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Abstract

We demonstrate that accurate linear force fields
can be built using the Atomic Cluster Ex-
pansion (ACE) framework for molecules. Our
model is built from body ordered symmetric
polynomials which makes it a natural exten-
sion of traditional molecular mechanics force
fields, and the large number of free parameters
allows sufficient flexibility that it reaches the
accuracy typical of recently proposed machine
learning based approaches. We test our model
on the MD17 and ISO17 data sets and also on a
larger, more flexible molecule, and compare to
leading machine learning models as well as re-
fitted empirical force fields. We show that the
linear body ordered ACE model has excellent
transferability for properties beyond raw energy
and force RMSE, both for molecular dynamics
at different temperatures and for configurations
very far from the training set including dihedral
scans and even bond breaking.

1 Introduction

The efficient simulation of the dynamics of
molecules and materials based on first princi-

ples electronic structure theory is a long stand-
ing challenge in computational chemistry and
materials science. There is a trade-off be-
tween the accuracy of describing the Born-
Oppenheimer potential energy surface (PES)1

and the length and time scales that are acces-
sible in practice. A convenient way to mea-
sure this trade-off is by considering the total
number of simulated atoms, which can be a re-
sult of either generating a few configurations
consisting of many atoms, or many configura-
tions (e.g. a long molecular dynamics trajec-
tory) each consisting of fewer atoms. Explicit
electronic structure simulations are extremely
accurate and systematically improvable. They
can treat on the order of a million simulated
atoms in total using either cubic scaling meth-
ods and molecular dynamics, or linear scaling
algorithms on larger systems. Alternatively, in
order to simulate many orders of magnitude
more atoms, the PES can be parametrized in
terms of the nuclear coordinates only. In this
way, the electrons do not have to be treated
explicitly, which simplifies the simulations con-
siderably. These methods can routinely model
a trillion (1012) or more simulated atoms.

When parametrizing the PES, it is natural to
decompose the total energy of the system into
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body ordered contributions, which can then be
resummed into local atomic (or site) energies.
The site energy of atom i is written as

Ei = V (1)
zi

+
1

2

∑
j

V (2)
zizj

(rij)

+
1

3!

∑
j,k

V (3)
zizjzk

(rij, rik) + . . .
(1)

where indices j, k run over all neighbors of atom
i (either unrestricted, or within a cutoff dis-
tance rcut), zi denotes the chemical element of
atom i and rij = rj − ri the relative atomic
positions.

The traditional approach to the parametriza-
tion of the body ordered terms for molecular
systems is to use physically motivated simple
functional forms with few parameters, leading
to “empirical force-fields”. These models typi-
cally require a pre-determined topology, mean-
ing that the parameters describing the interac-
tions of a certain atom depend on its neighbors
in the bonding graph that is specified before
the simulation and is not allowed to change.2–5

The potential energy is then written as a sum
of body-ordered bonded and non-bonded terms,
for example:

E =
∑
bonds

kr(r − req)2 +
∑
angles

kθ(θ − θeq)2+∑
dihedrals

vn
2

(1 + cos(nφ− γ)) + Enon−bonded

(2)

where r, θ and φ describe the intramolecular
bond lengths, angles and dihedral angles in the
molecule, and Enon−bonded contains a Lennard-
Jones (LJ) term accounting for van der Waals
and short-range repulsive interactions and a
Coulomb term to describe the long-range elec-
trostatics. The bonded terms can be made
equivalent to the body order in eq (1) by rewrit-
ing the sum over atom-tuples into sums over
sites. The advantage of the simple functional
form of the bonded terms is very fast evalua-
tion and ease of fitting due to the small number
of free parameters.2,6–8 On the other hand, this
simplicity limits the achievable accuracy9 and
requires significant modification to incorporate

reactivity.10 Note that while in the most widely
used force fields, the non-bonded interactions
are two-body, this is not the case for polariz-
able force fields, such as Amoeba.11 Moreover,
the direct evaluation of terms beyond 3-body
contributions is computationally expensive, in
general growing exponentially with the body
order, which severely limits the possibility of
systematically improving force fields by adding
higher body order terms.

Over the past ten years a new approach
has emerged, employing machine learning (ML)
methods to parametrize the PES. Instead of
the body order expansion, the site energy is
approximated by a neural network or a Gaus-
sian process regressor (GPR) both of which are
extremely flexible functional forms, proven to
be universal approximators.24 Due to this flex-
ibility there is no need to specify topology or
atom types beyond the identity of the chemi-
cal element, and much higher model accuracy
can be achieved given an appropriate (typically
rather large) training set. On the other hand,
this flexibility comes also at a cost: there is
no guarantee that the behavior of these ML
models remains chemically sensible in regions of
configuration space where there is not enough
training data. Spurious local minima or even
wildly wrong atomization energies are par for
the course.25 The most prominent examples of
ML models are Atom Centred Symmetry Func-
tion based feed forward neural networks in-
troduced by Behler and Parinello26 that also
includes the family of ANI force fields,17,27

the atomic neighborhood density based GPR
models like Gaussian Approximation Potentials
(GAP)14,28 and FCHL,15 the gradient domain
kernel based sGDML,16 and message passing
graph neural network based Schnet,22 Phys-
net23 and DimeNet20 and most recently the
covariant or equivariant neural network based
Cormorant21 and PaiNN.18

There is also a third family of methods,
which expands the PES as a linear combina-
tion of body-ordered symmetric polynomial ba-
sis functions. The origins of this approach can
be traced back to the work of Bowman and
Braams29,30 (Permutationally Invariant Poly-
nomials (PIPs)), which approximated the PES
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Table 1: Comparison of different force field fitting approaches. Molecular mechanics
(e.g. AMBER,2 CHARMM12 and OPLS13), machine learning: Kernels (GAP,14 FCHL15 and
sGDML16), Neural Networks (ANI,17 PaiNN,18 GMsNN,19 DimeNet,20 Cormorant,21 Schnet22 and
Physnet23).

Molecular
Mechanics

Machine
learning

Atomic Cluster
Expansion

Functional form fixed flexible polynomial

Parametrization nonlinear nonlinear linear

Number of
parameters

100s 104-105 104-105

Body ordered? yes no yes

Topology-free? no yes yes

Fit to QM and experiment QM only QM only

of small molecules to extremely high accuracy,
albeit with exponential scaling in the number
of atoms. Introducing finite distance cutoffs
reduces this scaling to linear, and the result-
ing atomic body-ordered permutationally in-
variant polynomials (aPIPs) have been shown
to achieve high accuracy and better extrapola-
tion compared to the above nonlinear machine
learning based approaches in both molecular
and materials systems.25,31 The main limitation
of the aPIPs approach is that the evaluation
time of the site energy increases quickly with
body order, making it essentially impossible to
go above body-order 5 (certainly when the five
atoms are of the same element). More recently,
the Atomic Cluster Expansion (ACE)32,33 (and
the earlier Moment Tensor Potentials34) are for-
mulations of symmetric polynomial approxima-
tions that remove the steep scaling of the eval-
uation of the site energy with the number of
neighbors independently of body order, result-
ing in highly efficient interatomic potentials for
materials.35

