. 4315–
4320.

[22] RL Mozzi and n BE Warren. “The structure of vitreous silica”. In: Journal
of Applied Crystallography 2.4 (1969), pp. 164–172.

[23] Julian Müller and Bernd Hartke. “ReaxFF reactive force field for disulfide
mechanochemistry, fitted to multireference ab initio data”. In: Journal of
chemical theory and computation 12.8 (2016), pp. 3913–3925.

[24] Hiroya Nakata and Shandan Bai. “Development of a new parameter op-
timization scheme for a reactive force field based on a machine learning
approach”. In: Journal of computational chemistry 40.23 (2019), pp. 2000–
2012.

[25] Steve Plimpton. “Fast parallel algorithms for short-range molecular dy-
namics”. In: Journal of computational physics 117.1 (1995), pp. 1–19.

[26] GP Purja Pun and Y Mishin. “Embedded-atom potential for hcp and fcc
cobalt”. In: Physical Review B 86.13 (2012), p. 134116.

[27] Samuel S Schoenholz and Ekin D Cubuk. “Jax, md: End-to-end differ-
entiable, hardware accelerated, molecular dynamics in pure python”. In:
arXiv preprint arXiv:1912.04232 (2019).

24

[28] Ganna Shchygol et al. “ReaxFF Parameter Optimization with Monte-
Carlo and Evolutionary Algorithms: Guidelines and Insights”. In: Journal
of Chemical Theory and Computation 15.12 (2019), pp. 6799–6812.

[29] Ganna Shchygol et al. “Systematic comparison of Monte Carlo Anneal-
ing and Covariance Matrix Adaptation for the optimization of ReaxFF
parameters”. In: ChemRxiv (2018).

[30] Tomas Trnka, Igor Tvaroska, and Jaroslav Koca. “Automated training of
ReaxFF reactive force fields for Energetics of Enzymatic reactions”. In:
Journal of chemical theory and computation 14.1 (2018), pp. 291–302.

[31] Adri CT Van Duin et al. “ReaxFF: a reactive force field for hydrocarbons”.
In: The Journal of Physical Chemistry A 105.41 (2001), pp. 9396–9409.

[32] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[33] Ciyou Zhu et al. “Algorithm 778: L-BFGS-B: Fortran subroutines for
large-scale bound-constrained optimization”. In: ACM Transactions on
Mathematical Software (TOMS) 23.4 (1997), pp. 550–560.

25

