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Abstract: 

The long-due development of a computational method for the ab initio prediction of 

chemical reactants that provide a target compound has been hampered by the 

combinatorial explosion that occurs when reactions consist of multiple elementary 5 

reaction processes. To address this challenge, we have developed a quantum chemical 

calculation method that can enumerate the reactant candidates from a given target 

compound by combining an exhaustive automatic reaction path search method with a 

kinetics method for narrowing down the possibilities. Two conventional name reactions 

were then assessed by tracing back reaction paths using this new method to determine 10 

whether the known reactants could be identified. Our method is expected to be a 

powerful tool for the prediction of reactants and the discovery of new reactions. 
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Since Schrödinger first reported his now fundamental equation describing wave 

mechanics nearly a century ago, the development of quantum chemical calculation 

methods has further revealed the behaviour of atoms during chemical reactions.1–4 

Quantum chemical calculations continue to be used to elucidate the behaviours of 

atoms. This provides a more detailed understanding of the mechanisms involved in 5 

known chemical reactions and establishes mechanistic insights that often lead to the 

rational design of new chemical reactions.5–9 Such calculations have typically been 

performed by solving the Schrödinger equation for the motion of electrons at a series of 

nucleus configurations along a reaction path.10,11 To this end, one generally needs to 

first project the motion of atoms along the path beforehand. The projected motion is 10 

then assessed to determine whether it is energetically feasible by solving the 

Schrödinger equation for the motion of electrons along this path. By performing such 

calculations for various paths and comparing their kinetic and thermodynamic 

preferences, one can identify the actual motion of atoms during a chemical reaction. 

The full automation of this procedure to systematically predict chemical reactions has 15 

been intensively investigated for many years.12-19 In several cases, such methods have 

been successful in predicting the reaction path from a given initial state (e.g., initial 

mixture of reactants, additives, and catalysts) to a product, without relying on any 

knowledge concerning the path or the product. 

The next challenge to overcome involves predicting the initial state of a chemical 20 

reaction by tracing back reaction paths using quantum chemical calculations, which is 

equivalent to solving an inverse problem of a chemical reaction. Once a systematic 

method is established, one could predict a method for synthesizing a target compound 
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without relying on any previous synthetic knowledge or database. We introduced such a 

design concept in 2013 as quantum chemistry-aided retrosynthetic analysis (QCaRA),14 

which has been utilized for predicting a very simple reaction that involves only one 

elementary step.20 However, a combinatorial explosion of the number of possible paths 

has been a major obstacle for generalizing the concept to multistep cases and applying 5 

it to various chemical reactions. The number of paths for possible reactant candidates 

increases dramatically depending on the number of elementary steps from the product 

state. Moreover, the reactant candidates are usually less stable than the product state; 

therefore, a comprehensive search must be performed to find a feasible path leading to 

highly unstable compounds. 10 

This study provides a solution to the aforementioned problem by combining a kinetic 

analysis method with an automated reaction path search method. The artificial force 

induced reaction (AFIR) method,21 which is employed herein as an automated reaction 

path search method, is capable of exhaustive searches that include paths to highly 

unstable compounds.22 The AFIR method eliminates energy barriers by applying a 15 

virtual force between fragments X and Y in a system to induce chemical transformation 

(Fig. 1a), where single atoms or small groups of atoms can be chosen as X and Y. 

Depending on the choice of fragments X and Y, different chemical transformations can 

be produced; two possibilities are illustrated in Fig. 1 for forces applied between X and 

Y, viz. cyanide anion dissociation upon application of a negative force (Fig. 1b) and 20 

water addition by applying a positive force (Fig. 1c). By applying either a negative or a 

positive force to a variety of fragment pairs, various stable structures are constructed. 
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After a systematic exploration in this manner, a network of stable structures and their 

transformation pathways is produced to establish a reaction path network. 

 

 

Fig. 1 | Schematic illustrations of how the AFIR method induces chemical 5 

transformations. a, Bond formation reaction between X and Y induced by the AFIR 

method. A function F(rXY) consisting of the potential energy surface E(rXY) and the force 

term αrXY is minimized, where rXY is the X-Y distance and α is a parameter regarding the 

force strength and direction. b, Bond dissociation reaction induced by the AFIR method. 

By setting α as negative and X and Y as the central C and CN, respectively, X and Y 10 

(circled) were pulled apart with a negative force. c, Bond formation reaction induced by 

the AFIR method. By setting α as positive and X and Y as the iminium C and H2O, 

respectively, X and Y (circled) were pushed together with a positive force. Atoms shown 

in b and c are H (light blue), C (grey), N (dark blue), and O (red). 