Table 1 compares the main features of the
classical force fields, machine learning based po-
tentials and the linear Atomic Cluster Expan-
sion force fields. In one sense, the linear ACE
constitutes a middle ground between the other
two: it retains the chemically natural body
order, but lifts the limitations of fixed topol-
ogy and inflexible functional form embodied in

eq (2).
The purpose of the present paper is to demon-

strate the performance of linear ACE force
fields for small organic molecules. After briefly
reviewing the general ACE framework and out-
lining the necessary choices that go into fitting
our linear models, we start with the MD1736

and ISO1722 benchmark data sets. We are par-
ticularly interested in going beyond the RMSE
(or MAE) of energies and forces (the typical
target of the loss function in the fit), because
practically useful force fields have other desir-
able properties too: chemically sensible extrap-
olation, good description of vibrational modes,
and accuracy on trajectories self-generated with
the force field, just to name a few. The insuf-
ficient nature of mean error metrics has been
pointed out before.37–39 In addition to the above
data sets, we also demonstrate the use of ACE
on a slightly larger, significantly more flexi-
ble molecule that is more representative of the
needs of medicinal chemistry applications.

The programme of tests as we outlined is de-
signed to explore the capabilities and properties
of different approaches to making force fields.
We emphasize here that we are not making or
testing force fields that are in and of themselves
generally useful to others. That is a significant
undertaking and it is to be attempted once we
better understand these capabilities and prop-
erties, and are able to select which approach
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has the best prospects. Therefore, in addi-
tion to quoting literature results for recently
published ML schemes, we refit a number of
them, where the necessary software is available
(sGDML, ANI and GAP in particular), so that
we can show their performance on our tests. We
also refit a classical empirical force field (eq (2))
to exactly the same training data to more rig-
orously quantify the anticipated accuracy gains
of the ML and ACE approaches.

2 Methods

2.1 Atomic Cluster Expansion
basis functions

The atomic cluster expansion (ACE) model32,33

keeps the body ordering of terms defined in
eq (1), but reduces the evaluation cost by
eliminating the explicit summation over atom-
tuples. This is accomplished by projecting the
atomic neighbor density onto isometry invari-
ant basis functions. This idea, detailed below,
is referred to as the “density trick”, and was in-
troduced originally to construct the power spec-
trum (also known as SOAP) and bispectrum
descriptors14,40 (which are in fact equivalent to
the 3- and 4-body terms in ACE, respectively,
so in a sense the ACE invariants can be consid-
ered a generalization of these to arbitrary body
order).

We start by defining the neighborhood den-
sity of atom i as

ρzi (r) =
∑
j

δzzjδ(r− rji); (3)

where ρzi denotes the density of atoms of ele-
ment z in the neighborhood of atom i. This
density is projected onto a set of 1-particle ba-
sis functions, which we choose to be a product
of a radial basis and real spherical harmonics:

φ
zizj
nlm(r) = R

zizj
nl (r)Y m

l (r̂). (4)

Here the “1-particle” refers to the single sum
over neighbors, with the central atom i serv-
ing as the center of the expansion. There is
considerable flexibility in the choice of the ra-

dial basis; the specifics for this work are docu-
mented at the end of this subsection. We then
define the atomic base as the projection of the
neighborhood density onto the 1-particle basis
functions

Azi,znlm = 〈ρzi |φ
ziz
nlm〉 =

∑
j

where zj=z

φziznlm(rji) (5)

where the index zi refers to the chemical ele-
ment of atom i. For notational convenience, we
collect the rest of the 1-particle basis indices
into a multi-index,

(znlm) ≡ v. (6)

From the atomic base Aziv, we obtain
permutation-invariant basis functions, which
we will call the “A-basis”, by forming the prod-
ucts,

Aziv =
ν∏
t=1

Azivt , v = (v1, . . . , vν). (7)

The product containing ν factors gives a basis
function that is the sum of terms each of which
depends on the coordinates of at most ν neigh-
bors, and we refer to it either as a ν-correlation
or as a (ν+1)-body basis function (the extra +1
comes from the central atom i). A graphical il-
lustration of this construction is shown in fig 1
for the special case where the two factors are
the same. For many (different) factors, taking
products of the atomic base (left side of fig 1)
takes a lot less time to evaluate than the ex-
plicit sum of all possible products (right side of
fig 1). This is the key step that we referred to
as the density trick.

The A-basis is not rotationally invariant. We
therefore construct a fully permutation and
isometry-invariant overcomplete set of func-
tions, which we call the B-basis (technically not
a basis but a spanning set), by averaging the A-
basis over the three dimensional rotation group,
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=
+ +
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2
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+

+
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Figure 1: Construction of high body order invariant basis functions. A graphical illustra-
tion showing how higher body-order basis functions can be constructed as products of the projected
neighborhood density. The evaluation cost of the basis functions scales linearly with the number
of neighbors rather than exponentially by doing the density projection first and than taking the
products to obtain higher order basis functions. The figure (and expression) also makes explicit the
occurrence of self-interaction terms in the ACE basis. They are automatically corrected through
the inclusion of lower-order correlations in the basis.

O(3),

Bziv :=

∫
R̂∈O(3)

ν∏
t=1

Azivt({R̂rij}) dR̂ (8)

=
∑
v′

Cvv′Aziv′ , (9)

where the matrix of Clebsch-Gordan coupling
coefficients Cvv′ is extremely sparse. Many of
the resulting basis functions will be linearly
dependent (or even zero), but it is relatively
straightforward to remove these dependencies
in a pre-processing step, to arrive at an actual
basis set. We refer to Dusson et al. 33 for the de-
tails of the procedure outlined up to this point.

The B-basis in eq (8) is complete in the sense
that any function of the neighboring atoms that
is invariant to permutations and rotations can
be expanded as a linear combination of the basis
functions. We therefore write the site energy of

ACE as

Ei =
∑

czivBziv = c ·B. (10)

The above equation makes it clear that the
model is linear in its free parameters, the c co-
efficients. The B-basis functions are polynomi-
als of the atomic coordinates, and in order to
show that the explicit body ordering has been
retained, we can switch back to using the A-
basis (with the product explicitly written out),

Ei =
∑
v

c̃(1)zivAziv +

v1≥v2∑
v1v2

c̃(2)ziv1v2Aziv1Aziv2+

v1≥v2≥v3∑
v1v2v3

c̃(3)ziv1v2v3Aziv1Aziv2Aziv3 + ...

(11)

where the c̃ can be obtained as linear combina-
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tions of the c coefficients appearing in eq (10),
using the transformation defined in eq (9).

Now the body-ordering is readily identified.
Each term corresponds precisely to a sum of
ν-correlations, i.e. (ν + 1)-body terms as in
the traditional body-order expansion, eq (1).
In practice, we use a recursive scheme33 that
leads to an evaluation cost that is O(1) per ba-
sis function, independent of body-order. The
number of basis functions does grow with body
order, at a rate that has an exponent ν.

