Synthesis and styrene copolymerization of novel trisubstituted ethylenes:

5. Dimethyl and dimethoxy ring-substituted octyl phenylcyanoacrylates

DePaul University, Chemistry and Biochemistry Department, 1110 West Belden Avenue, Chicago, IL 60614-3214

Abstract

Novel trisubstituted ethylenes, dimethyl and dimethoxy ring-substituted octyl phenylcyanoacrylates, RPhCH=C(CN)CO₂CH₂(CH₂)₆CH₃ (where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 3,5-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy, 3,4-dimethoxy, 3,5-dimethoxy) were prepared and copolymerized with styrene. The ethylenes were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-disubstituted benzaldehydes and octyl cyanoacetate, and characterized by CHN analysis, IR, ¹H and ¹³C NMR. All the ethylenes were copolymerized with styrene in solution with radical initiation (ABCN) at 70°C. The compositions of the copolymers were calculated from nitrogen analysis.
1. Introduction

Cyanoacrylates is family of vinyl monomers renowned for their high reactivity, instant adhesive properties, and wide-ranging applications [1–3]. Trisubstituted ethylenes (TSE), ring–functionalized (R^1) alkyl (R^2) phenylcyanoacrylates, R^1PhCH = C(CN)CO$_2$R2 (PCA) continue to attract attention as compounds with variety of applications [4-14]. Thus, methoxy ring-substituted methyl phenylcyanoacrylate, MPCA was used in synthesis of pyridotriazines and triazolopyridines [4]. Dimethylamino ring-substituted MPCA was examined among other cyanovinylheteroaromatics in relation to organic nonlinear optics [5]. There are a number of applications of ethyl phenylcyanoacrylate, EPCA and its ring-substituted derivatives which include studies of catalysis [6] and potential antimicrobial and antioxidant agents [7]. 2,4-Dimethoxyphenyl EPCA was used in design, synthesis and study of anticancer activity of novel benzothiazole analogues [8], in synthesis of thiazacridine derivatives as anticancer agents against breast and hematopoietic neoplastic cells [9] and in DABCO-catalyzed Knoevenagel condensation using hydroxy ionic liquid as a promoter [10]. This EPCA was involved in catalysis study of N,N'-dialkylimidazolium dimethyl phosphates [11], in synthesis and study of antimicrobial activity of some cyanoacrylates [12], as well as in synthesis of antiproliferative active 2-aminobenzimidazole derivatives [13]. Methoxyphenyl octyl cyanoacrylate was synthesized and evaluated for UV-filter activity [14].

In regards to polymerization reactivity, previous studies showed that PCAs as all TSE monomers containing double bond substituents larger than fluorine have very low reactivity
in radical homopolymerization due to polar and steric reasons [15]. Although steric difficulties preclude homopolymerization of such monomers, their copolymerization with a monosubstituted alkenes makes it possible to overcome these steric problems. Thus, copolymerization of electrophilic TSE monomers having double bonds substituted with halo, cyano, and carbonyl groups and electron-rich monosubstituted ethylenes such as styrene, N-vinylcarbazole, and vinyl acetate [16-18] show a tendency toward the formation of alternating copolymers - thus suggesting a way of functionalization of commercial polymers via introduction of isolated monomer units in copolymers. Earlier we have reported synthesis and styrene copolymerization of a number of dimethyl and dimethoxy ring-substituted methyl [19-21], ethyl [22, 23], propyl [24], isopropyl [25, 26], butyl [27], isobutyl [28-30], and 2-methoxyethyl [31] PCAs.

Our objectives in exploration of novel octyl phenylcyanoacrylates (OPCA) were twofold: (1) to utilize Knoevenagel condensation for synthesis of OPCA compounds with a variety of potentially reactive functional groups and (2) to explore feasibility of radical copolymerization with a commercial monomer styrene.

