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Abstract 

The p38-alpha (MAPK14) is a protein kinase that is implicated in the pathological mechanisms 

of BAG3 P209L myofibrillar myopathy, cancers, Alzheimer’s disease and other diseases like 

rheumatoid arthritis. Inhibition of p38 has shown promise as treatment for these diseases. 

Traditional drug discovery methods were unable to create both effective and safe small 

molecule inhibitors, so we used machine learning to elucidate potential p38 blockers from 

existing FDA-approved drugs. Using available bioactivity data, we determined the best 

existing p38 inhibitors and applied fingerprint clustering to isolate the compounds with similar 

structures. Descriptors were calculated for these clustered compounds and the most important 

of these descriptors were determined through a machine-learning based feature selection 

algorithm. This data served as the training set for a deep neural network that was fine-tuned to 

a 92% validation accuracy. The neural network model was applied to a database of FDA-

approved drugs, revealing 149 potential p38 inhibitors, whose efficacy were confirmed by 
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docking simulations to be statistically significantly higher than random FDA drugs and slightly 

higher than known inhibitors. Our study not only reveals potential treatments for p38-mediated 

diseases but also demonstrates the capability of integrating various machine-learning 

techniques and computational algorithms to predict novel functions of existing 

pharmaceuticals. 

 

1 | INTRODUCTION 

The p38-alpha, or MAPK14, is a mitogen-associated protein kinase that is activated by dual 

phosphorylation of a tripeptide motif (Thr–Xaa–Tyr) located in its activation loop. The p38 

kinase is regulated by stress-activated MAPK Kinase 3 (MKK3), MKK6, and MKK4. Its 

signaling cascade ultimately is responsible for the release of proinflammatory cytokines such 

as TNF, IL1 and IL6.1-3 The p38 has been found to play a large role in the inflammatory 

mechanisms of rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, Crohn’s 

disease, and several types of myopathies and lung diseases. It has also had shown tumor 

promotion properties in different types of cancer, including breast, liver, and colorectal 

cancer.4,5 A p38’s contribution to the severe phenotype of so many degenerative diseases has 

made it an attractive target for treatment via molecular inhibitors.  

Myofibrillar myopathy (MFM) is another disease in which p38 plays a significant role. 

This disease is caused by a mutation in the Bcl2-associated athanogene 3 (BAG3) protein. The 

modular domain composition of the BAG3 co-chaperone makes it incredibly versatile in its 

interactions with other molecules. It suppresses apoptosis, mediates selective autophagy, and 

maintains cellular homeostasis during stress, making it important in a variety of diseases, 

including cancers, myopathies, and neurodegeneration.6 A BAG3 missense mutation of P209 

into leucine and several mutations in the same site have been shown to result in a severe 

childhood MFM phenotype, characterized by progressive limb and axial muscle weakness, 

respiratory insufficiency, and cardiomyopathy. Three of 53 random MFM patients showed the 

P209 mutation.7,8 Further investigation of the P209L mutation in zebrafish discovered that the 

mutation leads to a toxic aggregation of mutated BAG3, ultimately causing a deficiency of 

functional BAG3, triggering myofibrillar disintegration.9 Research on BAG3 P209L mice 

found significantly increased activation of p38. The mechanism of p38 activation is similar to 

that seen in Alzheimer’s and other tauopathies and neurodegenerative diseases, in which 
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oxidative cell stress activates the MAPK signaling pathway, causing an inflammatory 

response.8,10,11 In these brain diseases, cellular stress is caused by misfolded amyloid-beta and 

tau proteins, while in BAG3P209L MFM, cellular stress results from a lack of functional 

selective autophagy.10,12 Targeted activation of p38 in vivo has been shown to induce heart 

failure and a similar cardiac hypertrophy as that seen in the mutant mice, and the mutant mice 

also show increases in inflammatory infiltrates and activation of NF-κB, a prototypical 

proinflammatory signaling pathway, which is characteristic of p38 activation.8,11-13 All these 

evidence points to targeted inhibition of p38 as an effective treatment of BAG3 mutation 

caused MFM. Our research is the first attempt we know of to discover p38 inhibitors as a 

treatment for a genetic myopathy. 