 15 
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Without imposing any restrictions, the AFIR method tries to find all possible stable 

structures. Since the number of stable structures increases exponentially with 

increasing number of atoms in the system,12,19 the computational cost to perform a 

search targeting all possible stable structures is high, even for systems composed of 

less than ~20 atoms. Hence, exploration in this study is guided by a kinetic analysis 5 

method called rate constant matrix contraction (RCMC).23 The RCMC method performs 

a coarse-graining of a reaction path network by integrating stable structures that reach a 

thermal equilibrium within a given timescale (tMAX). Fig. 2a shows an energy profile that 

consists of the minima of seven stable structures, with the minimum indicated as “Start” 

corresponding to the energy of the product state; thus, exploration by the AFIR method 10 

in this study starts from there. The RCMC method is then used to integrate the 

shallowest minimum into its adjacent minima with a certain ratio to yield a reaction 

profile shown in Fig. 2b. This procedure called “contraction” is applied to all shallow 

minima with lives shorter than tMAX. Fig. 2c displays the final coarse-grained profile on 

which all the shallow minima have been contracted to the three deep minima. Each of 15 

the three deep minima called a “superstate” (indicated as “SS”) is expressed as the sum 

of the main minimum to which the contraction has not been applied and all the minima 

contracted to it. Since the RCMC method determines the contribution ratio of each 

minimum to each superstate so as to reproduce the thermal equilibrium within tMAX,23 

the ratio directly corresponds to the reaction yield obtained after the time tMAX. In other 20 

words, by using the RCMC method, the yield of the target product obtained by every 

reaction starting from a minimum can be computed as its contribution ratio to the 

superstate in which the product state is the main component. 
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Fig. 2 | Schematic illustrations of how the RCMC method evaluates the kinetic 

importance of each local minimum. a, Energy profile consisting of seven local minima 

obtained by the AFIR method, starting from the minimum corresponding to the product 5 

state that is indicated as “Start”. b, Energy profile after applying a contraction to the 

shallowest local minimum and integrating it to the adjacent minima with certain ratios. c, 

Energy profile obtained after integrating all minima with shorter lives than tMAX (i.e., one 

day for the applications described below) to the three deep minima by the RCMC 

method. The original profile consisting of the seven minima was simplified assuming 10 

equilibration within tMAX in the three superstates (SSs). The contribution ratio of the 

original minimum to the SS that includes the “Start” point corresponds to the probability 

that a reaction starting from a minimum will then fall to the SS after equilibration of tMAX, 

thus providing the yield of the state at the bottom of the SS, i.e., the product state. The 

AFIR search is then performed again starting from local minima with yields greater than 15 

the threshold value. 
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By combining the AFIR method with the RCMC method, paths to attain the product 

state can be selectively explored. First, the AFIR method searches for reaction paths 

starting from the product state to find minima adjacent to the minimum of the product 

state. Next, among these minima, the RCMC method identifies minima contributing to 

the superstate of the product state greater than a predefined threshold. Then the AFIR 5 

method is once again applied to continue the reaction path exploration from the minima 

that satisfy this threshold. Through alternately searching by AFIR and screening for 

minima by RCMC, and repeating this procedure until a termination condition is met, the 

paths leading to the target product can be selectively searched. 

This study applied the above-mentioned combined AFIR/RCMC method to two 10 

known reactions,24-26 i.e., the Strecker reaction (R1) and the Passerini reaction (R2) 

shown in Fig. 3, using each product as an input structure. Although the second HCOOH 

in R2 is not stoichiometrically required, it was added due to its positive impact on the 

reaction as a catalyst.27,28 The reaction temperatures were set at 200, 300, and 400 K, 

and the timescale for tMAX was set to one day. When a stable structure gave the target 15 

product with a reaction yield of ≥0.1% at one or more of these temperatures, the path 

search continued beyond the stable structure. The solvent effects of water in R1 and 

tetrahydrofuran in R2 were taken into account by using an implicit solvation model. 

Further details of the search conditions are discussed in the Supplementary Information. 

The obtained stable structures were classified according to chemical species using the 20 

SMILES notation.29 It should be emphasized that information related to the reactants of 

R1 and R2 were not included in these procedures. In other words, the focus of this 

study is to determine whether the AFIR/RCMC method is capable of finding the known 



 

9 
 

reactants. In the following, it is demonstrated that the AFIR/RCMC method has been 

successful in identifying reactants for both R1 and R2, by tracing back multistep paths 

inverse way starting from the corresponding products. 

 

 5 

Fig. 3 | The target reactions explored in this study. The Strecker reaction (R1). The 

Passerini reaction (R2). 