Thus, in continuation of our investigation of novel TSE compounds we have prepared octyl dimethyl and dimethoxy ring-substituted cyanoacrylates,

\[\text{RPhCH} = \text{C(CN)}\text{CO}_2\text{CH}_2\text{(CH}_2\text{)}_6\text{CH}_3 \], where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 3,5-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy, 3,4-dimethoxy, 3,5-dimethoxy, and explored the feasibility of their copolymerization with styrene. To the best of our knowledge there have been no reports on either synthesis of these compounds, nor their copolymerization with styrene [32].
2. Experimental

2.1. Materials

2,3-Dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 3,5-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy, 3,4-dimethoxy, 3,5-dimethoxy benzaldehydes, octyl cyanoacetate (≥98.0%), piperidine (99%), styrene (≥99%), 1,1'-azobis(cyclohexanecarbonitrile) (98%), (ABCN), and toluene (98%) supplied from Sigma-Aldrich Co., were used as received.

2.2. Instrumentation

Infrared spectra of the OPCA compounds and polymers (NaCl plates) were determined with an ABB FTLA 2000 FT-IR spectrometer. The melting points of the OPCA compounds were measured with TA (Thermal Analysis, Inc.) Model Q10 differential scanning calorimeter (DSC). ¹H and ¹³C NMR spectra were obtained on 10-25% (w/v) OPCA solutions in CDCl₃ at ambient temperature using Avance 300 MHz spectrometer. CHN-elemental analyses of OPCA compounds and nitrogen analysis of the copolymers were performed by Midwest Microlab, LLC (IN).

3. Results and discussion

3.1. Synthesis and characterization of octyl phenylcyanoacrylates

All octyl phenylcyanoacrylates (OPCA) compounds were synthesized by Knoevenagel condensation [33] of appropriate benzaldehydes with octyl cyanoacetate, catalyzed by base, piperidine (Scheme 1).
Scheme 1. Synthesis of octyl phenylcyanoacrylates where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 3,5-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy, 3,4-dimethoxy, 3,5-dimethoxy.

The preparation procedure was essentially the same for all the monomers. In a typical synthesis, equimolar amounts of octyl cyanoacetate and an appropriate benzaldehyde were mixed in equimolar ratio in a 20 mL vial. A few drops of piperidine were added with stirring. The product of the reaction was isolated by filtration and purified by crystallization from 2-propanol. The condensation reaction proceeded smoothly, yielding products, which were purified by conventional techniques. The compounds were characterized by IR, 1H and 13C NMR spectroscopies. No stereochemical analysis of the novel oxy ring-substituted OPCA was performed since no stereoisomers (E or/and Z) of known configuration were available.

3.1.1. Octyl 2,3-dimethylphenylcyanoacrylate

Yield 83%; 1H NMR δ 8.6 (s, 1H, CH=), 7.9-7.2 (m, 3H, Ph), 4.3 (t, 2H, CO$_2$CH$_2$), 2.4 (s, 6H, PhCH$_3$), 2.3-1.8 (q, 2H, OCH$_2$CH$_3$), 1.6-1.5 (m, 6H, OCH$_2$CH$_2$(CH$_2$)$_3$), 1.4-1.2 (m, 4H, O(CH$_2$)$_5$(CH$_2$)$_2$), 0.9 (t, 3H, CH$_3$); 13C NMR δ 163 (C=O), 155 (HC=), 139, 135, 132, 127 (Ph), 116 (CN), 104 (C=), 68 (OCH$_2$), 32 (O(CH$_2$)$_5$CH$_2$), 29 (O(CH$_2$)$_5$(CH$_2$)$_2$),
28 (OCH₂CH₂), 26 (O(CH₂)₂CH₂), 23 (CH₂CH₃), 20, 16 (PhCH₃), 14 (CH₃); IR (cm⁻¹):
2912 (m, C-H), 2226 (m, CN), 1738 (s, C=O), 1588 (s, C=C), 1253 (s, C-O-CH₃), 759 (s,
C-H out of plane). Anal. Calcd. for C₂₀H₂₇NO₂: C, 76.64; H, 8.68; N, 4.47; Found: C,
77.48; H, 8.70; N, 4.63.