The construction outlined so far yields in-
finitely many polynomials Bziv, which can
be characterized by their correlation-order ν,
and their (modified) polynomial degree D =∑ν

t nt + wY lt, where nt and lt come from the
multi-index vt and the weight wY is used to
trade-off the radial and angular resolution of
the basis set. When it comes to defining a
model in practice the expansion is truncated
both in the body-order and in the maximum
polynomial degree at each body-order.

2.2 Choice of radial basis

In the models in this paper we will not use much
of the flexibility of the ACE framework, and
simply take R

zizj
nl (r) = Rn(r), where

Rn(r) = pn(x(r))fcut(x), (12)

r 7→ x(r) is a one dimensional radial transfor-
mation, fcut is a cutoff or envelope function and
pn are orthogonal polynomials. For the radial
transform we take

x(r) =
1

(1 + r/r0)2
, (13)

which amplifies the effect of neighbors closer to
the central atom. For the cutoff function we
specify both inner and outer cutoffs, rin < rout,
and define

fcut(x) = (x− x(rin))2(x− x(rout))
2, (14)

The polynomials pn are then defined recursively
by specifying that p0(x) = 1, p1(x) = x, and the

orthogonality requirement∫ x(rout)

x(rin)

Rn(r(x))Rn′(r(x))x2dx = δnn′ , (15)

where we have used the inverse of the radial
transform, x 7→ r(x). Eq (15) implies that the
radial basis Rn and not the polynomials pn are
orthonormal in x-coordinates.

The introduction of an inner cut-off is nec-
essary to prevent wildly oscillating behaviour
in high energy regions of configuration space
where pairs of atoms are very close to one an-
other and little or no training data is available.
Alternatively, one could introduce such train-
ing data, but that would unnecessarily compli-
cate the construction of training data sets and
this inner cutoff mechanism is sufficient. To en-
sure short range repulsion we augment the large
multi-body ACE basis by a small auxiliary ba-
sis set, consisting only of low-polynomial-degree
pair interaction (two-body) functions. The con-
struction is exactly the same as before, but we
change the cut-off function to

f rep
cut = (x− x(rout))

2. (16)

2.3 Basis Selection

Before we can parametrize the ACE force field
we need to select a specific finite basis set cho-
sen from the complete ACE basis constructed in
the previous section. There are three approx-
imation parameters: the cutoff radius (rcut =
rout), the maximum correlation order νmax, and
the maximum polynomial degrees Dmax

ν corre-
sponding to order ν basis functions. We have
already specified the cut-off radius in the defi-
nition of the radial basis in eq (12). The basis
is then chosen as (a linearly independent subset
of) all possible basis functions Biv with correla-
tion order at most νmax and polynomial degree
at most Dmax

ν .
In all models for molecules with three or fewer

distinct elements we take νmax = 4, which cor-
responds to a general 5-body potential. In mod-
els for molecules with four or more distinct el-
ements we reduce this to νmax = 3 (4-body
potential). The weight wY specifies the rela-
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tive importance of the radial and angular basis
components; here we choose wY = 2. The maxi-
mum polynomial degrees Dmax

ν can be adjusted
to balance the size of the basis set against fit
accuracy and evaluation time; the precise pa-
rameters we choose for each molecule are given
in Table S1. The basis truncation we specified
here is just one, rather simple, way to obtain a
finite basis. There may very well be more so-
phisticated methods to choose an optimal sub-
set of the complete basis.

2.4 Parametrization of the linear
ACE potentials

We define the total energy of a linear ACE
model with parameters c corresponding to a
spatial configuration of atoms (denoted by X,
e.g. a molecule in a particular configuration) as
the sum of the site energies

E(c;X) =
∑
i∈X

Ei(c) (17)

where Ei is a site energy defined in eq (10).
Optimal parameters are obtained by minimiz-
ing the loss function

L(c) :=
∑
X

(
wEX
∣∣E(c;X)− EQM(X)

∣∣2
+ wFX

∣∣F (c;X)− FQM(X)
∣∣2),

(18)

where the EQM and FQM are energies and forces,
respectively, in the training data, obtained from
electronic structure calculations. The sum is
taken over all configurations in the training set,
and wEX , w

F
X are weights specifying the relative

importance of energies and forces. Since the
model energy and force are both linear in the
free parameters, the loss can be written in a
linear least squares form,

L(c) := ‖Ψc− t‖2, (19)

where the vector t contains the QM energy and
force observations, and the design matrix Ψ
contains the values and gradients of the basis
evaluated at the training geometries. Ψ has a

number of rows equal to the total number of
observations (energies and force components)
in the training set, and a number of columns
equal to the total number of basis functions.

The least squares problem has to be regular-
ized, especially when the basis contains high de-
gree polynomials.31 One option is to apply Ty-
chonov regularization, where the loss function
is modified as

‖Ψc− t‖2 + λ‖Γc‖2. (20)

This is widely used to regularize linear regres-
sion, often by taking Γ as just the identity ma-
trix, or alternatively in the case of kernel ridge
regression (and Gaussian process regression) as
the square root of the kernel matrix.41 In the
present case, we use a diagonal Γ with entries
corresponding to a rough estimate for the p-th
derivative of the basis functions,

‖∇pBzv‖2 ≈
len(v)∑
t=1

(nt)
p + (lt)

p, (21)

where nt and lt are part of the elements of the
multi-index vector v (cf. eq (6)). This scales
down high degree basis functions, encouraging
a smooth potential, which is crucial for extrap-
olation, and is loosely analogous to the smooth
Gaussian prior of GPR. The actual solutions are
then found using the standard iterative LSQR
solver,42 for the details see the SI.

In the other approach we used for solving the
least squares problem the same Γ matrix is in-
troduced, but without a Tychonov term,

L(c) := ‖
(
ΨΓ−1

)(
Γc
)
− t‖2, (22)

and the solution is found using the rank reveal-
ing QR factorisation43 (RRQR), in which we
perform a QR factorization of the scaled de-
sign matrix ΨΓ−1, and truncate the small sin-
gular values below some tolerance parameter λ.
For more details of the exact implementation
see Refs. 25,43. We found that when the lin-
ear system is not underdetermined, RRQR gave
somewhat better solutions than LSQR. All pa-
rameters of the optimization (wEX , w

F
X , p, λ) are

given in the SI.
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The last modelling choice that needs to be
made is the 1-body term, that is the energies
of the isolated atoms of each element in our
model. One can use the energy of the isolated
atoms evaluated with the reference electronic
structure method, which ensures the correct be-
havior of the model in the dissociation limit.
In other words, that the force field is modelling
the binding energy of the atoms. An alterna-
tive approach, often used in the ML fitting of
molecular energies, is to take the average en-
ergy of the training set, divided by the number
of atoms in the molecule, and assign the result
to each element. In this case, the fitted model
has zero mean energy. This usually improves
the fit accuracy slightly, by reducing the vari-
ance of the function that we need to fit, in case
the data spans a narrow energy range around
its average, e.g. because it came from samples
of moderate temperature molecular dynamics.