Similar to other protein kinase inhibitors, MAPK14 inhibitors mostly function through 

competitive inhibition at the ATP-binding site. There are two types of these competitive 

inhibitors: Type 1, which bind in the active DGF-in conformation (e.g., compound SB 

203580), and Type 2, which bind in the inactive DFG-out conformation (e.g., compound Birb 

796).14 The two binding modes differ in the orientation of the DFG motif within the ATP 

pocket.15 Many different p38 inhibitors have been, or are currently being, investigated in phase 

I or II clinical trials, including Birb 796 and VX-745, but none have been recommended for 

use, mostly due to high toxicity or lack of significant efficacy. Since existing p38 inhibitors 

have been artificially synthesized, their side effects are unknown until human clinical trials, 

which is why even though they may work very well during in-vitro trials or even in-vivo animal 

models, they end up failing at the clinical trials. Development of new drugs is a very long and 

expensive process, so in this project we propose to repurpose existing FDA-approved drugs to 

find effective, non-toxic p38 inhibitors with already known side effects. FDA drug repurposing 

significantly expedites the drug discovery process, delivering safer yet effective treatments to 

patients in a much timelier manner.  

There have been a few attempts to use computational techniques to find p38 kinase 

inhibitors, using structure-based virtual screening or structure-based design of novel 

inhibitors.16-19 However, there has been no use of deep learning (DL) for the repurposing of 

FDA-approved drugs as p38 inhibitors that we are aware of. Deep learning is a form of machine 

learning that mimics the human brain and its networks of neurons. It has applications in a 

variety of fields like healthcare, cybersecurity and even video games, but it has recently 
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emerged as one of the most effective machine-learning techniques in all aspects of drug 

discovery, from target prediction to synthesis to identification of prognostic biomarkers.20 

Furthermore, data-filtration techniques like fingerprint clustering and feature selection have 

both been shown to significantly increase deep-learning accuracy.21,22 That’s why in this study 

we utilized these data preparation algorithms along with a deep neural network to discover 

which FDA approved drugs could also function as p38 inhibitors, revealing 149 candidates. 

These predictions were then ranked through ligand-docking, a structure-based virtual 

screening method that shows sufficient accuracy in determining how thermodynamically 

favorable the binding of a ligand to a protein is.23 With corroboration from experimental trials, 

the most promising of these drugs could be used as treatment for BAG3P209L MFM or other 

diseases with similar p38-mediated pathological mechanisms. 

 

2 | METHODS 

All research was completed in silico. The programs, tools, and websites used were the 

PubChem, DrugBank, CADD group Cheminformatics Tools and User Services (CACTUS), 

Molecular Operating Environment (MOE), Waikato Environment for Knowledge Analysis 

(Weka), PaDEL-Descriptor, TensorFlow Python Library, Netron, and Net2Vis.24-32 

 

2.1 | Clustering 

Activity values and structure files for 12 456 compounds tested with the p38 kinase was 

retrieved from PubChem.24 To limit the tested compounds to the strongest inhibitors, only those 

with an activity value (IC50, Kd, Ki) less than 100 nM were considered. These compounds 

were then analyzed with the MOE27 fingerprint clustering function, which uses Jarvis–Patrick 

Clustering, to determine compounds with similar structures and pharmacophores to improve 

specificity of the deep-learning model. Clustering parameters were set at 56% similarity and 

overlap, revealing 297 clusters. The largest of these clusters contained 1206 compounds and 

was what the deep-learning model would be trained on. The final predicted inhibitors also 

underwent fingerprint clustering with the same parameters to provide more information about 

the results. 
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Since clustering is based on the molecule’s 3D structure, the structure files inputted to the 

software had to include 3D coordinates. So, we converted SMILES, which are a structural 

representation consisting of one-dimensional ASCII strings, into a 3D Spatial Data File (SDF) 

format using the CACTUS Structure Files Generator.26 The SDF files were then imported to 

the MOE database. 

 

2.2 | Descriptor Calculation 

PaDEL-Descriptor29 is a graphical or command line interface that mostly utilizes the 

Chemistry Development Kit and a few additional descriptor categories. It was employed to 

calculate 1875 one-, two-, and three-dimensional descriptors. These descriptors—the data that 

the deep-learning model analyzes to train and make predictions—were calculated for three 

dimensional SDFs of the largest cluster of known inhibitors, random molecules (control) pulled 

from PubChem, and for FDA-approved drugs retrieved from DrugBank.25 

 

2.3 | Feature Selection  

To narrow down the calculated descriptors to only the most significant ones, we employed 

attribute selection from WEKA, an open-source machine learning software.28 The descriptors 

were ranked by the Information Gain Attribute Evaluation (InfoGain) function, an 

unsupervised machine-learning algorithm, that measures how important each descriptor is in 

determining whether a given molecule is an inhibitor or not. Only the most significant 

descriptors were selected to be used by the machine-learning algorithm in order to reduce 

noise. Figure 1 is a histogram that illustrates the most informative descriptor, nAtomP. The 

vertical bars represent the number of molecules for each value of nAtomP, the length of the 

longest pi chain in the molecule. Inhibitors (red) tend to have larger values for nAtomP than 

non-inhibitors (blue). This clear distinction between the two is what makes this descriptor 

useful for deep-learning classification. 
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FIGURE 1 Histogram of the length of the largest pi chain in the molecule for all molecules in the 
training set. This descriptor, nAtomP, was ranked as most informative by an information gain algorithm. 
 