3.1.2. Octyl 2,4-dimethylphenylcyanoacrylate.

Yield 91%; ¹H NMR δ8.5 (s, 1H, CH=), 8.1-7.1 (m, 3H, Ph), 4.3 (t, 2H, CO₂CH₂), 2.3
(s, 6H, PhCH₃), 1.8-1.7 (q, 2H, OCH₂CH₂), 1.6-1.5 (m, 6H, OCH₂CH₂(CH₂)₃), 1.4-1.2
(m, 4H, O(CH₂)₅(CH₂)₂), 0.9 (t, 3H, CH₃); ¹³C NMR δ162 (C=O), 152 (HC=), 144-129
(Ph), 117 (CN), 103 (C=), 68 (OCH₂), 32 (O(CH₂)₃CH₂), 29 (O(CH₂)₃(CH₂)₂), 28
(OCH₂CH₂), 26 (O(CH₂)₂CH₂), 23 (CH₂CH₃), 20 (PhCH₃), 14 (CH₃); IR (cm⁻¹): 2926 (m,
C-H), 2223 (m, CN), 1727 (s, C=O), 1595 (C=C), 1265 (s, C-O-CH₃), 820 (s, C-H out of
plane). Anal. Calcd. for C₂₀H₂₇NO₂: C, 76.64; H, 8.68; N, 4.47; Found: C, 76.50; H, 8.80;
N, 4.82.

3.1.3. Octyl 2,5-dimethylphenylcyanoacrylate.

Yield 83%; ¹H NMR δ8.5 (s, 1H, CH=), 8.0-7.2 (m, 3H, Ph), 4.3 (t, 2H, CO₂CH₂), 2.3
(s, 6H, PhCH₃), 1.9-1.7 (q, 2H, OCH₂CH₂), 1.5-1.3 (m, 6H, OCH₂CH₂(CH₂)₃), 1.4-1.2
(m, 4H, O(CH₂)₅(CH₂)₂), 0.9 (t, 3H, CH₃); ¹³C NMR δ163 (C=O), 153 (HC=), 144-128
(Ph), 117 (CN), 104 (C=), 67 (OCH₂), 32 (O(CH₂)₃CH₂), 29 (O(CH₂)₃(CH₂)₂), 28
(OCH₂CH₂), 26 (O(CH₂)₂CH₂), 23 (CH₂CH₃), 20 (PhCH₃), 13 (CH₃); IR (cm⁻¹): 2927 (m,
C-H), 2225 (m, CN), 1727 (s, C=O), 1615 (C=C), 1267 (s, C-O-CH₃), 820 (s, C-H out of
3.1.4. Octyl 2,6-dimethylphenylcyanoacrylate.

Yield 71%; 1H NMR δ 8.5 (s, 1H, CH=), 7.4-7.0 (m, 4H, Ph), 4.3 (t, 2H, CO$_2$CH$_2$), 2.3 (s, 6H, PhCH$_3$), 1.8-1.7 (q, 2H, OCH$_2$CH$_2$), 1.5-1.4 (m, 6H, OCH$_2$CH$_2$(CH$_2$)$_3$), 1.4-1.2 (m, 4H, O(CH$_2$)$_5$(CH$_2$)$_2$), 0.9 (t, 3H, CH$_3$); 13C NMR δ 163 (C=O), 153 (HC=), 143-128 (Ph), 117 (CN), 103 (C=), 67 (OCH$_2$), 32 (O(CH$_2$)$_5$CH$_2$), 29.3 (O(CH$_2$)$_3$(CH$_2$)$_2$), 28.6 (OCH$_2$CH$_2$), 25.8 (O(CH$_2$)$_2$CH$_2$), 23 (CH$_2$CH$_3$), 20 (PhCH$_3$), 14 (CH$_3$); IR (cm$^{-1}$): 2919 (m, C-H), 2231 (m, CN), 1687 (s, C=O), 1616 (s, C=C), 1264 (s, C-O-CH$_3$), 811 (s, C-H out of plane). Anal. Calcd. for C$_{20}$H$_{27}$NO$_2$: C, 76.64; H, 8.68; N, 4.47; Found: C, 75.82; H, 8.70; N, 4.53.