A third option is to not use any reference
potential energies for the fit, but only forces.
Once the coefficients are determined, the poten-
tial can be shifted by a constant energy chosen
to minimize the training set energy error. In
the current work, we evaluated all three strate-
gies for ACE and found that using the isolated
atom energies for the 1-body term gives slightly
higher RMS errors, but leads to far superior ex-
trapolation. The other two strategies (using the
average energy for the 1-body term, and fitting
only to forces) result in similar somewhat lower
test set errors, but inferior physical extrapola-
tion properties.

As mentioned in the introduction, we view
tests on data sets such as MD17 and ISO17 as
proxies: the models thus created are not use-
ful for any scientific purpose. The promise of
ML force fields is greatest when the intention
is to describe a very wide variety of compounds
and conformations, perhaps including chemical
reactions. With this in mind, the most natu-
ral choice for the 1-body term is to choose it to
match the energy of the isolated atom in vac-
uum. This choice is independent of any partic-
ular data set, and the apparent advantages of
the other choices in terms of lower errors are
expected to diminish in the limit of a large and
wide ranging data set.

3 Results

3.1 MD17

The original MD17 benchmark data set consists
of configurations of 10 small organic molecules
in vacuum sampled from density functional the-
ory (DFT) molecular dynamics simulations at
500 K.36 It has recently been recognized, that
some of the calculations in the original data set
did not properly converge, in particular, many
of the forces are noisy. A subset of the full data
set was recomputed with very tight SCF conver-
gence settings and is called the rMD17 (revised
MD17) data set.44 We have used this new ver-
sion of the data set and the five train-test splits
as reported in Ref. 44. These revised train-
ing sets consist of 1,000 configurations to avoid
the problem of correlated training and test sets:
when more than 1,000 configurations are used
from the full published trajectory, some of the
test set configurations will necessarily fall be-
tween two neighboring training set data points
that are separated by a much smaller time dif-
ference than the decorrelation time of the tra-
jectory, resulting in an underestimation of the
generalization error.44

Table 2 shows the Mean Absolute Error
(MAE) of the different force field models
trained on 1,000 configurations. The mod-
els on the left were trained (by us, except
for FCHL) using the exact train-test splits of
rMD17, whereas the models on the right are
from the literature and were trained on the orig-
inal MD17 data set using different train-test
splits. The precise details of the fitting pro-
cedures and parameters can be found in the SI.

Of the descriptor based models, sGDML,
FCHL and our linear ACE have the lowest
MAE for some molecules. Overall, based on
the per atom energy and force the ACE model
achieves the lowest errors averaged across the
entire data set, improving on the state of the
art for several individual molecules as well. It
is interesting to note, that of the neural network
models, the PaiNN equivariant neural network
achieves very low force errors, but its energy
errors are almost three times higher compared
to ACE and FCHL. In our view, the energy er-
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Table 2: Mean Absolute Error of MD17 molecules. Energy (meV) and force (meV/Å) errors
of different models trained on 1,000 samples. The models on the left were trained and tested using
the same train-test splits of rMD17, whereas models on the right use MD17. The best model for
each molecule (on the left and the right) are shown in bold font. The average energy MAE is
calculated per atom. For reference 43 meV = 1 kcal / mol.

ACE sGDML FCHL44 GAP ANI FF PaiNN18 GMsNN19 DimeNet20

Aspirin
E 6.1 7.2 6.2 17.7 16.6 93.2 6.9 16.5 8.8
F 17.9 31.8 20.9 44.9 40.6 260 16.1 29.9 21.6

Azobenzene
E 3.6 4.3 2.8 8.5 15.9 112 - - -
F 10.9 19.2 10.8 24.5 35.4 246 - - -

Benzene
E 0.04 0.06 0.35 0.75 3.3 13.2 - 3.5 3.4
F 0.5 0.8 2.6 6.0 10.0 105 - 9.1 8.1

Ethanol
E 1.2 2.4 0.9 3.5 2.5 42.1 2.7 4.3 2.8
F 7.3 16.0 6.2 18.1 13.4 208 10.0 14.3 10.0

Malonaldehyde
E 1.7 3.1 1.5 4.8 4.6 45.9 3.9 5.2 4.5
F 11.1 18.8 10.3 26.4 24.5 234 13.8 19.5 16.6

Naphthalene
E 0.9 0.8 1.2 3.8 11.3 65.3 5.1 7.4 5.3
F 5.1 5.4 6.5 16.5 29.2 292 3.6 15.6 9.3

Paracetamol
E 4.0 5.0 2.9 8.5 11.5 93.9 - - -
F 12.7 23.3 12.3 28.9 30.4 248 - - -

Salicylic acid
E 1.8 2.1 1.8 5.6 9.2 68.4 4.9 8.2 5.8
F 9.3 12.8 9.5 24.7 29.7 263 9.1 21.2 16.2

Toluene
E 1.1 1.0 1.7 4.0 7.7 36.9 4.2 6.5 4.4
F 6.5 6.3 8.8 17.8 24.3 183 4.4 14.7 9.4

Uracil
E 1.1 1.4 0.6 3.0 5.1 43.3 4.5 5.2 5.0
F 6.6 10.4 4.2 17.6 21.4 233 6.1 14.3 13.1

Average MAE
E∗ 0.12 0.16 0.12 0.37 0.50 3.9 0.33 0.49 0.36
F 8.0 12.8 8.6 22.5 24.1 227 8.0 17.3 13.0
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Table 3: Mean Absolute Error of neural network models on the original MD17. MAE of
energy (E, meV) and force (F, meV/Å) predictions of models recently published that were trained
on 50,000 geometries of the original MD17 data set.

Cormorant21 Schnet22 Physnet23 GMdNN19

Aspirin
E 4.2 5.2 5.2 5.6
F - 14.3 1.7 5.2

Benzene
E 1.0 3.0 3.0 3.0
F - 7.4 6.1 6.1

Ethanol
E 1.3 2.2 2.2 2.2
F - 2.2 0.9 1.7

Malonaldehyde
E 1.8 3.5 3.0 3.0
F - 3.5 1.3 2.2

Naphthalene
E 1.3 4.8 5.2 4.8
F - 4.8 1.3 3.5

Salicylic acid
E 2.9 4.3 4.8 4.8
F - 8.2 1.3 3.5

Toluene
E 1.5 3.9 4.3 3.9
F - 3.9 1.3 2.6

Uracil
E 1.0 4.3 4.3 4.3
F - 4.8 1.3 1.7

Average MAE
E∗ 0.13 0.29 0.29 0.28
F - 6.1 1.9 3.3

ror is important because even though a molecu-
lar dynamics trajectory is only affected directly
by the forces, the stationary probability distri-
bution that MD is used to sample is solely a
function of the energy through the Boltzmann
weight, and so errors in predicted energy trans-
late into errors of the stationary distribution
and thus of all equilibrium observables.

