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Abstract

The solvation properties of molecules, often estimated using quantum chemical

simulations, are important in the synthesis of energy storage materials, drugs, and

industrial chemicals. Here, we develop machine learning models of solvation ener-

gies to replace expensive quantum chemistry calculations with inexpensive-to-compute

message-passing neural network models that require only the molecule graph as inputs.

Our models are trained on a new database of solvation energies for 130 258 molecules

taken from the QM9 dataset computed in five solvents (acetone, ethanol, acetonitrile,

dimethyl sulfoxide, and water) computed via an implicit solvent model. Our best

model achieves a Mean Absolute Error (MAE) of 0.5 kcal/mol for molecules with nine
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or fewer nonhydrogen atoms and 1 kcal/mol for molecules with between 10 and 14

nonhydrogen atoms. We make the entire dataset of 651 290 computed entries openly

available, and provide simple web and programmatic interfaces to enable others to

run our solvation energy model on new molecules. The model calculates the solvation

energies for molecules using only the SMILES string and also provides an estimate of

whether each molecule is within the domain of applicability of our model. We envision

that the dataset and models will provide functionality needed for the rapid screening

of large chemical spaces to discover improved molecules for many applications.

Introduction

The ability of a molecule to dissolve in a particular solvent is a key factor in determining

whether it will be suitable for many technological applications, such as drug molecules that

must dissolve in the bloodstream or redox-active molecules that must remain in solution

inside a flow battery. Chemists assess the solubility of a molecule by computing the solvation

energy (∆Gsolv) – a measure of the strength of interaction between a molecule and a solvent

– from quantum mechanical simulations.1 While methods for computing solvation energy

are well established,2 their computational expense is large enough (minutes to hours per

compound on a single processor) to impose serious limitations on how many molecules can

be assessed. Evaluating thousands of chemicals requires significant computational resources,

yet would explore a small fraction of modern chemical search spaces that approach billions

of molecules.3–6 Faster approaches, such as machine-learned QSAR models,7 are required to

reach the necessary evaluation throughput to scan for promising leads in these large chemical

spaces.

The quality of a machine-learned model of a chemical property is highly dependent on

the size, breadth, and quality of the available data. Existing machine learning models for

solvation energy have been trained using small databases of experimental data, which limits

their applicability. One such database, FreeSolv,8 has been used extensively to create ma-
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chine learning (ML) models for hydrogenation energy based on diverse techniques including

convolutional neural networks9,10 and fingerprint-based machine learning.11,12 Similar exper-

imental databases, like those from the University of Minnesota,13 provide solvation data for

many solvents and have also been used as the basis for machine learning models, as illus-

trated by pioneering work from Borhani et al14 and Subramanian et al.15 The limited size

and chemical diversity of experimental data (only a few hundred molecules) makes them

impractical to use with high-accuracy, deep learning models (e.g., Refs.16–18). This issue

can be addressed by developing large and diverse datasets of solvation properties (¿100,000

molecules) via computations that provide sufficient representation of different regions of the

chemical space.

Here, we report on a new large dataset, QM9-Solvation, of computed solvation energies

(∆Gsolv) for 130 258 molecules in multiple solvents, and provide an initial set of machine

learning models trained using this data. The dataset was generated from DFT simulations

using the SMD Solvation Model19 and is openly available for use by the chemistry commu-

nity.20 We also demonstrate a state-of-the-art ML prediction model of molecular solvation

energies trained on this database. Our model uses a message-passing architecture that in-

cludes properties of both the solvent and solute, which we demonstrate is capable of learning

solvent/solute relationships from over a half-million training entries. We established a do-

main of applicability region for this model and find that it is possible to predict solvation

energies of molecules larger than those in our training set, and have made the models freely

available through GitHub and DLHub.21,22 We envision that our database and molecules will

help spur rapid advancements in the ability for scientists to efficiently assess the solvation

properties of molecules.
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Methods

Our work involved first creating a database of solvation energies using quantum chemistry

computations and creating models to predict solvation energy using machine learning. We

describe the quantum chemistry and machine learning aspects of our work separately.