2.4 | Neural Network Construction 

The deep-learning algorithm was created in Python and works by first converting the training 

data of known inhibitors’ and random molecules’ most important descriptors into a shuffled 

TensorFlow30 dataset with an 80–20 train–validation split. The inhibitor label is removed and 

then compared to the neural network’s predictions to determine training and validation 

accuracy. The neural network (Figure 3) used was a Keras sequential model, a type of 

multilayer perceptron. To determine the best parameters that maximized accuracy, we applied 

hyperparameter tuning with TensorBoard (TensorFlow’s visualization kit), which essentially 

looped over the training algorithm changing a single parameter one at a time (Figure 1). The 

hyperparameter tuning results indicated that the optimal algorithm trains with 7 hidden layers 

with 336 nodes each, 160 epochs (how many times the dataset passes through), 1 batch per 

epoch (maximum batch size), and a learning rate of 0.001 with the Adam optimizer.  
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FIGURE 2 A visual representation of the hyperparameter tuning process. The 
parameters being considered here are batch size, learning rate, and number of epochs. The 
red lines represent effective combinations of parameters, while the blue lines are ineffective. 
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FIGURE 3 Neural network visualizations. (a) A snippet of a complex representation of the deep neural 
network showing how the input data of molecular descriptors connects to the different nodes of the first 
two hidden layers.31 (b) This more simplified representation shows how the input data with the 160 
descriptors travels through 7 different hidden layers with 336 nodes, a dropout layer (reduces overfitting to 
the training data by randomly setting input units to 0), and then a final output layer.32 

 

2.5 | Conformational Search and Docking 

a 

b 
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A preparation of the conformers sets was performed on all the molecules. MOE’s 

Conformations/ Import function uses a stochastic search and energy minimization algorithm 

that finds the possible conformations of a molecule given limits on strain energy. We set the 

strain energy limit to 1 kcal/mol and restricted it to a maximum of 100 conformations per 

molecule.  

The conformers were docked in MOE, using Dock module, with the PDB structure 1A9U, 

a MAPK14 protein bound to the compound SB 203580, a strong known inhibitor, at the ATP-

binding site. The protein structure was prepared by removal of the inhibiting ligand, 3D 

protonation (determines the lowest energy configurations of titratable groups in the protein), 

and MOE’s Structure Preparation module, which corrects any errors in the crystal structure. 

The conformers prepared through MOE’s Conformations/Import module were then docked 

using MOE’s Dock module, with the protein structure, determining five poses for each 

compound with the Triangle Matcher placement method and London dG scoring method. 

Then, the poses were refined with the Induced Fit mode (flexible docking) and scored for a 

final time with the GBVI/WSA dG method. The competitive binding site was determined 

through MOE’s pocket function.  

 

3 | RESULTS 

To present a comprehensive picture of all important compounds for repurposing we engaged two 

scaling measures: first, by the docking scores of compounds to p38 (Table 2), second, by the 

likelihood that the compounds inhibit p38 according to the deep-learning model (Table 5). We also 

combined the two scaling techniques in Table 6 to provide a more comprehensive ranking system. 

However, the first method, by docking score, can be most reliable because it ranks the compounds 

directly by their simulated interactions with p38, which is most important in determining effective 

inhibitors.  

 

3.1 | Docking  

Our conformational search resulted in 8890 conformers of p38 inhibitors predicted by our neural 

network, and 6616 conformers of already known p38 inhibitors along with 5473 conformations of 

random FDA drugs added as negative fits. These conformers were then docked with p38 and given 



 

10 
 

Vermani 10 

a final GBVI/WSA score. The random control compounds had an average docking score of −5.92 

kcal/mol, the known inhibitors had a score of −7.30 and the predicted inhibitors had a score of 

−7.45 (Figure 4). A t-Test (Table 1) confirmed that the predicted inhibitors were statistically 

significantly better at binding to p38 at the ATP-binding site—therefore inhibiting p38’s 

function—than random FDA-approved drugs (Since the docking results measure binding energy, 

a more negative value means stronger binding). The t-Test also shows that the performance of the 

predicted inhibitors is much more consistent, with a variance less than half that of the random 

control group. The compounds exhibiting the best docking energies are listed in Table 3 and 

displayed with the p38 binding pocket in Figure 5. 