The ANI model in this table refers to our
reparametrization of the ANI architecture with
pre-training, that is the neural network weights
were initialized from those of the published
ANI-2x model.17 This was crucial for achiev-
ing the errors shown. When the weights were
initialized randomly, the errors are higher by
factor of 2 (Table S2). The GAP model, us-
ing SOAP features to describe the atomic ge-
ometry (which are similar to ANI’s features),
achieves similar errors to the ANI model with
pre-training. The fact that ANI is only compet-
itive with GAP if it is pre-trained can be ratio-
nalized by the relative sample efficiency of ker-
nel models compared to neural networks. The
FCHL kernel models also use 2- and 3-body cor-

relations as features, but they have been more
carefully optimized for molecular systems and
hence are able to achieve very low errors.15

The classical force field (FF) refers to a
reparametrization of the GAFF functional
form2,45 using the ForceBalance program6,45

and the rMD17 training set. This model gives
at least an order of magnitude higher errors
compared to the ML force fields. This is not a
huge surprise, but is nevertheless a quantitative
characterization of the limitations of the fixed
functional form for a situation in which the
empirical force fields are designed to do well.

For completeness, in Table 3 we show the
MAEs of the neural network models reported
in the literature that were trained on 50,000
structures from the original MD17 trajectories.
The test set errors of these models are proba-
bly underestimating the true generalization er-
ror, because the large training set contains con-
figurations that are correlated with the test
set, as discussed above.44 It is still interesting
to note that the Cormorant equivariant neural
network21 achieves very low energy errors com-
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pared to PaiNN, even though it was trained on
energy labels only, but the force errors for this
model were not reported. On the other hand,
the PhysNet23 graph neural network achieves
remarkably low force errors compared to the
other models. But similarly to the other equiv-
ariant graph neural network models, this comes
at the expense of having close to 3 times larger
energy errors compared to ACE and FCHL.

3.1.1 Learning curves

The first property to consider beyond the raw
energy and force errors is the learning curve,
showing how a model’s performance improves
with additional training data. For kernel mod-
els such as FCHL and sGDML, the “kernel ba-
sis” grows precisely together with the training
data, which is why these methods are universal
approximators. Subject to the radial cutoff, the
infinite set of Atomic Cluster Expansion basis
functions forms a complete basis for invariant
functions, so in principle they can also be used
to approximate the potential energy surface to
arbitrary accuracy.33 In this case however, the
size of the training set and the size of the basis
are decoupled. One advantage is that the eval-
uation cost is independent of training set size,
but we have to choose a finite basis set to work
with by selecting a maximum body order and
the truncation of the 1-particle basis. In order
to motivate our choice, we show in fig 2 the force
accuracy of ACE as a function of basis set size
and the corresponding evaluation time, trained
on 1,000 azobenzene configurations (the largest
molecule in MD17).

The timings were obtained using a 2.3 GHz
Intel Xeon Gold 5218 CPU. For context, we
show the accuracy and evaluation time of the
other ML models we trained, each called in
their native environment: ACE in julia, GAP
via the fortran executable, and sGDML and
ANI directly from their respective Python pack-
ages. (Note that in the case of ANI some speed
up could be achieved by using a GPU, though
our results are in agreement with the timings
reported in the original ANI paper17). The
solid part of the ACE curve corresponds to 4-
body potentials (ν = 3) and we varied only the

polynomial degrees, whereas for the last point
(dashed), we increased the body order to 5,
because the 4-body part of the curve showed
saturating accuracy. Increasing the body order
further is likely to bring the error down even
more, however, the cost of evaluation would also
grow unacceptably if all basis functions for the
given body and polynomial degree are retained.
In the future, effective sparsification strategies
need to be developed that would allow the in-
clusion of some high body order basis functions
without the concomitant very large increase of
the overall basis set size. For the purposes of the
present paper, for each molecule in MD17 we se-
lected a basis set size such that the evaluation
cost was roughly comparable with the other ML
models. (Note however that in a real ML force
field application, one might very well choose a
much smaller basis, e.g. 10K, to take advantage
of the sub-millisecond evaluation times.)
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Figure 2: Force evaluation times. The tim-
ing of force calls per atom for the azobenzene
molecule. In the case of ACE the number of ba-
sis functions is shown in parentheses.The classi-
cal force field has a timing of about 1 µs, which
would not fit on this scale.

In fig 3 we show the learning curves for linear
ACE and sGDML (the best models we trained
from Table 2) and compare to the literature
results of FCHL.44 The low body order linear
ACE is equal or better than the other many-
body kernel models in the low data limit, but
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Figure 3: Energy learning curves. The learning curves of the best performing models on the
rMD17 data set. The body order and basis set size for the ACE models are given under the title
of each panel

with additional training data the kernel mod-
els overtake ACE in several cases. The latter
also saturates, showing the limitations of the
relatively low body order model. The learn-
ing curves for the forces are given in fig S1,
and show a broadly similar trend, with less pro-
nounced saturation for ACE.

3.1.2 Normal mode analysis

The normal modes and their corresponding vi-
brational frequencies characterize the potential
energy surface near equilibrium. This is in-
teresting in the context of the MD17 models
because their training set contains geometries
sampled at 500 K which means they are, in gen-
eral, far from the equilibrium geometry. The
ability of the models to describe the minima of
the PES, even if it is not in the training set, is
particularly important when considering larger
systems with potentially many local minima,
where finding all the different local minima at
the target level of theory can be infeasible.

To test how well the different models infer
the normal modes we took the DFT optimized
geometry of each of the 10 molecules and re-
relaxed them with the force field models. At
the force field minima we carried out a vibra-
tional analysis to find the normal modes and

their corresponding vibrational frequencies.
Fig 4 shows the errors in the predicted nor-

mal mode vibrational frequencies for each of the
10 MD17 molecules. The ACE model achieves
the lowest error for all 10 molecules, surpris-
ingly even for those for which sGDML has lower
errors based on the 500 K MD test set of Ta-
ble 2. For example, for toluene sGDML has
both lower energy and force errors, but at the
same time the ACE model has significantly
lower errors in predicting the vibrational fre-
quencies, achieving a MAE of 1.0 cm-1 com-
pared to sGDML with an error of 1.4 cm-1.
Observing the individual molecules in Fig 4 it
is notable that the ACE model has the lowest
fluctuation in the errors of the normal modes,
achieving nearly uniform accuracy across the
entire spectrum. The case of benzene also
shows the limitations of characterizing the mod-
els by the force MAE alone. The linear ACE
model has only slightly lower force MAE than
sGDML (0.5 meV/Å compared to 0.8 meV/Å)
but the normal mode frequency prediction is
more than 3 times more accurate: 0.2 cm-1 com-
pared to 0.7 cm-1. The linear ACE model has
very low errors for all normal modes, whereas
sGDML has much higher errors for the high fre-
quency modes.
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Figure 4: Normal mode frequency test. The frequency error of the normal modes of each of
the MD17 molecules. The legend shows the frequency (ω) MAE (in cm−1) and also the force (F)
MAE (in meV/Å) from Table 2 for each model

Similarly, in the case of aspirin, even though
the ANI model has lower MAE on the test
set both for energies and forces than the GAP
model, its vibrational frequency error is signifi-
cantly larger than those of GAP (8.3 cm-1 com-
pared to 6.4 cm-1). We also compared the mod-
els to the accuracy of a classical force field. The
normal mode frequency errors of the empirical
FF are about 10 times higher than the errors of
the ML force fields. These errors do not fit on
the scale of Fig 4 but are reported in Fig S2.