3.1.5. Octyl 3,4-dimethylphenylcyanoacrylate.

Yield 91%; 1H NMR δ 8.5 (s, 1H, CH=), 7.3-7.0 (m, 3H, Ph), 4.3 (t, 2H, CO$_2$CH$_2$), 2.3 (s, 6H, PhCH$_3$) 1.8-1.7 (q, 2H, OCH$_2$CH$_2$), 1.5-1.4 (m, 6H, OCH$_2$CH$_2$(CH$_2$)$_3$), 1.4-1.2 (m, 4H, O(CH$_2$)$_5$(CH$_2$)$_2$), 0.9 (t, 3H, CH$_3$); 13C NMR δ 163 (C=O), 154 (HC=), 143-128 (Ph), 117 (CN), 103 (C=), 67 (OCH$_2$), 32 (O(CH$_2$)$_5$CH$_2$), 29.3 (O(CH$_2$)$_3$(CH$_2$)$_2$), 28.5 (OCH$_2$CH$_2$), 26 (O(CH$_2$)$_2$CH$_2$), 23 (CH$_2$CH$_3$), 20 (PhCH$_3$), 14 (CH$_3$); IR (cm$^{-1}$): 2929 (m, C-H), 2223 (m, CN), 1717 (s, C=O), 1600 (s, C=C), 1266 (s, C-O-CH$_3$), 820, 762 (s, C-H out of plane). Anal. Calcd. for C$_{20}$H$_{27}$NO$_2$: C, 76.64; H, 8.68; N, 4.47; Found: C, 75.81; H, 8.67; N, 4.51.

3.1.6. Octyl 3,5-dimethylphenylcyanoacrylate.
Yield 89%; 1H NMR δ 8.2 (s, 1H, CH=), 7.6-7.1 (m, 3H, Ph), 4.3 (t, 2H, CO$_2$CH$_2$), 2.4 (s, 6H, PhCH$_3$), 1.8-1.7 (q, 2H, OCH$_2$CH$_2$), 1.5-1.4 (m, 6H, OCH$_2$CH$_2$(CH$_2$)$_3$), 1.4-1.2 (m, 4H, O(CH$_2$)$_5$(CH$_2$)$_2$), 0.9 (t, 3H, CH$_3$); 13C NMR δ 163 (C=O), 156 (HC=), 140-128 (Ph), 117 (CN), 103 (C=), 67 (OCH$_2$), 32 (O(CH$_2$)$_5$CH$_2$), 29.3 (O(CH$_2$)$_3$(CH$_2$)$_2$), 28.5 (OCH$_2$CH$_2$), 26 (O(CH$_2$)$_2$CH$_2$), 23 (CH$_2$CH$_3$), 21 (PhCH$_3$), 14 (CH$_3$); IR (cm$^{-1}$): 2920 (m, C-H), 2224 (m, CN), 1738 (s, C=O), 1607 (s, C=C), 1283 (s, C-O-CH$_3$), 852 (s, C-H out of plane). Anal. Calcd. for C$_{20}$H$_{27}$NO$_2$: C, 76.64; H, 8.68; N, 4.47; Found: C, 77.81; H, 8.38; N, 4.77.

3.1.7. Octyl 2,3-dimethoxyphenylcyanoacrylate.

Yield 72%; 1H NMR δ 8.7 (s, 1H, CH=), 7.9-7.1 (m, 3H, Ph), 4.3 (t, 2H, CO$_2$CH$_2$), 3.9 (s, 6H, PhOCH$_3$), 1.8-1.7 (q, 2H, OCH$_2$CH$_2$), 1.5-1.4 (m, 6H, OCH$_2$CH$_2$(CH$_2$)$_3$), 1.4-1.2 (m, 4H, O(CH$_2$)$_5$(CH$_2$)$_2$), 0.9 (t, 3H, CH$_3$); 13C NMR δ 162 (C=O), 152 (HC=), 150, 127-120 (Ph), 118 (CN), 103 (C=), 64 (OCH$_2$), 69, 57 (PhOCH$_3$), 32 (O(CH$_2$)$_5$CH$_2$), 29.3 (O(CH$_2$)$_3$(CH$_2$)$_2$), 28.5 (OCH$_2$CH$_2$), 26 (O(CH$_2$)$_2$CH$_2$), 23 (CH$_2$CH$_3$), 13 (CH$_3$); IR (cm$^{-1}$): 2929 (m, C-H), 2224 (m, CN), 1729 (s, C=O), 1577 (s, C=C), 1250 (s, C-O-CH$_3$), 752 (s, C-H out of plane). Anal. Calcd. for C$_{20}$H$_{27}$NO$_4$: C, 69.54; H, 7.88; N, 4.05; Found: C, 68.85; H, 7.82; N, 4.05.