 

  
FIGURE 4 Docking scores (kcal/mol) for 149 predicted inhibitors, 149 selected known inhibitors, 
and 149 random FDA-approved drugs. 

 

TABLE 1 t-Test: Two-Sample Assuming Unequal Variances. 
Since t Stat < −(t Critical two-tail), −13.89 < −1.97, the difference 
between the predicted inhibitors’ and random FDA-approved drugs’ 
docking scores is statistically significant  
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Parameter Predicted 
Inhibitors 

Random FDA-
approved drugs 

Mean −7.45 −5.92 
Variance 0.55 1.27 
Observations 149 149 
Hypothesized Mean Difference 0  
df 256  
t Stat −13.89  
P(T<=t) one-tail 2.30E-33  
t Critical one-tail 1.65  
P(T<=t) two-tail 4.61E-33  
t Critical two-tail 1.97   
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FIGURE 5 Docking of the top 12 predicted inhibitors by docking score with the p38 ATP-binding site: 
(a) hesperidin; (b) neratinib; (c) dabigatran etexilate; (d) cefpiramide; (e) candesartan cilexetil; (f) ibrutinib; 
(g) lifitegrast; (h) acalabrutinib; (i) abemaciclib; (j) leucovorin; (k) levoleucovorin; (l) apixaban. 
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FIGURE 6 Docking of the top 8 selected known inhibitors (based on activity values) with the p38 
ATP-binding site: (a) PF-03715455; (b) doramapimod (Birb 796); (c) CHEMBL197206; 
(d) CHEMBL196741; (e) CHEMBL199679; (f) CHEMBL318810; (g) CHEMBL327959; 
(h) CHEMBL328614.  
 

Table 2 also includes the original uses and protein interactions of the top 40 predicted inhibitors 

according to docking score, as well as their clusters (see section 3.2). Of these 40, 34 already act 

as some kind of protein inhibitor and 14 (35%) act on protein kinases specifically, which share 

structural similarities with p38. By comparison, 52 of the 2151 FDA-approved drugs (only 2.4%) 

used in this project are protein kinases. This means that the model and docking simulations are 

successfully identifying drugs that are already clinically proven to be inhibitors of proteins 

structurally similar to p38.  

 

TABLE 2 Top 40 predicted inhibitors ranked by docking score  

Docking 
Score 

(kcal/mol) 
Name Cluster Uses Protein interactions 

−9.82 Hesperidin 1 Treats blood vessel conditions Inhibits lipase 

−9.18 Neratinib 25 Treats certain types of breast 
cancer 

Inhibits human epidermal growth 
factor receptor 2 (Her2) and epidermal 
growth factor receptor (EGFR) 
tyrosine kinases 

−9.13 Dabigatran etexilate  4 Prevents stroke and harmful 
blood clots 

Inhibits thrombin 

−9.12 Cefpiramide  22 Antibacterial agent Inhibits penicillin-binding proteins 
(PBPs) 

−8.98 Candesartan 
cilexetil 53 Treats hypertension Inhibits the type-1 angiotensin II 

receptor (AT1) 

g h 

https://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
https://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
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−8.97 Ibrutinib 4 Treats certain cancers 
Inhibits Bruton’s tyrosine kinase 
(BTK) and other non-specific tyrosine 
kinases 

−8.96 Lifitegrast 31 Treats dry eye disease 

Inhibits the interaction between 
lymphocyte function-associated 
antigen 1 (LFA-1) and intercellular 
adhesion molecule 1 (ICAM-1) 

−8.89 Acalabrutinib 4 Treats mantle cell lymphoma Inhibits Bruton’s tyrosine kinase 
(BTK) 

−8.66 Abemaciclib 4 Treats certain types of breast 
cancer 

Inhibits cyclin-dependent kinase 
(CDK) 4 and 6 

−8.63 Leucovorin 133 Prevents harmful effects of 
methotrexate 

N/A 

−8.63 Levoleucovorin 133 Treats or prevents toxic effects 
of methotrexate 

N/A 

−8.62 Apixaban 4 Prevents strokes or blood clots Inhibits coagulation factor Xa 

−8.50 Zafirlukast 11 Prevents asthma symptoms Inhibits cysteinyl leukotriene 1 
receptor (CYSLTR1) 