Quantum chemistry

We performed Density functional theory (DFT) calculations using Gaussian16 software to

compute solvation energies of molecules.23 All calculations were performed using the B3LYP

functional and 6-31G(2df,p) basis set starting with the relaxed geometries from the QM924

and G4MP2-GDB9 datasets.25–27 Each relaxed geometry was then used in computing single

point energies in presence of five different solvents using a Solvation Model based on Density

(SMD model)19 at the same level of theory that was used for geometry relaxation. The

solvents chosen for the DFT calculations are acetone, ethanol, acetonitrile, dimethyl sulfox-

ide, and water. The energies of these molecules in the gas phase [Egas] and in the solvent

[Esolvent] were used to calculate the solvation energy [∆Gsol] of the molecules in each of the

solvents via the following equation.

[∆Gsol] = [Esolvent]− [Egas] (1)

The computed solvation energies of GDB9 and selected molecules from the Pedley com-

pilation,28 reported in kcal/mol, are available on the Materials Data Facility.20

Machine learning

We use Message Passing Neural Networks (MPNNs) for most machine learning tasks de-

scribed in this work. As formalized by Gilmer et al.,17 MPNNs are a general class of ar-

chitectures for learning properties of graphs and there exists significant degrees of freedom

within MPNN design. The general architecture of MPNNs includes “message” layers that
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produce a signal for each node (or, in some architectures, each edge29) given its neighboring

edges and nodes and a function then updates the features of each node based on its mes-

sage. The combined “message-then-update” cycle can be repeated many times before the

final, “readout” function that produces a single feature vector for the entire graph. The

features for the graph are then passed as inputs to another model (e.g., a fully-connected

neural network) that maps the graph features to a property of the graph. As with all neural

networks, the weights of an MPNN are learned by adjusting them to minimize the error

between prediction and true values through gradient descent.

We start with the message, update, and readout functions used by St. John et al.30 The

initial features of the atoms and bonds are determined by looking up a set of features for

each type of atom–defined using its element, number of bonds, number of bonded hydrogen

atoms, and whether it is aromatic–and for each bond–defined using its type (e.g., single vs.

double), whether the bond is conjugated or in a ring, and the elements of the bonded atoms.

The features for each type of atom or bond are learned while training the machine learning

model. Messages are produced by summing over the product of atom and bond features of

each neighboring atom. Features are updated using a gated recurrent unit (GRU) module,

which generates the new atom features considering both the new message and all previous

feature values for that atom. We apply the message and update functions 6 times. After

these layers we generate a set of features for each atom that reflect its properties and those

of up to the sixth-nearest neighbors.

As shown in Figure 1, we use two versions of the MPNN that differ based on whether the

readout function is applied before or after reducing the atomic features to a single scalar.

The first, “Molecular Fingerprint,” version uses a sum readout function before reducing the

atomic features to a single value, which effectively produces a set of features that describes

the entire molecule. The “Atomic Contribution” version reduces the atomic features to a

single scalar value before summing over all atoms, which approximates each atom having an

additive contribution to solvation energy.

5



Embedding

Atom Types 

Embedding

Bond Types

Message

Update

Sum

Dense

6x

ΔGsol

𝜖!"#$
(a) Molecular Fingerprint (b) Atomic Contribution

Molecular 
Fingerprint

Embedding

Atom Types 

Embedding

Bond Types

Message

Update

6x

ΔGsol

Atomic 
Fingerprint

𝜖!"#$

Dense

Sum

Figure 1: The two message-passing neural network (MPNN) versions used in this work:
(a) a model that computes solvation energy based on a molecular fingerprint and (b) a a
model that computes solvation energy by summing contributions of each atom in a molecule.
Boxes represent key computations in a network, and open yellow arrows illustrate how data
is passed between them. Orange closed arrows indicate the model outputs that represent
molecular fingerprints for (a) and atomic fingerprints for (b).

Full details of the models are available in the Supplementary Information, on the GitHub

page associated with this work and on the Materials Data Facility.20,21

Results and discussion

We describe the development of machine learning model that predict the solvation energies

of a diverse class of molecules in five solvents. The following sections describe how we

accomplished this goal by first establishing a database of solvation energies based on an

unbiased sampling of molecular structures and then gradually increasing the complexity of

machine learning techniques used to learn correlations from this data.

Database of 650 000 solvation energies of small molecules

We base our training set on the QM9 database of Ramakrishnan et al., which has been used

frequently in the molecular machine learning- community, for a number of reasons. First, the

database is large: with over 105 entries, QM9 provides sufficient training data to support the
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Figure 2: Histogram of solvation energies, ∆Gsolv, of all 130 258 molecules in our QM9-
Solvation dataset in each of the five solvents considered in this work.

development of many machine learning models.29,31,32 Second, the database is diverse. QM9

is based on an exhaustive sampling of molecules,5,33 which allows us to train and validate our

molecules with minimal concern over whether it is learning patterns related to the sampling

of data and not the physics of the problem.

