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Abstract

It is easier to compute a vibrational spectrum when the potential energy surface (PES) is a sum-of-

products (SOP). Many popular computational methods work only if the PES is a SOP. However, the most

accurate PESs are not SOPs. We propose using collocation and solutions of the Schrödinger equation with

a SOP PES to compute solutions on a corresponding general PES. This makes it possible to account for

coupling and anharmonicity omitted from the SOP PES. We find that correcting energy levels computed on

a SOP PES with collocation reduces differences with exact energy levels by about two orders of magnitude.
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I. INTRODUCTION

Given a potential energy surface (PES), it is possible to solve the time-independent Schrödinger

equation numerically exactly to compute the vibrational (or ro-vibrational) spectrum of a poly-

atomic molecule [1–6]. Such calculations can be divided into two groups: those in which the

potential energy surface (PES) has a special simplifying form and those in which the form of the

PES is general. The two most common special simplifying forms are the sum-of-products (SOP)

form [7–9] and the N-mode representation form [10–13]. When the PES has a special simplify-

ing form, it is possible to do accurate calculations for molecules with tens of atoms [9, 14–16].

Calculations with general PESs are more difficult and only tractable for smaller molecules. In

this Letter, we propose a method for cheaply obtaining good estimates of energies on a general

PES using the results of a calculation done on a related PES with a special simplifying form. The

special form we focus on is the SOP form.

The SOP form makes calculations easier because: 1) it obviates the need for full-dimensional

quadrature [17]; 2) it reduces the cost the matrix-vector products (MVP) required to use an iterative

eigensolver [18, 19] . To realize advantages 1) and 2), it is imperative that each basis function be

a product of univariate functions of the coordinates used to represent the PES. Advantage 1) is

obvious. With a SOP PES and a product basis, every Hamiltonian matrix element is a product of

one-dimensional integrals. If the PES does not have SOP form then multidimensional quadrature

is required. Multidimensional quadrature is costly and typically requires a large set of quadrature

points. Advantage 2) is also important. If a basis has product structure it can be exploited when

the PES is a SOP to efficiently evaluate MVPs by doing sums sequentially. The simplest such

basis is a direct product basis and in this case the cost of a MVP scales as nD+1, where D is the

dimensionality and n is a representative number of basis functions for a single coordinate [20].

Similar ideas can be used with a non-direct product basis [21, 22]. These and related advantages

have made it possible to do calculations on large molecules [9, 14, 15].

When the PES does not have a simple form, e.g. a SOP, it becomes necessary to use (in some

form) quadrature and to solve

(Kexact +Vquad)U = SquadUE , (1)

where Kexact is an exact matrix representation of the kinetic energy operator (KEO), Vquad is a

quadrature approximation to the matrix representation of the PES, and Squad is a quadrature ap-

proximation to the overlap matrix. If the basis functions are products of univariate functions then
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it is common to use a direct product quadrature. Often one chooses the 1-D quadratures so that

Squad = I. Non-direct product quadrature schemes are difficult to design [23]. The number of

points in a direct product quadrature grid scales as nD. If D & 9 then storing the PES on the grid

requires a lot of memory. A direct product discrete variable representation (DVR) calculation has

similar memory requirements [20]. It is possible to use quadrature, but reduce the memory re-

quired, by dividing coordinates into two groups and solving two sub-problems. Some calculations

use basis functions that are products of primitive functions for one group and eigenfunctions of one

of the sub-problems [24, 25]. Others use basis functions that are products of the eigenfunctions of

both sub-problems [26–28]. These calculations require tuning several parameters and using large

direct product quadrature grids for the sub-problems.

In this Letter we bridge the dichotomy between the simplicity of the SOP PES world and the

accuracy and generality of the general PES world. Probably the most natural way to do this is to

use quadrature and basis functions for solving the Schrödinger equation with Hgen = K̂+Vgen that

are eigenfunctions of Hsop = K̂ +Vsop. K̂ is the kinetic energy operator (KEO); Vgen is a general

PES; and Vsop is a SOP approximation to Vgen. These basis functions should be excellent in the

sense that few will be required as long at Vsop ∼ Vgen. How would one choose quadrature points

and weights for computing matrix elements of Hgen in the basis of the eigenfunctions of Hsop ?