 

Results 

Starting from the products of R1 and R2, the searches found 9,208 and 12,219 10 

stable structures, respectively, which were then classified into 1,679 and 2,407 chemical 

species, respectively, using their SMILES representations. Figs. 4a and 4b show the 

reaction path networks for R1 and R2 consisting of 1,679 and 2,407 nodes, 

respectively. Each node represents a different chemical species, and the energy of the 

most stable structure among those classified is indicated according to the colour 15 

scheme in the legend. These nodes are linked by 2,934 and 4,018 edges that represent 

reaction paths. As shown in these networks, the search yielded structures in a wide 
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energy range of 800 kJ mol−1. The nodes in Figs. 4c and 4d indicate the contribution 

ratio to the superstate of the product for each chemical species. In other words, 

reactions initiated from red nodes are predicted to provide the target product in 100% 

yield, while those from dark blue nodes do not generate the target product at all. As 

seen from these networks, a variety of species can act as reactants to produce the 5 

target products. In Figs. 4e and 4f, the node colours identify the minimum number of 

elementary steps required to reach the target product; since these appear to be 

predominantly green, it is clear that three or four steps occupies the largest area and is 

most common. Although the searches found paths that consist of up to eight elementary 

steps, such multistep paths did not produce reaction yields that can be understood by 10 

comparing Figure 4c with 4e and Figure 4d with 4f. 
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Fig. 4 | Reaction path networks for the Strecker reaction (R1) and the Passerini 

reaction (R2). Different nodes represent different chemical species. a, The network for 

R1 showing the energy associated with each chemical species represented as a node. 

b, The network for R2 showing the energy associated with each chemical species 5 

represented as a node. c, The network for R1 with each node showing the contribution 

ratio to the product state (reaction yield of the product state). d, The network for R2 with 

each node showing the contribution ratio to the product state (reaction yield of the 

product state). e, The network for R1 with each node indicating the minimum number of 

elementary steps from the target product. f, The network for R2 with each node 10 

indicating the minimum number of elementary steps from the target product. g, The 
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reaction path of R1 as identified by its reaction path network highlighted by white arrows 

in a, c, and e. h, The reaction path of R2 as identified by its reaction path network 

highlighted by white arrows in b, d, and f. 

 

These reaction path networks include nodes representing the known reactants for 5 

R1 and R2. In other words, the searches tracing back quantum chemical reaction paths 

were successful for both cases. In these networks, paths generating the products 

through well-known reaction mechanisms were identified (Figs. 4g and 4h), with each 

two-dimensional structure representing that of each node; the corresponding paths are 

highlighted with white arrows in the networks displayed in Fig. 4. As seen in Figs. 4c 10 

and 4d, these paths follow red nodes, thus indicating that these paths are kinetically 

feasible. In Figs. 4e and 4f, a majority of the nodes along the paths indicate that the 

target product is accessible in three steps from these nodes. However, the paths shown 

in Figs. 4g and 4h consist of six and five steps, respectively, thus demonstrating that 

fewer elementary steps do not correspond to kinetically feasible paths. For the path of 15 

R1 in Fig. 4g, the reaction steps occur as follows: 1) a proton transfers from an 

ammonium cation to a cyanide anion to generate ammonia, 2) nucleophilic addition of 

ammonia to a ketone takes place, 3) proton transfer from hydrogen cyanide to a 

carbonyl oxygen atom occurs, 4) proton transfer from an ammonium cation to a cyanide 

anion generates a hemiaminal intermediate, 5) a proton transfers from hydrogen 20 

cyanide and subsequent dissociation of water generates an iminium cation, and finally 

6) nucleophilic addition of a cyanide anion generates the target product, aminonitrile. 

For the path of R2 in Fig. 4h, the reaction steps are as follows: 1) the nucleophilic 

addition of isocyanide to an aldehyde and the subsequent proton transfer from a 
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carboxylic acid to carbonyl oxygen atom generates a polar intermediate, 2) coupling 

between the charged moieties generates an imine intermediate, 3) the transfer of a 

proton promotes ring closure and generates a five-membered ring intermediate, 4) the 

transfer of a proton from a carboxylic acid to the imine nitrogen atom generates a polar 

intermediate, and finally 5) a proton transfer promotes ring opening and generates the 5 

target product, i.e., α-acyloxyamide. These paths are consistent with those suggested in 

the literature.26-28 Therefore, the present calculations successfully predicted these 

synthetic paths based on a reverse path search from the corresponding products. 