We used the SMD implicit solvation model in Gaussian to compute the solvation energy

for 130 258 molecules from QM9. We selected SMD for its comparable accuracy to explicit

solvent models and reasonable correlation with experimental solvation energies at a reduced

computational cost.34,35 For each molecule, we computed the solvation energy in five solvents

that sample a broad range of dielectric constants: acetone (ε = 20.49), ethanol (ε = 24.85),

acetonitrile (ACN) (ε = 35.69), dimethyl sulfoxide (DMSO) (ε = 46.83), and water (ε =

78.36). We selected these solvents to not only to capture differences among the solvation

behavior of different molecules, but also selecting solvents of technological relevance (e.g.,

ACN and water are common solvents for flow batteries36).

As illustrated in Figure 2, the solvation energies for our molecules follow, generally, a

single-modal distribution. The notable exception is water, which features multiple peaks

near -10, -5 and 0 kcal/mol. The standard deviation in the solvation energy is approxi-

mately 2.8 kcal/mol for all solvents except water, which shows a wider distribution with
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standard deviation of 4.3 kcal/mol. Some molecules have solvation energies substantially

higher or lower than most in the dataset. The solvation energies for these molecules can

range from as low as -84 kcal/mol to as high as 5 kcal/mol. For example, there are 543

(0.4%) and 428 (0.3%) molecules with solvation energies below -20 kcal/mol in water and

acetone, respectively.

We divide the QM9 molecules into a subset used for model training and a second segment

used for model evaluation. Following our previous work,37 we removed 10% of the full dataset

(a total of the 13026 molecules) for use as a test set. These molecules were neither used to

train the parameters of any of the architectures nor to determine early-stopping criteria

employed in the neural network training. Accordingly, we use them as a test dataset that

represents data drawn from the same population as the training examples (i.e., molecules of

smaller than nine heavy atoms).

We also included a set of 191 molecules with more than nine heavy atoms to provide

further evaluation of the models. These molecules were selected in a previous study,27 where

we identified molecules with between 10 and 14 heavy atoms from the Pedley Compilation28

that have accurate measurements of formation enthalpy. These molecules capture molecular

motifs that are impossible to form with fewer than 10 heavy atoms, such as polycyclic aro-

matic compounds. We denote these molecules our “Pedley test set.” They were not selected

randomly but drawn from a set of molecules for which solvation energies have been mea-

sured experimentally (unlike the QM9 training set, which were generated procedurally) and,

further, were chosen to exhibit qualities desirable for validation (e.g., possessing molecular

motifs not included in the QM9-Solvation dataset).

The full dataset, which we denote QM9-Solvation, is available through GitHub and the

Materials Data Facility.20,21

8



Figure 3: Comparison of the performance of different machine learning models on predicting
the solvation energy in water of 13 000 molecules outside of their training set. Each model was
trained on the same 117 232 molecules. From left to right: Performance of group contribution
model trained using sparse linear regression (LASSO); MPNN performance; LASSO and
MPNN vs. training set size. LASSO fails to continue improving in accuracy with training
set sizes of >104 and is half as accurate as MPNN at training set sizes nearing 105 entries.

Predicting solvation energies of molecules in water solvent: Mes-

sage Passing Neural Networks (MPNNs)

Our goal is to link the graph structure of a molecule to solvation energy. Using only the

molecular graph means that estimating the solvation energy of a molecule does not require

any force field or quantum chemistry computations, which both allows our models to screen

new chemicals at high rates and mitigates concerns about tying predicted solvation energy

to a specific conformation.

The use of machine learning to link molecular structures to properties is well studied.7

We choose to evaluate two techniques from the literature due to their simplicity: group

contribution with linear regression and message-passing neural networks (MPNNs). Both

methods start by labeling atoms in the molecule with type information, such as by element

or by functional group, but differ significantly in how these labels are mapped to functional

properties.