−8.43 Imatinib 4 Treats certain types of leukemia 

Inhibits the BCR-ABL, platelet-
derived growth factor (PDGF), and 
stem cell factor (SCF)/c-kit 
tyrosine kinases 
 

−8.42 Edoxaban 4 Prevents strokes or blood clots Inhibits coagulation factor Xa 

−8.37 Lusutrombopag 95 Treats thrombocytopenia Activates the thrombopoietin (TPO) 
receptor 

−8.34 Argatroban 83 Treats or prevents blood clots Inhibits fibrin-bound thrombin 

−8.31 Lapatinib 58 Treats certain types of breast 
cancer 

Inhibits human epidermal growth 
factor receptor 2 (Her2) and epidermal 
growth factor receptor (EGFR) 
tyrosine kinases 
 

−8.30 Piperacillin 22 Antibiotic Inhibits penicillin-binding proteins 
(PBPs) 

−8.25 Chloramphenicol 
palmitate 109 Antibiotic Inhibits bacterial peptidyl transferase 

−8.22 Ximelagatran 97 Treats and prevents blood clots Inhibits thrombin 

−8.20 Ubrogepant 4 Treats migraines 
Inhibits the calcitonin gene-related 
peptide (CGRP) receptor 
 

−8.07 Bosutinib 4 Treats certain types of blood 
cancer 

Inhibits the BCR-ABL and Src 
tyrosine kinases 

−8.06 Telotristat ethyl 122 Treats carcinoid syndrome 
diarrhea 

Inhibits tryptophan hydroxylase  

−8.06 Fedratinib 31 Treats myelofibrosis 
Inhibits Janus-associated kinase 2 
(JAK2) and FMS-like tyrosine kinase 
3  

−8.06 Ponatinib 4 Treats a certain type of 
leukemia 

Inhibits several tyrosine kinases 
including the BCR-ABL tyrosine 
kinase 

−8.05 Doxazosin 4 Treats hypertension and 
enlarged prostate 

Inhibits alpha-1 adrenergic receptors 
 

−8.02 Carindacillin 8 Antibiotic Inhibits penicillin-binding proteins 
(PBPs) 

https://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
https://en.wikipedia.org/wiki/Epidermal_growth_factor_receptor
https://pubchem.ncbi.nlm.nih.gov/compound/calcitonin
https://pubchem.ncbi.nlm.nih.gov/compound/tyrosine
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−7.99 Netarsudil 89 Treats glaucoma Inhibits the Rho kinase (ROCK) and 
norepinephrine transport 

−7.99 Azlocillin 22 Antibiotic Inhibits penicillin-binding proteins 
(PBPs) 

−7.98 Levomefolic acid 133 Active metabolite of folic acid 
used as a dietary supplement 

N/A 

−7.98 Entrectinib 4 Treats a certain type of non-
small cell lung cancer 

Inhibits tropomyosin receptor kinases 
(Trk) A, B and C, C-ros oncogene 1 
(ROS1) and anaplastic lymphoma 
kinase (ALK) 

−7.98 Cabozantinib 2 Treats advanced renal cell 
carcinoma 

Inhibits several different 
receptor tyrosine kinases (RTKs), 
such as hepatocyte growth factor 
receptors (METs) and vascular 
endothelial growth factor receptors 
(VEGFRs) 

−7.91 Encorafenib 31 Treats certain types of cancer Inhibits the serine/threonine Raf 
kinase 

−7.91 Doxorubicin 1 Treats certain types of cancer Inhibits topoisomerase II 

−7.90 Arzoxifene 19 Maintains bone density to 
prevent fractures 

Selectively inhibits and activates 
estrogen receptors as a selected 
estrogen receptor modulator (SERM) 

−7.90 Riociguat 4 Treats pulmonary arterial 
hypertension 

Stimulates guanylate cyclase activity 

−7.90 Erlotinib 30 Treats certain types of non-
small cell lung cancer 

Inhibits the epidermal growth factor 
receptor (EGFR) tyrosine kinase 
 

−7.90 Ticagrelor 81 Prevents heart attack or stroke Blocks P2Y12 adenosine diphosphate 
(ADP) receptors 

−7.89 Eltrombopag 10 Increases platelet count Activates the platelet thrombopoietin 
receptor (TPO-R 

 

Table 3 shows the 10 residues, which interacted most frequently with the predicted compounds. 

Lys161 appears to be the most reactive residue, interacting through hydrogen bonds with about 

80% of the ligands.  

 

TABLE 3 Residues most frequently contacting with inhibitors. 