3.1.3 Extrapolation in temperature

When building a new force field for a molecule,
beyond high accuracy, we also need robustness,
by which we mean that there should not be ar-
eas of accessible configuration space where the

model predictions are unphysical or nonsensi-
cal. Sometimes called “holes” in the potential
energy surface, these can be remedied by reg-
ularization31 or by iterative fitting37 and ad-
ditional data.46 In the context of the MD17
benchmark, with its fixed training set, we test
the robustness of the models we fitted by run-
ning short molecular dynamics (MD) simula-
tions with each model. Separate MD simu-
lations were run at several temperatures be-
tween 350 and 950 K using a Langevin ther-
mostat and a timestep of 0.3 fs. (Higher tem-
peratures were not considered because most or-
ganic molecules undergo thermal decomposition
at temperatures above 1000 K.) Five indepen-
dent MD runs were initialized starting from dif-
ferent configurations. After equilibrating for
500 steps, 10 samples were taken 200 timesteps
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Figure 5: Extrapolation force error. The mean absolute force error as a function of temperature
sampled from five independent MD trajectories driven by each model, at several temperatures. The
empty marker corresponds to the MAE on the 500 K test set of Table 2.

apart from each of trajectories. These consti-
tute the new test set specific for each molecule,
model and temperature.

The energies and forces of the new test con-
figurations were recomputed with DFT to esti-
mate the accuracies of the different models at
each temperature along their own MD trajecto-
ries. The force errors are shown in fig 5 whilst
the energy errors showing the same trends are
in fig S5. Where a point is missing, the model
hit a hole in the potential and the MD run was
terminated. This happened most often with the
GAP model, indicating that this potential was
the least regular. The linear ACE and ANI
models can also be prone to hitting holes in
the potential at the highest temperatures. Of
all models sGDML was the most stable, it al-
ways kept the molecule intact even at 950 K for
the duration of the simulations. Such extreme
stability is not necessarily chemically realistic
(see the next section on extrapolation to bond
breaking).

Looking at the increase in errors with tem-
perature for the different models we can see

that the linear ACE often keeps the errors low
with a small slope whereas the other models
show a clearer increase as the temperature in-
creases. This can be best observed for ethanol,
malonaldehyde and uracil. It is notable that
the model that works best at lower tempera-
tures (in the training regime) also works best at
higher temperatures confirming that the models
are able to smoothly extrapolate away from the
training data. Furthermore, we can see a good
agreement of the test set force MAE in Table 2
with the force MAEs estimated from the mod-
els’ own trajectories. This hints that the mod-
els explore similar regions of the configuration
space as the original ab initio trajectories.

3.1.4 Extrapolation far from the train-
ing set

To test the extrapolation properties of the dif-
ferent models further we looked at two tests
probing the torsional profile of azobenzene
and O-H bond breaking in ethanol. Both of
these tests probe how far away the models can
smoothly extrapolate from the training data.
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(a) (b) (c)

Figure 6: Extrapolation test far away from training data. The bottom panels show the
histogram of the variables in the training set. (a) the energy change predicted by the different
models as the C-N-N-C dihedral angle of azobenzene is decreased from the equilibrium 180 degrees.
ACE F refers to training on forces only, ACE AVG refers to using average per atom energy as the
1-body term and ACE E0 refers to using the isolated atom energy as the 1-body term. (b) change
in energy as the O-H bond distance of ethanol is extended from equilibrium, as predicted by the
different models. (c) comparison of ACE models with (i) lowest force MAE and (ii) with slightly
stronger regularization, the latter indicated with the REG label.

We carried out these tests with several differ-
ent versions of the linear ACE models differing
in the definition of their 1-body terms, because
we expect this choice to make a significant dif-
ference in how chemically reasonable the fitted
models are far from the training set. We de-
note the ACE models fitted using force data
only by ACE F. This has the lowest force er-
ror on the test set (comparison shown in Table
S3). For the other two ACE models, energies
were also included in the training. They differ
in the 1-body term only, the model using av-
erage per-atom training set energy is denoted
as ACE AVG, whereas the model using the iso-
lated atom energies as the 1-body term is de-
noted ACE E0. The third option is the natural
choice, as this ensures that if all atoms are sepa-
rated from each other the predicted energy will
correctly correspond to the sum of the isolated
atom energies.

Fig 6(a) shows the torsional energy profile of
the azobenzene molecule. The ACE E0 model
with the isolated atom 1-body term is able to
extrapolate furthest, somewhat overestimating
the energy, while the ANI and sGDML models
also extrapolate smoothly, but slightly underes-
timate the energy. The linear ACE model with
the average energy 1-body term and the GAP
model fail to extrapolate and predict a com-
pletely nonphysical drop in energy for smaller
values of the dihedral angle.

Fig 6(b) shows the energy profile as the O-H
distance is varied starting from the equilibrium
geometry of ethanol. The only force field that
shows qualitative agreement with DFT is the
ACE E0 model. (Note that we do not expect any
of the fitted models to quantitatively reproduce
the DFT energy profile, even when the isolated
H atom is described correctly by design, be-
cause the C2H5O

· radical is not.) We attribute
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this success to the explicit body ordered nature
of the linear ACE model, including using the
isolated atom as the 1-body term, and careful
regularization - as was the case in a similar test
for other polynomial models.25 Fig 6(c) shows a
detailed comparison of the different ACE mod-
els together with their test set MAE value. This
shows that having the lowest possible test set
error does not coincide with the most physi-
cally reasonable model, and using stronger reg-
ularization can lead to much smoother extrap-
olation. The more strongly regularized ACE
models with relatively higher force error are still
significantly more accurate than sGDML, ANI,
GAP or the classical force field.

Interestingly, having the isolated atom as the
1-body term is not sufficient for good extrap-
olation. This is shown by the two different
GAP models in fig 6(b), which show essentially
no difference to the extrapolation, presumably
due to the very poor description of the radical.
GAP is not an explicitly body ordered model.

3.2 Fitting multiple molecules

Apart from sGDML, whose descriptor is tied
to a given molecule with fixed topology, the
models under consideration can all be fitted to
multiple molecules simultaneously. Therefore,
having evaluated their capacity to approximate
individual potential energy surfaces one by one,
it is interesting to see how the they cope with
describing all of the rMD17 data set pooled to-
gether.