We modeled our group contribution approach on the widely-used model for water-octanol

partition coefficient (LogP) of Wildman and Crippen.38 We define functional groups for each
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non-hydrogen atom in a molecule by first assigning a type based on the element of that

atom, whether it is in an aromatic cycle, and its degree. We then complete the description

of the atom by computing the types of the neighboring atoms using the same procedure and

recording the type of bonding. Our procedure lacks the hand-tuned groups of Wildman and

Crippen but distinguishes atomic sites more fully. For example, our method describes pri-

mary and secondary aliphatic carbons differently; these are treated as identical by Wildman

and Crippen. We believe this further granularity is needed for a dataset as diverse as QM9.

We represent each molecule as a vector in which each entry corresponds to the count of that

functional group type. We then use L1 regularized linear regression using the least absolute

shrinkage and selection operator (LASSO)39 to fit a linear model between this vector and

solvation energy.

Our second type of model is a Message-Passing Neural Network, which provides an auto-

matic path for learning the similarity between different functional groups and their impact

on a material property. A MPNN, as formalized by Gilmer et al.17 and described in the

Methods, learns interactions between atoms/functional groups through “message-passing”

steps that update the description of each atom based on the types of neighboring atoms and

the types of bonds connecting to the neighboring atoms. In this work, we use an MPNN

architecture implemented by St. John et al.30 Our MPNN describes atoms initially based

on their type, degree, number of bonded hydrogen atoms, and whether it is in an aromatic

ring; updates the atom description with messages based on sums of those from its nearby

atoms; and generates a description of the entire molecule as a sum of all atoms. Full details

are available in Methods.

We compared the MPNN and linear regression models for predicting the solvation energy

in water using the training and test data sets described in the previous section. As shown

in Figure 3, our MPNN model has a Mean Absolute Error (MAE) of 0.44 kcal/mol—2.3×

better than the 1.0 kcal/mol MAE of the linear regression model. The increased accuracy of

the MPNN can be traced to the limited complexity available to the linear regression model.
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The LASSO model only includes 1228 parameters, far below the 897 409 parameters in the

MPNN model, which likely explains why the LASSO model does not improve in accuracy

when provided with more than 104 data points. Some routes to improving the accuracy of

this linear regression model could be to add non-linear combinations of existing features or

adding more features by differentiating functional groups based on second-nearest neighbors.

The elegance of the MPNN is that it learns such non-linear combinations and more complex

features automatically. As we demonstrate here, the ability to learn such interactions leads

to superior predictive accuracy.

We studied the outliers of the MPNN to gain a further insight on the generalizability of

the model. The compounds with the largest absolute errors are are those with particularly

high solvation energies, with 15 of the top 25 errors being within the 1% most negative

solvation energies. The relatively poor predictive performance on these materials is partly

explained by the solvation energy being outliers compared to the rest of the data. Twelve

of top 25 (48%) errors belong to a class of molecules, zwitterions, that is rare within the

training data with only 396 (0.3%) entries within the training. We conclude that the model’s

predictions are most reliable for molecules with solvation energies of less negative than -25

kcal/mol and is, for example, inaccurate for zwitterions.

Extending an MPNN solvation model to other solvents

Our next step was to add the ability for our MPNN model to predict solvation energies in

other solvents. We explored two different strategies for creating “multi-task” models able to

predict solvation energy in different solvents simultaneously. The first approach is a standard

multi-task model in which the last layer of the neural network produces multiple outputs, one

per solvent. The second approach involves a network that predicts solvation energy given the

molecular structure of the solute and the dielectric constant of the solvent. This “dielectric

constant” model, unlike the multi-task model, can predict solvation energy in solvents not

included in the training set. Here, we test which method produces more accurate models
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Figure 4: (a) Predictions of solvation energy as a function of the dielectric constant of a
solvent for four solute molecules with different solvation behavior. Our Message Passing
Neural Network (MPNN) model includes the dielectric constant of the solvent as an input
feature. It was trained on the solvation energies of 117 232 molecules. The solid blue line is
the solvation energy prediction for each molecule from our MPNN. Black circles represent
solvents that were included in the training set (left to right: acetone, ethanol, DMSO, water)
and the red square is a solvent withheld from our training set (ACN). (b) Performance of
the MPNN model in predicting the solvation energy in DMSO for all 130 258 molecules in
our dataset.

and how well the dielectric-constant model computes solvation energy for solvents outside of

the training set.