Residue 
Number of 
Interactions 
(%) 

Average 
Distance 

Most 
Frequently 
Interacting 
Residue Atom 

Most 
Frequent 
Type of 
Interaction 

Lys161 80 3.02 NZ H-Bond 
Arg543 70 3.23 CD Hydrophobic 
Glu227 50 3.30 OE2 H-Bond 
Leu231 50 3.71 CD1 Hydrophobic 
Tyr78 50 3.54 CA Hydrophobic 
Asp537 40 3.21 OD1 H-Bond 

https://pubchem.ncbi.nlm.nih.gov/compound/tyrosine
https://pubchem.ncbi.nlm.nih.gov/compound/tyrosine
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Ala159 30 3.75 CB Hydrophobic 
Leu318 30 3.84 CB Hydrophobic 
Thr320 30 3.57 CB Hydrophobic 
Val87 30 4.03 CG2 Hydrophobic 

 

3.2 | Deep-Learning Model 

After the deep-learning algorithm was made and fine-tuned, it was run 5 times on a dataset of 

2151 FDA-approved molecules with the same 160 descriptors as the training set. Figure 7 

shows a graph of the training metrics of the model while training for each of the 5 trials. The 

fact that the accuracy and AUC start at 0.5, or random chance, but increase consistently with 

the epoch number, shows that the model is effectively learning and improving over time. The 

5 trials applied had an average validation accuracy of 91.6% and an area under the receiver-

operator characteristic (ROC) curve (AUC) of 0.969 (Table 3).  

Table 4 contains the metrics for the deep-learning model, depicting accuracy, area under 

the ROC curve (AUC) and binary cross-entropy loss. Accuracy measures the number of correct 

predictions as a percentage of the total predictions. AUC is a slightly different but nonetheless 

important metric that demonstrates the model’s ability to discriminate between two cases, 

which in this study are being an inhibitor or being a non-inhibitor. Our model’s average AUC 

of 0.969 can be interpreted as meaning that 96.9% of the time, the model will correctly output 

a higher probability of inhibition for a randomly selected inhibitor than a randomly selected 

non-inhibitor, even if the overall classification is incorrect.  

 

Table 4 Metrics of deep-learning model predictions on validation set for all 5 trials  

Trial Validation Accuracy Validation AUC 

1 0.913043499 0.971671164 

2 0.910973072 0.964130163 

3 0.919254661 0.973077834 

4 0.917184293 0.96619153 

5 0.917184293 0.970728457 

Average 0.915527964 0.969159830 
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It’s important to note that the Figure 7 and Table 4 are not showing the same metrics, since 

Figure 7 shows the metrics while training, while Table 4 shows the metrics after training when 

the model is applied to the validation data, a data set randomly set aside from the training data. 

The validation metrics are a more accurate way to measure a deep-learning model because they 

better simulate the model’s performance on a separate dataset and confirm that a model is not 

just overfitting to the training data. So, our model can be expected to perform on FDA-

approved drugs with the same accuracy that it does on the validation data. After synthesizing 

the results from all 5 trials, the deep-learning model had classified 149 FDA-approved 

molecules as being p38 inhibitors, with 27 of them having a greater than 90% chance. 

 

 

a 
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FIGURE 7 (a) Accuracy (Y-axis) vs. epoch (X-axis) for training data for all 5 trials. (b) AUC (Y-
axis) vs. epoch (X-axis) for training data for all 5 trials 

Table 5 shows the top drug candidates ranked by the deep neural network score. For each 

given compound, the algorithm outputs a number between 0 and 1. The closer the value is to 0 the 

more likely it is a non-inhibitor, and the closer the value is to 1 the more likely it is a p38 inhibitor. 

Thus, the output value can be interpreted as probability of inhibition according to the deep-learning 

model. The compound with the highest probability of inhibition (0.99) is doxorubicin, which also 

has a strong docking score of −7.91, making it a promising candidate. Table 6 lists the top 100 

drug candidates ranked by a combination of their docking score rank and deep-learning-predicted 

rank. Although ranking by docking scores (Table 2) is the most reliable, combining these two 

ranking methods can present a more comprehensive picture of the best candidates. For example, 

ibrutinib, acalabrutinib, and hesperidin, are the top two candidates by this join scaling measure, 

with combined ranks of 10, 13, and 15, respectively. The fact that these compounds’ incredibly 

high-performing docking scores are backed by the deep-learning model makes them some of the 

most promising candidates.  