Table 4 shows the energy and force errors for
the combined fit with linear ACE, GAP, ANI
and the empirical force field. GAP and ANI
errors only go up by around 30%, reflecting
the fact that these are very flexible functional
forms. The ANI model (which is pre-trained by
starting from ANI-2x neural network weights)
is now distinctly better than GAP. The empir-
ical force field error increases by even less. In
this case that is due to the use of atom-types,
which help to separate the energy contribution
of different functional groups. The increase in
the error is largest for ACE, about a factor of
two, although for most molecules it is still the
combined ACE model that has the lowest error

amongst these models.
In addition, we also show the performance

of the original unmodified ANI-2x model (its
energies and forces were tested against values
recomputed with exactly the same electronic
structure method and parameters that were
used in its fitting47). Its energies and forces are
better than those of the empirical force fields by
factors of around 2–3 and 5, respectively. (The
exception is azobenene, for which its energies
are worse). The difference between ANI-2x and
the re-trained ANI is about a factor of 2–4 for
energies (the average over all the molecules is
at the high end) and a factor of two for forces.

The other commonly used benchmark data
set for machine learning based molecular
force fields that contains multiple molecules
is ISO17.22 The full data set contains 5000-step
ab initio molecular dynamics simulation tra-
jectories of 129 molecules, all with the same
chemical formula C7H10O2. The standard task
is to train a force field using a randomly se-
lected 4000 configurations of 103 molecules (so
about 400K configurations altogether, although
these are highly correlated) and evaluate it on
the remaining 1000 structures of the trajectory
(“known molecules”) and on the full trajecto-
ries of the “unknown molecules”. We note that
when all 400K training configurations are used,
the conformations of “known molecules” that
are usually reported as a test set are very close
to the training set, at most 1 or 2 MD steps
away on the trajectory from the actual training
set, so the error measured on these is essentially
the same as the training error.

We trained a linear ACE model on only a to-
tal of 5,000 configurations and a GAP model
on only a total of 10,000 configurations sam-
pled uniformly from the training set and eval-
uated them on both the known and unknown
molecules. The results in Table 5 show that the
linear ACE model performs significantly better
than GAP, achieving errors in the same ball-
park as the other methods for the unknown
molecules, but using orders of magnitudes less
training data. In particular, the ACE model
matches the energy error of the state of the art
GM-sNN19 on the unknown molecules, demon-
strating its excellent extrapolation capabilities.
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Table 4: Combined fitting of rMD17. Mean Absolute Error of the energies (E, meV) and forces
(F, meV/Å) of different models when fitting all 10 MD17 molecules together. The average energy
error (E∗) is calculated on a per-atom basis.

ACE GAP ANI FF ANI-2x

Aspirin
E 9.9 19.7 13.8 105.7 44.7
F 27.0 46.2 35.3 287.3 76.6

Azobenzene
E 5.7 10.8 12.9 115.1 144.4
F 16.6 30.1 30.1 243.5 115.5

Benzene
E 0.8 1.6 2.4 16.9 10.4
F 3.5 9.3 10.6 125.6 24.4

Ethanol
E 4.6 9.2 2.8 42.4 22.1
F 21.5 35.7 15.1 220.6 29.0

Malonaldehyde
E 5.1 9.6 4.6 48.8 24.2
F 24.1 46.2 24.6 278.5 58.9

Naphthalene
E 3.5 8.3 9.5 72.8 19.5
F 13.3 30.8 26.2 306.7 54.1

Paracetamol
E 6.5 12.5 10.7 102.9 29.7
F 20.8 37.8 29.5 275.1 60.2

Salycilic acid
E 4.6 9.6 7.2 83.3 21.3
F 18.9 35.9 26.1 310.6 68.7

Toluene
E 3.5 7.7 6.9 37.1 20.1
F 13.1 29.7 23.3 184.2 42.5

Uracil
E 2.8 5.1 4.5 50.6 14.8
F 15.6 26.1 21.9 265.3 48.9

Average MAE
E∗ 0.31 0.62 0.46 4.2 2.1
F 17.4 32.8 24.3 249.7 57.9

Table 5: ISO17 test. Mean Absolute Error in energies (E) and forces (F) of models trained
on ISO17. The results on the “known molecules” are essentially training errors (see text). The
bold indicates the lowest error. The linear ACE is trained on 5,000 configurations, GAP on 10,000
configurations, the neural networks on 400K (quite correlated) configurations.

ACE GAP Schnet Physnet GM-sNN GM-dNN

known molecules
E 16 54 16 4 17 7
F 43 102 43 5 28 12

unknown molecules
E 85 169 104 127 85 118
F 75 128 95 60 72 85
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For all the neural network models, the error
on known molecules is quite a bit lower than
that for the unknown molecules, which we con-
sider to be a sign of overfitting. For ACE and
GAP, the error is still lower but by a much
smaller factor, helped by the explicit regular-
ization. Tellingly, the most similar ratio is for
GM-sNN, which is a shallow neural network.

3.3 Flexible molecule test: 3BPA

Finally, noting that all the MD17 molecules are
rather rigid, our last test is to assess the ca-
pabilities of the different force field models on
a more challenging system that has relevance
for medicinal chemistry applications. We cre-
ated a new benchmark data set for the flexi-
ble drug-like molecule 3-(benzyloxy)pyridin-2-
amine (3BPA).48 Though smaller than typical
drug-like molecules, with a molecular weight of
200, this molecule has three consecutive rotat-
able bonds, as shown in fig 7. This leads to a
complex dihedral potential energy surface with
many local minima, which can be challenging to
approximate using classical or ML force fields.49

3.3.1 Preparation of the data set

To prepare a suitable training data set we
started by creating a grid of the three dihedral
angles (α, β and γ) removing only the config-
urations with atom overlap. From each of the
configurations corresponding to the grid points,
we started short (0.5 ps) MD simulations using
the ANI-1x force field.27 This time scale is suf-
ficient to perturb the structures towards lower
potential energies, but is not enough to signif-
icantly equilibrate them. In this way we ob-
tained a set of 7000 configurations as shown in
the left panel of Fig 7. From the distribution
of dihedral angles, five different densely pop-
ulated pockets were identified in the space of
the three dihedral angles. One random config-
uration was selected from each of the 5 pockets
and a long 25 ps MD simulation was performed
at three different temperatures (300 K, 600 K,
1200 K) using the Langevin thermostat and 1 fs
timestep. We sampled 460 configurations from
each of the trajectories starting after a delay of

αβ

γ
αβ

γ

αβ

γ

600 K

1200 K

αβ

γ

300 K

Figure 7: 3BPA data set. The three freely
rotating angles of the 3BPA molecule together
with a characterization of the three different
data sets sampled at different temperatures
showing how the phase space sample increases
significantly with temperature.