We evaluate our two strategies by training a model with the same 90%/10% test split

as our single-solvent model and data from all five solvents. The multi-task and dielectric-

constant models have comparable accuracy to the single-solvent model in predicting solvation

energy in water. The single-solvent model has an error of 0.44 kcal/mol for solvation energy

in water—effectively equal to the errors of 0.43 and 0.45 kcal/mol for the multi-task and

dielectric constant models, respectively. We note that we previously observed that training a

multi-task model with greatly varied properties (e.g., HOMO energy and atomization energy)

can lead to a significant degradation in model accuracy.37 It appears that the solvation

energies of a molecule in different solvents are sufficiently similar that modeling different

solvents simultaneously in the same model does not lead to degradation in performance.

We further explored the concept of multi-solvent prediction by withholding data from one

of our five solvents, ACN, to use as a test set. We selected ACN for this test case because it
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has the median dielectric constant of the five solvents and, thus should be a good test for our

machine learning model’s ability to interpolate. The MAE of our dielectric-constant model

for predicting solvation energy in water is not changed by the exclusion of ACN training

data; the MAE decreases by only 5× 10−4 kcal/mol. Based on these results, we see neither

benefit nor disadvantage to training a machine learning model on data from more solvents

at least for solvents that exist within the range of dielectric constants in our training set.

The fact that the dielectric constant model uses solvent properties as inputs allows us to

predict the properties of solvents not contained within the training set. As shown in Figure 4,

our model smoothly interpolates how the solvation energy changes as a function of dielec-

tric constant. The model also appropriately detects that the solvation energy for propane

increases for solvents with large dielectric constants and increases for water. The dielectric

constant model trained without any data with ACN as a solvent achieves an MAE for the

ACN solvation energy of 0.62 kcal/mol across all molecules and an MAE of 0.70 kcal/mol on

molecules from the holdout set, for which neither molecule nor solvent are included in the

training set. From this, we conclude that the model is able to interpolate between solvents

with dielectric constants between 10 and 80 ε0.

Improving performance for molecules larger than the training set

The training data used in the previous sections are drawn from the same population, which

provides a useful but limited view of the utility of our model. Specifically, all molecules

were taken from the QM9 dataset and, as a result, have only nine or fewer nonhydrogen

atoms, limiting the estimates of accuracy discussed above to only these smaller molecules.

We therefore studied the accuracy of our model on predicting the solvation energy of 191

molecules with more than nine nonhydrogen atoms (i.e., our Pedeley test set).

The errors for these molecules from the Pedley test set are substantially greater than

those observed for the QM9-based test set. For example, the MAE for solvation energy in

ACN for the Pedley test set is 3.46 kcal/mol—over 10× larger than the MAE of 0.32 kcal/mol
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for the QM9 test set. The errors tend to increase with molecule size. As shown in Figure 5c,

the MAE for molecules in the Pedley test set generally increases as a function of molecular

size and reaches over 10 kcal/mol for molecules with 14 heavy atoms. The increase in error

with molecule size is not monotonic, with molecules of size 11 having errors around 2×

smaller than errors for molecules with 14 nonhydrogen atoms, but is strong enough that we

speculate that the poor performance of our models on the Pedley test set has to do with the

issues with capturing the effect of molecular size more than the presence of structural motifs

absent from the training set.

We explored improving the performance of our model by adopting a “atomic contribu-

tion” model for solvation energy. As illustrated in Figure 1, our current model generates a

single fingerprint to describe an entire molecule by summing the fingerprint of each atom (the

output of the message passing layers) and computing the solvation energy from the resul-

tant “molecular fingerprint.” An alternative approach is to predict “atomic contributions”

for each atom in the molecule separately and then to express the molecular property as a

sum of these contributions—a technique used often in machine learning models of molecular

energy.16,31,40,41 The atomic contribution approach explicitly encodes a linear relationship

between a molecular property and the size of the molecule, which is a fair approximation

for solvation energies given the known correlation between solvation energy and molecular

size.42

The atomic contribution model performs worse for the QM9 holdout set but has a less

dramatic increase in error with molecule size than our original model. As shown in Figure 5b,

the atomic contribution model has a 50% larger error on the QM9 dataset, 0.47 kcal/mol,

than the molecular fingerprint model, 0.32 kcal/mol. However, we see a much smoother

increase with error with increasing molecular size. The MAE for molecules with 14 non-

hydrogen atoms is, for example, at least 5× smaller than our molecular fingerprint model.