The simplest idea is to use a direct product quadrature. It can be chosen so that Squad = I, but a

direct product grid has many points In this letter, we shall instead use "rectangular collocation"

[29–32]. Rectangular collocation (RC) has the disadvantage that it requires solving a generalized

eigenvalue problem, but the advantage that it is not necessary to choose points (and there are no

weights) with which quadrature approximations to integrals are accurate. We show that with RC

and a point set much smaller than a direct product grid, it is straightforward to incorporate much

of the effect of Vgen−Vsop on the vibrational energies.

II. RECTANGULAR COLLOCATION

As is typically the case, wavefunctions Ψn are represented as linear combinations of basis func-

tions φi(x) , i = 1, · · · ,N that depend on coordinates x. In collocation[33–35], the basis expansion

coefficients are determined by demanding that the Schrödinger equation be satisfied at collocation

points {xm} for m = 1, .., M and solving

(G+VB)Ũ = BŨẼ , (2)
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where elements of the diagonal matrix Ẽ are energies. In this equation, G ji = K̂φi(x j), Vjk =

V (x j)δk j, and B ji = φi(x j). To solve this equation when M > N, we multiply on the left by BT and

obtain

(BTG+BTVB)U = (BTB)UE . (3)

Using more points than basis functions is expected to yield more accurate energies because us-

ing more points constrains wavefunctions at more points. Using more points also improves the

condition number of (BTB).

When it is not possible to write a wavefunction as an exact linear combination of the basis

functions then the corresponding energy computed from Eq. 3 will depend on the choice of the

collocation points. We call error introduced by the choice of the points point-set error. The error

in an eigenvalue En is proportional [29] to ε2
bn
+ εbnεqn , where

εbn = ||Ψn−ψ
best
n || , (4)

with Ψn the exact wavefunction and ψbest
n the best possible approximation to the wavefunction

in the φi(x) , i = 1, · · ·N basis; and εqn is a measure of point-set error. Clearly, using a basis that

reduces εbn should reduce the effect of εqn . When Vsop ∼ Vgen, it is reasonable to expect that εbn

will be small when the φi(x) are the eigenfunctions of Hsop. The number of φi(x) required to

achieve accurate energy levels of Hgen = K̂ +Vgen should be small. The idea we present is to

use the simplicity of an SOP method as a stepping stone to solving for energies of Hgen, without

needing to store large vectors or matrices. How well does this work for realistic Vgen and Vsop? To

what extent are we able to account for the effect of Vgen−Vsop on energy levels? For P2O (HFCO),

we find that we are able to compute fairly accurate energy levels from a basis with 150 (1000)

functions.

III. CALCULATION DETAILS

We use dimensionless normal coordinates Qk and the KEO

K̂ =
D

∑
k
−ωk

2
∂ 2

∂Q2
k
. (5)

The SOP method we use to generate eigenfunctions of Hsop is the pruned basis method of Brown

and Carrington [36], although in principle any SOP method could be used. The method of Brown

and Carrington starts with basis of harmonic oscillator basis (HOB) functions pruned by retaining
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only functions whose total HOB index is less than some threshold value. This basis is then adap-

tively improved by adding the nearest neighbours of the basis functions deemed most important.

Those deemed important are those for which the corresponding components of the eigenvectors

are large. During and after the expansion of the basis, eigenvalues and eigenvectors are computed

using ARPACK [37]. Eigenvectors of Hsop thus computed are stored. Elements of the eigenvectors

are coefficients of a HOB representation of φi(Q) , i = 1, · · ·N. Elements of the matrix B in Eq. 2

are obtained by evaluating φi(Q) , i = 1, · · ·N at the collocation points.