 

 

 

 

b 
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TABLE 5 Top 40 compounds ranked by deep-learning-predicted probability of 
inhibiting p38 
 

DL rank Probability 
of Inhibition Name Cluster Docking Score 

kcal/mole 
1 0.99 Doxorubicin 1 −7.91 
2 0.98 Cabozantinib 2 −7.98 
3 0.98 Diacerein 3 −7.28 
4 0.98 Ibrutinib 4 −8.97 
5 0.97 Acalabrutinib 4 −8.89 
6 0.97 Entrectinib 4 −7.98 
7 0.97 Lenvatinib 7 −7.52 
8 0.96 Carindacillin 8 −8.02 
9 0.96 Deferasirox 9 −6.95 

10 0.96 Eltrombopag 10 −7.89 
11 0.95 Zafirlukast 11 −8.50 
12 0.94 Ponatinib 4 −8.06 
13 0.94 Daunorubicin 1 −6.65 
14 0.94 Hesperidin 1 −9.82 
15 0.94 Diosmin 1 −7.83 
16 0.94 Imatinib 4 −8.43 
17 0.93 Delafloxacin 17 −6.95 
18 0.93 Selpercatinib 18 −7.69 
19 0.93 Arzoxifene 19 −7.90 
20 0.92 Idarubicin 1 −7.61 
21 0.92 Trovafloxacin 21 −6.93 
22 0.92 Piperacillin 22 −8.30 
23 0.91 Perampanel 23 −6.56 
24 0.90 Tucatinib 24 −7.67 
25 0.90 Neratinib 25 −9.18 
26 0.90 Avanafil 4 −7.61 
27 0.90 Raloxifene 19 −7.21 
28 0.89 Pralatrexate 28 −6.75 
29 0.88 Dabigatran etexilate  4 −9.13 
30 0.88 Erlotinib 30 −7.90 
31 0.88 Bendroflumethiazide 31 −6.85 
32 0.88 Dacomitinib 4 −7.00 
33 0.87 Etravirine 33 −6.78 
34 0.87 Amsacrine 31 −6.93 
35 0.86 Nilotinib 35 −7.68 
36 0.86 Cromoglicic Acid 1 −6.74 
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37 0.86 Azilsartan medoxomil 37 −7.88 
38 0.86 Duvelisib 35 −7.19 
39 0.85 Fedratinib 31 −8.06 
40 0.85 Isoxaflutole 40 −5.61 

 

 

TABLE 6 Top 100 predicted inhibitors, ordered by the sum of docking rank and deep-
learning rank 

DL Rank 
+ 
Docking 
Rank 

Name Cluster 

DL Rank 
+ 
Docking 
Rank 

Name Cluster 

10 Ibrutinib 4 129 Chloramphenicol palmitate 109 

13 Acalabrutinib 4 129 Duvelisib 35 

15 Hesperidin 1 130 Ketoconazole 4 

24 Zafirlukast 11 131 Vemurafenib 31 

27 Neratinib 25 131 Delafloxacin 17 

30 Imatinib 4 132 Cefepime 22 
32 Dabigatran etexilate  4 136 Copanlisib 4 
35 Cabozantinib 2 137 Cefuroxime 22 

36 Carindacillin 8 138 Afatinib 4 

36 Doxorubicin 1 138 Pemetrexed 28 

38 Ponatinib 4 138 Trovafloxacin 21 

38 Entrectinib 4 139 Ubrogepant 4 

41 Piperacillin 22 142 Methotrexate 70 

50 Eltrombopag 10 143 Tadalafil 42 

55 Arzoxifene 19 143 Dacomitinib 4 

58 Candesartan cilexetil 53 144 Levoleucovorin 133 

62 Diosmin 1 144 Betrixaban 79 

64 Fedratinib 31 144 Daunorubicin 1 

68 Erlotinib 30 146 Telotristat ethyl 122 

71 Selpercatinib 18 148 Aclidinium 102 

72 Abemaciclib 4 151 Bendroflumethiazide 31 

74 Azlocillin 22 152 Amsacrine 31 

76 Lapatinib 58 153 Larotrectinib 4 

76 Lenvatinib 7 154 Ribociclib 4 

80 Azilsartan medoxomil 37 154 Lumacaftor 71 

80 Tucatinib 24 155 Nefazodone 4 
81 Idarubicin 1 155 Sulfinpyrazone 67 



 