The drastic differences between the performance on QM9 and our external test sets strongly

motivates the need for evaluating machine learning models more closely to how they will be
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used for larger molecules and the need for molecular datasets with larger molecules. We also

note that the atomic contribution model is not fully free from the effect of molecular size on

error. The errors steadily increase for molecules with sizes more distant from nine nonhy-

drogen atoms, which is the size with the greatest amount of training data. There could be a

few explanations for the relationship between error and molecule size. Namely, there could

be could be an effect of bias in the training set due to the overrepresentation of data with

9-heavy atoms or a failure in the assumption that atom count and solvation energy should

be linearly-related. We therefore propose re-weighting techniques to account for training set

bias or different approaches for summing atomic contributions (e.g., generalized means) as

a direction for modeling non-linear relationships between atomic size and property.

The final ingredient of the utility of our model is the speed at which we can evaluate

new molecules. Evaluating the model requires parsing the SMILES string to an RDKit

molecule object, converting the RDKit molecule to a graph representation compatible with

Tensorflow, and evaluating the MPNN. The conversion steps can be performed in parallel for

each molecule and the individual mathematical operations of the MPNN can also be paral-

lelized, allowing us to exploit highly-parallel CPUs and general-purpose GPUs. Accordingly,

we can achieve an evaluation rate of 103 molecules per second on two 32-core Intel Xeon

CPU E5-2683 v4 CPUs. This evaluation rate makes it possible to evaluate all of QM9 (105

molecules) in two minutes and all of ZINC15 in 33 hours using only a single workstation.

The extreme evaluation rates noted here can be further improved by running the models

on multiple nodes of a supercomputer, making it possible to rapidly screen molecule spaces

with billions of candidates.

Quantifying domain of applicability

The empirical nature of machine learning models makes it difficult to identify which predic-

tions are most or least likely to be accurate. In the previous section, we established that

molecular size correlates with error—a likely effect of the training set being biased towards
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Figure 5: Performance of two different MPNN models trained on 117 232 molecules with
nine or fewer nonhydrogen atoms on predicting the solvation energy in acetonitrile (ACN),
dimethyl sulfoxide (DMSO), and water on our validation hold-out sets: (a,c) a model which
learns the solvation energy from a molecular fingerprint and (b,d) a model which predicts
solvation energy by summing over contributions from each atom. (a-b) Histogram of errors in
the solvation energy in the ACN solvent for hold-out molecules from the QM9 dataset. (c-d)
The mean absolute error for molecules from the QM9 hold-out set and our larger molecule
hold-set set binned by the number of nonhydrogen atoms. Error bars represent the standard
error of the mean.

molecules with nine nonhydrogen atoms. Here, we explore improved metrics for establishing

a quantitative estimate of the size of the error for a prediction.

Our previous analysis of the performance of the models on predicting solvation energies

in water give clues on what is important in estimating the performance of the model. We

noted, in particular, that zwitterions were overrepresented in the molecules with the largest

error (48% of largest errors were zwitterions, compared to only 0.4% in the test set). The

poor-performance of the models on a class of molecules that are structurally distinct from

most of the training set is reflective on how the MPNN models implicitly learn the behav-

ior of function groups within molecules. Unseen or rare functional groups will have little
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training data, which leads can lead to poor performance. Such behavior suggests for us to

consider metrics that measure similarity in functional groups between molecules to estimate

the performance of our model.

Our metrics are based on common approaches from the chemoinformatics community,43

such as distances from the training set and variance of an ensemble of machine learning

models. We explore three different applicability metrics. We first chose the Tanimoto simi-

larity based on Morgan Fingerprints,44 which represents a molecular similarity metric that

is not tuned for any particular property. We also chose two applicability metrics based on

our MPNN models. The first is based on the molecular fingerprint MPNN model, were we

compute the mean L2 distance between the molecular fingerprint (see Fig. 1) for a molecule

and those of the 64 closest molecules from the training set. The second is based on the finger-

prints for each atom as computed using the atomic contribution model, where we compute

the dissimilarity of a molecule from one in the training set as the mean distance between the

most-similar pairs of atoms:

a(m,n) =
1

Nm

∑
i

max
j
‖mi − nj‖2 (2)

where m is the molecule, n is a molecule from the training set, Nm is the number of atoms in

m, the sum
∑

i is over all atoms in m, the maximum maxj is over all atoms in n, mi is the

atomic fingerprint of atom i in m, nh is the fingerprint of atom j in n, and ‖...‖2 represents

the L2 norm. We note that a(m,n) is not a proper distance metric, as a(m,n) 6= a(n,m).