There are many ways to choose collocation points. In this Letter, we report energies that we

compute with points in slabs surrounding d-dimensional subspaces. Many authors represent a

D−dimensional PES as a sum of d-dimensional terms. In chemistry, the ideas are associated with

the terms "N-mode representation" and "high dimensional model representation" [10, 12]. When

fitting a PES with a sum of terms each of which involves d coordinates, the simplest thing to do is

to use a d-dimensional grid for each of the terms [38]. In Ref. 39, we used related sets of points to

compute energy levels with RC and a Gaussian basis. Here the same type of points are used but the

basis functions are eigenfunctions of Hsop. We shall call the points N-mode representation (NMR)

points. NMR points in d-dimensional slabs are a good choice for computing wavefunctions if

coupling between different sets of d coordinates is weak. For example, if an exact wavefunction is

nearly a product of 1-D functions, then the wavefunction computed by putting collocation points

in slabs along coordinate axes will be accurate because if the wavefunction is accurate in the slabs

then all derivatives of the wavefunction are also accurate. Note that our NMR points are selected

from one set of points in the full D−dimensional space. They are not on a grid.

We denote a set of points in a d−dimensional slab as NMR(d). We start with a quasi-random

multi-dimensional Sobol sequence [40] within a hypercube. Coordinate ranges are chosen to in-

clude the Gauss Hermite points associated with the primitive HOB used to compute the eigenfunc-

tions of Hsop. We then retain points if

Vceil−V (Q)+∆

Vceil +∆
> rand , (6)

where rand is a (uniformly distributed) random number in [0, 1]. We use ∆ = 500 cm−1 and put

Vceil equal to at least 10,000 cm−1 above the largest desired energy level. This set of filtered Sobol

points is reduced by retaining only points that satisfy

D

∑
i=1

H
(

abs
(

Qi−Qeq
i

Qmax
i −Qmin

i

)
− s

)
≤ d (7)
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where H is the Heaviside step function. The thickness of the slabs is determined by s.

To solve the eigenvalue problem

(BTG+BTVB)U = BTBUE , (8)

we do not build the M×N matrices B and G, nor the M×M matrix V. Instead, we sum over

points to compute

(BT B)i j =
M

∑
m=1

φi(Qm)φ j(Qm)

(BT G)i j =
M

∑
m=1

φi(Qm)K̂φ j(Qm)

(BTV B)i j =
M

∑
m=1

φi(Qm)φ j(Qm)V (Qm),

(9)

and store only N×N matrices. In our calculations, N�M

IV. RESULTS

We have done two tests of these ideas: one with a very good Vsop for P2O and one with a poorer

Vsop for HFCO. In both cases, collocation with the φi(x) basis captures much of the difference

between Vsop and Vgen. Of course, energies are more accurate if Vsop is close to Vgen.

A. P2O

For P2O, Vsop is the quartic SOP of Ref. 41. Vgen is made from Vsop by extending it so that the

cubic and some quartic derivatives of Vgen are equal to those of Vsop. To do this, we invert Taylor

series for the variables z1 = (1− e−β1Q2
1)1/2 and yk = 1− e−αkQk for k = 2,3 to obtain the Qk as

power series in either z1 or yk respectively [42]. By choosing

β1 =
−F1111

6ω1
and αk =

−Fkkk

3ωk
, k = 2,3 , (10)

we ensure that after truncating the Taylor series for Vgen after the terms with four powers of Qk,

third derivatives of Vgen with respect to Qk for k = 2,3 and the fourth derivative of Vgen with respect

to Q1 are exactly equal to the corresponding force constants in Vsop.
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FIG. 1: Mean absolute error of the lowest 30 collocation-corrected energies of P2O as a function of basis

size

The error, ∆RC = |ERC
n −Eexact

n |, where ERC
n is an energy computed with RC and Eexact

n is an

eigenvalue of Hgen, (calculated using a direct-product ARPACK method)[37] is smaller than the

SOP error, ∆sop = |Esop
n −Eexact

n |, where Esop
n is the energy computed on the SOP PES. The mean

absolute error (MAE) of the lowest 30 energies of Hgen computed with Vceil = 14,000 cm−1, d = 2,

and s = 0.1 is shown in Fig. 1 for increasing basis size N and point set size M. s values below 0.1

work less well. Vgen and Vsop are very similar: the mean absolute difference (MAD) of the lowest