3.1.8. Octyl 2,4-dimethoxyphenylcyanoacrylate.

Yield 91%; mp 78.7°C; 1H NMR δ 8.7 (s, 1H, CH=), 8.5-6.4 (m, 4H, Ph), 4.3 (t, 2H, CO$_2$CH$_2$), 3.9 (s, 6H, PhOCH$_3$), 1.8-1.7 (m, 2H, OCH$_2$CH$_2$), 1.6-1.4 (m, 6H, OCH$_2$CH$_2$(CH$_2$)$_3$), 1.4-1.2 (m, 4H, O(CH$_2$)$_5$(CH$_2$)$_2$), 0.9 (t, 3H, CH$_3$); 13C NMR δ 162
(C=O), 149 (HC=), 144, 132-118 (Ph), 116 (CN), 107 (C=), 68 (OCH2), 56 (PhOCH3), 32 (O(CH2)3CH2), 29.3 (O(CH2)3CH2), 28.5 (OCH2CH2), 26 (O(CH2)2CH2), 22.8 (O(CH2)6CH2), 14.1 (CH3); IR (cm⁻¹): 2923 (m, C-H), 2217 (m, CN), 1699 (s, C=O), 1505 (s, C=C), 1266 (s, C-O-CH3), 841 (s, C-H out of plane). Anal. Calcd. for C20H27NO4: C, 69.54; H, 7.88; N, 4.05; Found: C, 68.12; H, 7.88; N, 4.24.

3.1.9. Octyl 2,5-dimethoxyphenylcyanoacrylate.

Yield 87%; mp 91.2°C; ¹H NMR δ 8.7 (s, 1H, CH=), 7.9-6.9 (m, 3H, Ph), 4.3 (t, 2H, CO₂CH₂), 3.9 (s, 6H, PhOCH3), 1.9-1.8 (m, 2H, OCH₂CH₂), 1.6-1.4 (m, 6H, OCH₂CH₂(CH₂)₃), 1.5-1.2 (m, 4H, O(CH₂)₃CH₂), 0.9 (t, 3H, CH₃); ¹³C NMR δ 163 (C=O), 153 (HC=), 152, 149, 123, 122 (Ph), 115 (CN), 102 (C=), 67 (OCH₂), 56 (PhOCH₃), 32 (O(CH₂)₅CH₂), 29.3 (O(CH₂)₃CH₂), 28.7 (OCH₂CH₂), 26 (O(CH₂)₂CH₂), 22.8 (O(CH₂)₆CH₂), 14.2 (CH₂CH₃); IR (cm⁻¹): 2932 (m, C-H), 2212 (m, CN), 1726 (s, C=O), 1277 (s, C-O-CH₃), 835 (s, C-H out of plane). Anal. Calcd. for C₂₀H₂₇NO₄: C, 69.54; H, 7.88; N, 4.05; Found: C, 70.92; H, 8.62; N, 4.56.

3.1.10. Octyl 2,6-dimethoxyphenylcyanoacrylate

Yield 92%; ¹H NMR δ 8.4 (s, 1H, CH=), 7.4-6.6 (m, 3H, Ph), 4.3 (t, 2H, CO₂CH₂), 3.9 (s, 6H, PhOCH₃), 1.7-1.8 (q, 2H, OCH₂CH₂), 1.6-1.5 (m, 6H, OCH₂CH₂(CH₂)₃), 1.4-1.2 (m, 4H, O(CH₂)₅(CH₂)₂), 0.9 (t, 3H, CH₃); ¹³C NMR δ 163 (C=O), 150 (HC=), 153, 149, 123, 121 (Ph), 117 (CN), 103 (C=), 67 (OCH₂), 56 (PhOCH₃), 32 (O(CH₂)₅CH₂), 29 (O(CH₂)₃(CH₂)₂), 28 (OCH₂CH₂), 26 (O(CH₂)₂CH₂), 23 (CH₂CH₃), 14 (CH₃); IR (cm⁻¹): 2931 (m, C-H), 2226 (m, CN), 1728 (s, C=O), 1579 (s, C=C), 1286 (s, C-O-CH₃), 718 (s,
C-H out of plane). Anal. Calcd. for C₂₀H₂₇N₄O₄: C, 69.54; H, 7.88; N, 4.05; Found: C, 69.07; H, 7.87; N, 4.66.