As with the “molecular fingerprint distance,” we compute the atomic fingerprint distance as

the average distance over the 64 closest molecules. In all cases, we assume larger distances or

lower similarities from the training set indicate greater likelihood that a molecule is outside

of the training set.

Our final applicability metric is based on the variance of the predictions of an ensemble

of MPNNs. We created an ensemble by training 16 atomic contribution MPNNs each with
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a different, randomly-selected subset created by randomly sampling the full training set

with replacement (i.e., a bootstrapped ensemble). The variance of this training captures the

uncertainty of individual predictions.45,46 We assume that molecules with larger uncertainties

are more likely to have larger errors.

We evaluated the quality of our domain of applicability metrics by measuring the corre-

lation between each application metric for each prediction and the size of the observed error.

We seek applicability metrics for which molecules with larger applicability metrics have a

greater likelihood of having larger errors than those with smaller metrics. The statistical

variation in error means that we assume that these changes will be visible in averages and

not that all points with larger metrics will have larger errors. Accordingly, we grouped our

data into 16 bins based on each of the applicability metric and show the average errors and

likelihood of an error being greater than 1 kcal/mol. In all cases, we used the predicted

solvation energy in ACN based on the atomic contribution MPNNs for molecules in our

Holdout and Pedley test sets. The results are shown in Figure 6.

We find that the applicability based on the molecular fingerprint MPNN yields the best

performance according to both quality metrics. We find that there is the strongest corre-

lation between both the magnitude of error and the likelihood of a 1 kcal/mol error. The

MPNN-based fingerprint distance strongly outperforms a generic circular fingerprint with

Tanimoto similarity, suggesting a benefit to using fingerprints trained to reflect a certain

atomic property as a similarity metric. In general, we find significant need for developing

good domain of applicability metrics. As illustrated by specialized MPNN fingerprints out-

performing conventional Tanimoto fingerprints, the dependence of model error on inputs can

require complicated models. Further research on developing complex applicability metrics

or, even, measuring the performance of different metrics (e.g., Ref47) is greatly needed.

We therefore train a linear regression and logistic classification model on the MPNN

molecular fingerprint distance as a means to provide a quantitative estimate of the uncer-

tainty of any prediction made using our model. Users of the model can define their own
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cutoff for a domain of applicability depending on how much uncertainty that can tolerate.

We can also use the uncertainties of the models to further improve them48 or accelerate the

discovery of molecules with target properties.49,50
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Figure 6: Comparison of different domain of applicability metrics: Tanimoto similarity
to the 64 most-similar molecules in the training set, distance based on the atomic and
molecular fingerprints from a MPNN model for solvation energy, and variance in a bootstrap
ensemble of 16 models. The performance of each metric was assessed using 13217 molecules
from our holdout set using ACN as a solvent. (a) The MAE and normalized applicability
metric for molecules divided into 16 bins grouped by each metric. Metrics are normalized by
applying a linear transformation such that the 1st and 99th percentiles have values of 0 and
1, respectively. (b) Likelihood of a error greater than 1 kcal/mol for 16 bins of molecules
grouped by each metric. The dotted lines between data points are intended to guide the eye.
The black dashed lines show (a) the MAE on the entire holdout set and (b) the fraction of
errors > 1 kcal/mol for the holdout set.

Conclusion

We have presented QM9-Solvation, a new dataset of DFT-computed solvation energies of

130 258 molecules in five solvents, a total of 651 290 values, and used this new dataset to train

a suite of machine learning models. Our best-performing machine learning models, based on

a message-passing neural network that takes properties of both solute molecules and solvent

as inputs, achieve an accuracy of 0.5 kcal/mol, 2× better than group contribution models.

We established that our models can generalize to predict solvation energy in solvents outside

of the training set and for molecules larger than those used to train our datasets. Finally,
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we created a domain-of-applicability metric to provide users an estimate of whether the

predictions of our models are trustworthy for a certain molecule. The data, models, and

code used in this study are all freely available online, and the machine learning models are

accessible through a simple web interface that both invokes the model and provides estimates

of model uncertainty for each prediction.

Availability of data, models, and code

The data, models, and code used in this study are freely available via the Materials Data

Facility,51,52 DLHub,22,22,51 and Github, respectively. Specifically, we have published our

training and test datasets;20 the best trained models (the atomic-contribution models with

solvent dependence); and the code used for training and testing our machine learning mod-

els.21

Supporting Information

The Supporting Information for this manuscript includes a detailed description of the message-

passing neural network architecture.
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