30 exact energies for the two potentials is about 2.72 cm−1. ∆RC is about two order of magnitude

smaller than ∆sop.
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B. HFCO

Vgen for HFCO is the 12th order SOP in the supplementary material of Ref. 43. To make Vsop

we remove from Vgen all terms whose degree is larger than four. We then remove four of the

remaining terms that cause holes in our calculations. Tab. I shows a comparison between the

4th and 12th-order exact energies calculated with a DVR basis and the ARPACK eigensolver and

the RC results. 1000 eigenfunctions of Vsop and 100,000 NMR points with d = 5, s = 0.1, and

Vceil = 23,000 cm−1 were used. For HFCO, Vgen is much further from Vsop; the MAD for the first

25 levels is 103.00 cm−1. Nevertheless, RC reduces energy level errors by almost two orders of

magnitude. The MAEs of the first 10 and 25 collocation-corrected energies (with respect to the

12th order energies) are 1.69 and 5.15 cm−1 respectively, both are about two orders of magnitude

smaller than the corresponding MADs of exact levels computed on Vsop and Vgen.

V. CONCLUSION

There are many methods with which it is possible to solve the Schrödinger equation to compute

a vibrational spectrum that work only if the PES is a SOP. For a large molecule it is often the case

that the best available PES is a SOP. For a molecule with fewer than about 6 atoms, it is now fairly

straightforward to fit an accurate non-SOP PES to ab initio data. This can be done either by using

physically motivated fitting functions or general machine learning methods [44, 45]. An accurate

PES is rarely a SOP in the coordinates in which one wants to solve the Schrödinger equation.

Solving the Schrödinger equation on a non-SOP PES requires a very different numerical approach

and some form of quadrature or collocation. In this Letter we point out that by using eigenfunctions

of an SOP Hamiltonian as basis functions and rectangular collocation it is possible to compute

energies that are much closer to exact energies than the energies of the SOP Hamiltonian. The

number of basis functions required for HFCO is about an order of magnitude larger than the

number for P2O. This is not due to HFCO being a larger molecule, but to the fact that the SOP

PES for HFCO is much further from the accurate potential. Similar ideas could be applied to other

approximate eigenfunctions, e.g. those obtained from a semi-classical calculation [46].

8



TABLE I: Comparison of HFCO energies. Columns 1 and 2 are exact energies computed on the 12th and

4th order PESs. Column 3 is the difference between columns 1 and 2. Column 4 contains collocation-

corrected energies computed using NMR points. Column 5 is errors in the collocation-corrected energies

4th-Order 12th-Order | 4th-12th | Coll. | Coll - 12th |

4588.335 4524.684 63.651 4524.712 0.028

5249.686 5186.070 63.616 5186.861 0.792

5640.448 5530.125 110.323 5536.911 6.785

5662.681 5584.570 78.110 5585.601 1.030

5910.231 5846.412 63.819 5847.595 1.184

5982.431 5865.012 117.419 5866.657 1.646

6294.265 6190.265 104.000 6191.845 1.579

6322.704 6238.159 84.545 6240.167 2.008

6423.445 6358.821 64.624 6359.555 0.734

6569.854 6505.626 64.228 6506.716 1.090

6643.155 6525.396 117.759 6532.084 6.688

6682.350 6531.084 151.266 6545.942 14.857

6710.152 6585.799 124.353 6594.471 8.672

6733.084 6631.509 101.575 6632.959 1.451

6947.240 6849.342 97.898 6855.046 5.704

6981.857 6871.854 110.004 6881.059 9.205

7008.759 6890.594 118.166 6895.183 4.589

7058.651 6913.830 144.821 6920.435 6.605

7078.594 7014.638 63.956 7019.441 4.803

7228.427 7163.604 64.824 7168.595 4.991

7302.872 7183.060 119.812 7189.020 5.960

7329.446 7188.078 141.368 7199.932 11.854

7357.967 7191.810 166.157 7205.534 13.724

7362.584 7238.030 124.555 7245.467 7.437

7391.750 7277.498 114.252 7282.879 5.382
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