23 
 

Vermani 23 

84 Lifitegrast 31 155 Pralatrexate 28 

86 Riociguat 4 156 Olaparib 56 

89 Nilotinib 35 157 Leucovorin 133 

89 Avanafil 4 157 Etravirine 33 

89 Diacerein 3 157 Perampanel 23 

90 Edoxaban 4 159 Gefitinib 4 

91 Antrafenine 4 160 Cefoxitin 22 

96 Linagliptin 4 161 Apixaban 4 

97 Udenafil 47 164 Cromoglicic Acid 1 

98 Alatrofloxacin 4 166 Ripretinib 62 

100 Argatroban 83 170 Ceftazidime 22 

103 Erdafitinib 45 173 Lumefantrine 98 

106 Encorafenib 31 173 Apalutamide 66 
107 Cefpiramide  22 173 Isavuconazonium 61 
108 Montelukast 57 174 Suvorexant 4 
111 Lusutrombopag 95 174 Acemetacin 96 
111 Bosutinib 4 175 Topotecan 50 
117 Raloxifene 19 176 Dabrafenib 31 
118 Ximelagatran 97 177 Levomefolic acid 133 
118 Netarsudil 89 179 Macimorelin 80 

120 Ticagrelor 81 181 Cefditoren 22 

124 Deferasirox 9 184 Ezetimibe 43 

128 Doxazosin 4 189 Cefotaxime 22 

 

  
 3.2 | Clustering 

Fingerprint clustering of the predicted inhibitors resulted in 78 clusters. The flexible alignments of 

the four largest clusters created by MOE’s Database Viewer/Compute/Fingerprints/Clusters 

submodule are shown Figure 8. The clusters are groups of predicted inhibitors with similar 

pharmacophore features and can be used to further classify the compounds and determine the best 

candidates. For example, certain clusters tend to outperform the average predicted inhibitor, 

making members of that group more promising drug candidates due to shared structural features 

with other strong candidates. One such cluster is number 4, which, as seen in Tables 2, 5, and 6, 

contains many of the top candidates like dabigatran etexilate, Ibrutinib, acalabrutinib, and 

abemaciclib. Furthermore, despite making up only 23.5% of all 149 predicted inhibitors, cluster 4 

a b 
c d 
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compounds make up 32.5% of the top 40 compounds by docking score, making members of this 

cluster more promising candidates. 

 

  

  
 
FIGURE 8 The four largest clusters of predicted compounds: (a) Cluster 4, 35 molecules; (b) Cluster 
11, 13 molecules; (c) Cluster 98, 8 molecules; (d) Cluster 1, 7 molecules 
 

4 | Discussion 

We elucidated 149 potential p38 inhibitors that can be tested through in vitro and in vivo 

experimental trials. With an average validation accuracy of 92% and area under the ROC curve 

of 0.97, the deep-learning model has shown significant efficacy in predicting the ability of a 

compound to inhibit p38. Furthermore, protein docking scores indicate that our predicted 

inhibitors statistically significantly better (Table 1) than random FDA-approved molecules, 

and even slightly better than the top known p38-inhibitors. Following experimental trials, these 

compounds could be used as treatments for various p38-mediated diseases, including not just 

MFM, but also cancers and inflammatory diseases like rheumatoid arthritis and Alzheimer’s. 

a b 

c d 
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Furthermore, the procedure described in this study can be applied to repurpose existing drugs 

as protein inhibiting or activating treatments for a wide variety of other diseases.  

One significant difference between our project and other deep-learning drug discovery 

projects is its application on FDA-approved drugs. The repurposing of FDA-approved drugs 

has many practical benefits, especially for p38 inhibitors. Many of the most common and 

potent p38 inhibitors do well in in vitro experiments but fall short during in vivo or human 

trials due to unexpected side effects or issues with toxicity (Hammaker & Firestein, 2010). When 

repurposing approved drugs, however, the safety of the compound has been studied extensively 

by the FDA and often other organizations like the European Medicines Agency (EMA).33 This 

not only ensures that a drug is safe and its side effects are well documented, but it also 

significantly cheapens and shortens the researcher to patient pipeline, which normally takes an 

average of 10–15 years, because doctors can provide off-label prescriptions before official 

approval.34 Thus, if clinical trials bode well, these inhibitors could very soon be available to 

patients suffering from potentially life-threatening p38-mediated diseases. 

Traditional drug research and development is a long and tedious process that has become 

incredibly inefficient relative to the amount of money put in. In fact, “the number of new drugs 

approved per billion US dollars spent on R&D has halved roughly every 9 years since 1950.” 
35 Although in silico research cannot replace empirical trials, it allows us to efficiently and 

cheaply elucidate promising drug candidates to expedite the creation of new treatments, 

especially when multiple computational procedures are used in tandem. As new technologies 

emerge and the amount of accessible drug data continues to grow, machine learning and other 

computational algorithms will continue to improve in efficacy and allow for unprecedented 

advancements in the pharmaceutical field. 
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