 

Discussion 10 

Here, we further assess and discuss the species that were forecasted from the 

reaction path network of R2. Fig. 5a shows the 21 most stable species with a 

contribution ratio >50% at 300 K, and Fig. 5b lists the seven most stable species 

consisting of four molecules and having a contribution ratio >50% at 300 K. Below each 

species are listed the contribution ratios calculated at 250, 300, and 350 K with tMAX = 1 15 

day, i.e., their yields as reactants. These include some familiar reactions. First, S23 is a 

reactant of the Passerini reaction, while S15 and S20 are intermediates of the Passerini 

reaction, respectively, which are included in Fig. 4h as well. Therefore, it is obvious that 

they give the products of the Passerini reaction in high yields. Likewise, the conversion 

of S4 to α-acyloxyamide is a simple enol-keto tautomerism, and the conversion of S6 to 20 

α-acyloxyamide is a simple condensation of an acid anhydride and an alcohol. The 

anhydrous formic acid and H2O in S28 are readily converted into two molecules of 

formic acid, which is equivalent to reactant S23 in the Passerini reaction. The correct 



 

14 
 

predictions of such indisputable chemical transformations confirm that the method is 

able to systematically predict possible chemical transformations. 

On the other hand, there are many cases in which the corresponding experiments 

are difficult in terms of stability and solubility of the reactants. For example, it is difficult 

to prepare single-molecule species like S3, S5, S8, S9, S10, S16, S18, and S21 as 5 

reactants because they spontaneously change into α-acyloxyamide. Molecules in 

species S1, S2, S11, S14, and S19, which contain formic acid or HCOO−, may also 

spontaneously convert to α-acyloxyamide because they have the same chemical 

composition as α-acyloxyamide or its protonated form. Species such as S12, S13, and 

S22 contain acid-base pairs; therefore, they easily crystallize and precipitate. 10 

Furthermore, S24, S25, S26, and S27 contain molecules that are difficult to isolate, 

such as acetolactone in S24. Among these, S7 and S17 seem to be experimentally 

feasible as new reactions, but it was found that formyl 2-hydroxyacetate and formyl 2-

formyloxyacetate contained in them are not commercially available or synthesized. 

Many of the chemical reactions predicted by this method are difficult to demonstrate 15 

experimentally; however, it is an important finding that the experimentally established 

Strecker and Passerini reactions were included among them. It is also important to note 

that a new reaction was actually found in the previous application limited to one step,20 

producing a R-CF2-COO− skeleton in one-pot from CO2 enabled syntheses of a series 

of compounds that were difficult to synthesize.30 In the future, we would like to 20 

systematically apply this method to various compounds to discover unknown chemical 

reactions. 
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Fig. 5 | Chemical species with a contribution ratio to the product state (reaction 

yield of the product state) >50% at 300 K with tMAX = 1 day for R2. a, The 21 most 

stable species. b, The seven most stable species consisting of four molecules. Gibbs 

energy at 300 K relative to the product state, and the contribution ratio to the product 5 

state at a250 K, b300 K, and c350 K are shown below each species. 

 

Finally, we would like to discuss the advantages and limitations of the backward 

search for synthetic paths consisting of multiple elementary reaction processes 

achieved by this study. First of all, this method allows us to predict chemical reactions 10 
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starting from products and going backward to reactant candidates for the first time by 

tracing back quantum chemical reaction paths. The most important benefit of this 

method is that it does not require any previous knowledge or data, which makes it a 

powerful and innovative computational method that breaks away from the conventional 

norms of chemistry. Unfortunately, the search based on quantum chemical calculations 5 

involves relatively high computational costs. For the two reactions calculated in this 

study, it took approximately four days using 1,344 cores (Xeon Platinum 2.3 GHz). 

Since the computational cost of quantum chemical explorations increases exponentially 

with the number of atoms in the system, the current targets are limited to only simple 

chemical reactions such as those described here. Another limitation is that only the 10 

prediction of reaction paths that can be described by the set of atoms in the 

microsystem is currently possible. In other words, if a reaction path involves a catalyst, 

then the catalyst molecule must be explicitly included in the calculation. Furthermore, 

macroscopic phenomena such as the precipitation of acid-amine salts are ignored. 

These limitations must be overcome or mitigated in the future in order to expand the 15 

possibilities of this method. However, even with the current limitations, it is anticipated 

that this method will be used to discover new reactions. In the future, we plan to work on 

applying this method to the discovery of new reactions, while working toward mitigation 

of the application limits in parallel. With these efforts, we continue to develop QCaRA 

into an essential chemical reaction design concept complementary to computer-assisted 20 

approaches that rely on experimental data.31-38 
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