3.1.11. Octyl 3,4-dimethoxyphenylcyanoacrylate.

Yield 94%; mp 74.6°C; ¹H NMR δ 8.2 (s, 1H, CH=), 7.8-6.9 (m, 3H, Ph), 4.3 (t, 2H, CO₂CH₂), 4.0 (s, 6H, PhOCH₃), 1.8-1.7 (m, 2H, OCH₂CH₂), 1.6-1.4 (m, 6H, OCH₂CH₂(CH₂)₃), 1.4-1.2 (m, 4H, O(CH₂)₃(CH₂)₂), 0.9 (t, 3H, CH₃); ¹³C NMR δ 163 (C=O), 149 (HC=), 155, 154, 127, 123, 110 (Ph), 117 (CN), 100 (C=), 68 (OCH₂), 56 (PhOCH₃), 32 (O(CH₂)₃CH₂), 29.3 (O(CH₂)₃(CH₂)₂), 28.5 (OCH₂CH₂), 26 (O(CH₂)₂CH₂), 22.8 (O(CH₂)₆CH₂), 14 (CH₃); IR (cm⁻¹): 2928 (m, C-H), 2219 (m, CN), 1723 (s, C=O), 1575 (s, C=C), 1263 (s, C-O-CH₃), 856 (s, C-H out of plane). Anal. Calcd. for C₂₀H₂₇N₄O₄: C, 69.54; H, 7.88; N, 4.05; Found: C, 69.76; H, 7.73; N, 4.37.

Yield 82%; mp 54.6°C; ¹H NMR δ 8.2 (s, 1H, CH=), 7.2, 6.7 (m, 3H, Ph), 4.3 (t, 2H, CO₂CH₂), 3.9 (s, 6H, PhOCH₃), 1.9-1.8 (m, 2H, OCH₂CH₂), 1.6-1.4 (m, 6H, OCH₂CH₂(CH₂)₃), 1.5-1.2 (m, 4H, O(CH₂)₃(CH₂)₂), 0.9 (t, 3H, CH₃); ¹³C NMR δ 162 (C=O), 153 (HC=), 152, 133, 109, 108 (Ph), 117 (CN), 103 (C=), 67 (OCH₂), 55 (PhOCH₃), 32 (O(CH₂)₃CH₂), 29.3 (O(CH₂)₃(CH₂)₂), 28.7 (OCH₂CH₂), 26 (O(CH₂)₂CH₂), 22.8 (O(CH₂)₆CH₂), 14.2 (CH₂CH₃); IR (cm⁻¹): 2938 (m, C-H), 2222 (m, CN), 1726 (s, C=O), 1603 (s, C=C), 1263 (s, C-O-CH₃), 865 (s, C-H out of plane). Anal. Calcd. for C₂₀H₂₇N₄O₄: C, 69.54; H, 7.88; N, 4.05; Found: C, 70.25; H, 7.51; N, 4.35.
3.2. *Homopolymerization*

An attempted homopolymerization of the OPCA compounds in the presence of ABCN did not produce any polymer as indicated by the lack of a precipitate in methanol. The inability of the monomers to polymerize is associated with steric difficulties encountered in homopolymerization of 1,1- and 1,2-disubstituted ethylenes [14]. Homopolymerization of ST under conditions identical to those in copolymerization experiments yielded 18.3% of polystyrene, when polymerized for 30 min.

3.3. *Synthesis and characterization of styrene – OPCA copolymers*

Copolymers of the ST and the OPCA compounds, P(ST-co-OPCA) were prepared in 25-mL glass screw cap vials at ST/OPCA = 3 (mol) the monomer feed using 0.12 mol/L of ABCN at an overall monomer concentration 2.44 mol/L in 10 mL of toluene. The copolymerization was conducted at 70°C. After a predetermined time, the mixture was cooled to room temperature, and precipitated dropwise in methanol. The composition of the copolymers was determined based on the nitrogen content (cyano group in OPCA). The novel synthesized OPCA compounds copolymerized readily with ST under free-radical conditions (Scheme 2) forming white flaky precipitates when their solutions were poured into methanol. The conversion of the copolymers was kept between 10 and 20% to minimize compositional drift (Table 1).
Scheme 2. Copolymerization of ST and the octyl phenylcyanoacrylates, where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 3,5-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy, 3,4-dimethoxy, 3,5-dimethoxy.