2 ps. In this way the final data set of 2300 con-
figurations was obtained. The configurations
were re-evaluated using ORCA50 at the DFT
level of theory using the ωB97X exchange cor-
relation functional51 and the 6-31G(d) basis set.
(These settings are similar to that used in the
creation of the ANI-1x data set47). From the to-
tal data set we created two training sets, one us-
ing 500 randomly selected geometries from the
300 K set, and another one, labelled “mixed-
T”, selecting 133 random configurations from
each of the trajectories at the three tempera-
tures. The rest of the data in each case makes
up the three test sets, each corresponding to a
different temperature. The right hand panels of
Fig 7 show the distribution of dihedral angles
in the test sets. At 300 K the separate pockets
of the configuration space are sampled mostly
individually, whereas at 1200 K the distribution
widens significantly, and the sampling connects
the pockets across multiple barriers with ease.
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Table 6: Root mean squared error of the energy (meV) and force (meV/Å) predictions of different
models of the flexible 3BPA molecule.

ACE sGDML GAP FF ANI ANI-2x

Fit to 300K

300 K
E 7.4 8.4 20.2 59.2 22.8 38.6
F 25.8 41.3 85.8 302.0 41.8 84.4

600 K
E 27.3 478.6 61.2 136.6 37.5 54.5
F 64.2 437.6 152.0 408.3 71.7 102.8

1200 K
E 90.4 774.0 166.2 332.6 77.5 88.8
F 166.6 708.8 305.0 678.1 129.5 139.6

Fit to mixed-T

300 K
E 9.5 11.3 26.8 84.8 21.4 38.6
F 30.7 53.0 85.2 306.9 56.3 84.4

600 K
E 21.6 24.9 48.4 115.2 39.2 54.5
F 53.6 91.2 122.9 391.9 81.0 102.8

1200 K
E 50.2 76.3 99.2 275.0 75.2 88.8
F 109.4 171.3 215.3 641.8 130.0 139.6

3.3.2 Comparison of force fields models

We trained linear ACE, sGDML, ANI and GAP
force fields, and re-parametrized the bonded
terms of a classical force field (FF), using the
300 K and the mixed-T training sets. Table 6
shows the energy and force RMSEs of the differ-
ent models alongside the general purpose ANI-
2x force field errors on the same configurations.
Just as before, the weights of the re-trained
ANI model were initialized form the ANI-2x
weights, giving it a considerable advantage over
the other models, especially because the DFT
functional and basis set that we use are the
same as that of the underlying DFT method
of the ANI-2x model.

For the case of training on the 300 K con-
figurations the linear ACE and sGDML models
are able to achieve very low errors when tested
at the same temperature, but the ACE model
shows significantly better extrapolation prop-
erties to the configurations sampled at higher
temperatures. The model extrapolating most
accurately to 1200 K is the re-trained ANI force
field, but the linear ACE is not far behind, es-
pecially considering how poor the extrapolation
of the other models are. Just as for the smaller
molecules, the fitted empirical force field shows
much higher errors, about a factor of 2–4 for
energies and a factor of 4 for forces compared
with the ANI-2x force field. Only at 1200 K

does ANI-2x become competitive with the ACE
trained at 300 K.

Training on the mixed-T training set leads to
a significant drop in the errors at the higher
temperature test sets for all ML models, but
not for the empirical force field. The linear
ACE model achieves the lowest error in every
case, showing approximately 40% decrease in
the error for the high temperature test set. The
other ML models improve also, by even big-
ger factors (because their extrapolation power
was less). The gains over the general ANI-2x
force field, nearly a factor of two in energies
for all three test sets, show the potential scope
for parametrizing such custom force fields in
medicinal chemistry applications. The errors in
the empirical force field are mostly unchanged,
quantifying the limitations of the fixed func-
tional form when describing the anharmonic
high energy parts of the potential energy sur-
face.

To look beyond the energy and force RMSE,
we performed a constrained geometry optimiza-
tion using the different force field models and
DFT to map out the dihedral potential energy
surface of the molecule. The complex energy
landscape is visualized in Fig 8(a) at three dif-
ferent fixed values of β, in the α-γ plane, limit-
ing the range to avoid overlapping atoms. Fig-
ure 8(b) shows a comparison of the ML and
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Figure 8: Dihedral PES of 3BPA. (a) The dihedral potential energy landscape of 3BPA for
different fixed β, as predicted by DFT. (b) The β = 120o section of the PES for the different force
field models. The white dots on the DFT PES correspond to configurations from the training set
that lie within ±10o of the planes considered here and the red star shows the position of the energy
minimum on each slice.

empirical force fields with DFT for the case of
β = 120◦, the plane with the fewest training
data points. Analogous results for the other two
values of β are reported in Figs S6 and S7. The
energy landscape of the empirical force field has
most of the features of the DFT landscape and
is even correctly predicting the position of the
lowest energy minimum in the β = 120◦ plane.
Some of the potential energies on this plane are

clearly too high however. On the other hand
the landscape of the GAP model is quite ir-
regular, some of the most basic features are
either missing or blurred together. The ANI
landscape is also quite irregular, somewhat less
than GAP, and some of the high energy peaks
are too high and too broad. This is an example
where the fixed functional form of the classical
force field gives better extrapolation behavior
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to parts of the configuration space where there
is little training data. The RMSE results clearly
do not give a full, perhaps not even a very useful
distinction between these models.

The ACE and sGDML models reproduce the
landscape much more closely (and indeed these
are the models with the lowest RMSE as well).
Some differences include the sGDML getting
the position of the lowest energy minimum
wrong and ACE having too high a peak at
α = 230◦, γ = 150◦.

4 Conclusions

In this paper we have demonstrated how the
Atomic Cluster Expansion framework can be
used as linear models of molecular force fields.
We showed that body ordered linear models
built using the ACE basis are competitive with
the state of the art short range ML models on a
variety of standard tests. Furthermore we car-
ried out a number of “beyond RMSE” tests to
compare the ML approaches, and to study the
smoothness and extrapolation properties of the
fitted force fields: vibrational frequencies, force-
field driven molecular dynamics and extrapola-
tion to bond-breaking.

We also introduced a data set on a flexible
drug-like molecule, with the idea that testing
the performance on it is more predictive of the
quality of the model for medicinal chemistry ap-
plications. The linear ACE model was signifi-
cantly smoother than other transferable models
and was able to extrapolate to higher potential
energy regions than all other models.

We showed that the ACE framework allows
us to build accurate force fields with very low
evaluation cost. Together with competing ap-
proaches that are in the recent literature and in
our comparison tables, the prospects are good
for being able to carry out large scale biomolec-
ular simulations with electronic structure accu-
racy in the near future. A number of bottle-
necks remain for ACE, which include the steep
increase in the number of basis functions as
new chemical elements are added to the model.
This can be tackled via sparsification strategies,
which is the focus of our future work. Further-

more the inclusion of long range electrostatics
and charge transfer are essential for the simu-
lation of biomolecular systems and an integra-
tion of these into the ACE framework is also
underway. Currently ACE is implemented in
the Julia language, but can readily be called
from Python via the Atomic Simulation Envi-
ronment (ASE). The fitted models can also be
evaluated via LAMMPS.
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(28) Bartók, A. P.; De, S.; Poelking, C.; Bern-
stein, N.; Kermode, J. R.; Csányi, G.;
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