Table 1. Copolymerization of styrene and octyl phenylcyanoacrylates.

<table>
<thead>
<tr>
<th>R</th>
<th>Yield(^a) (wt%)</th>
<th>N (wt%)</th>
<th>ST in copol. (mol%)</th>
<th>OPCA in copol. (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,3-Dimethyl</td>
<td>12.4</td>
<td>2.2</td>
<td>75.7</td>
<td>24.3</td>
</tr>
<tr>
<td>2,4-Dimethyl</td>
<td>16.4</td>
<td>2.59</td>
<td>68.6</td>
<td>31.4</td>
</tr>
<tr>
<td>2,5-Dimethyl</td>
<td>11.1</td>
<td>2.73</td>
<td>65.8</td>
<td>34.2</td>
</tr>
<tr>
<td>2,6-Dimethyl</td>
<td>12.2</td>
<td>1.33</td>
<td>87.7</td>
<td>12.3</td>
</tr>
<tr>
<td>3,4-Dimethyl</td>
<td>13.1</td>
<td>2.33</td>
<td>73.5</td>
<td>26.5</td>
</tr>
<tr>
<td>3,5-Dimethyl</td>
<td>14.7</td>
<td>2.18</td>
<td>76.0</td>
<td>24.0</td>
</tr>
<tr>
<td>2,3-Dimethoxy</td>
<td>15.1</td>
<td>2.35</td>
<td>70.7</td>
<td>29.3</td>
</tr>
<tr>
<td>2,4-Dimethoxy</td>
<td>15.5</td>
<td>2.00</td>
<td>77.3</td>
<td>22.7</td>
</tr>
<tr>
<td>2,5-Dimethoxy</td>
<td>12.1</td>
<td>2.56</td>
<td>66.0</td>
<td>34.0</td>
</tr>
<tr>
<td>2,6-Dimethoxy</td>
<td>14.2</td>
<td>2.09</td>
<td>75.7</td>
<td>24.3</td>
</tr>
<tr>
<td>3,4-Dimethoxy</td>
<td>15.4</td>
<td>2.47</td>
<td>68.1</td>
<td>31.9</td>
</tr>
<tr>
<td>3,5-Dimethoxy</td>
<td>12.3</td>
<td>2.73</td>
<td>61.7</td>
<td>38.3</td>
</tr>
</tbody>
</table>

Nitrogen elemental analysis showed that between 12.3 and 38.3 mol% of OPCA is present in the copolymers prepared at ST/OPCA = 3 (mol), which is indicative of relatively high reactivity of the OPCA monomers towards ST radical which is typical of
alkoxy ring-substituted OPCA [18-26]. Since OPCA monomers do not homopolymerize, the most likely structure of the copolymers would be isolated OPCA monomer units alternating with short ST sequences (Scheme 2).

The copolymers prepared in the present work are all soluble in ethyl acetate, THF, DMF and CHCl₃ and insoluble in methanol, ethyl ether, and petroleum ether.

4 Conclusions

Novel trisubstituted ethylenes, octyl dimethyl and dimethoxy substituted phenylcyanoacrylates, RPhCH=C(CN)CO₂CH₂(CH₂)₆CH₃ (where R is 2,3-dimethyl, 2,4-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 3,5-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy, 3,4-dimethoxy, 3,5-dimethoxy) were prepared and copolymerized with styrene.

Acknowledgments

The authors are grateful to acknowledge that the project was partly supported by Chicago Society of Coating Technology (CSCT).

References

Silva, Adriano O.; de Lima, Ricardo V.; Nunes, Glauca A.; Brandao, Marcos Antonio F.; Raposo, Nadia R. B.; de Lima, Denis P. Quimica Nova (2014), 37(6), 1004-1009.

https://doi.org/10.26434/chemrxiv.11401347.v3

https://doi.org/10.26434/chemrxiv.11336852.v4

https://doi.org/10.1021/scimeetings.0c06914.

https://doi.org/10.26434/chemrxiv.13262660.v6

[32] SciFinder; Chemical Abstracts Service: Columbus, OH; https://scifinder.cas.org
