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ABSTRACT: The traditional manual analysis of microplastics has been criticized because it is labor intensive, inaccurate for 
identifying very small microplastics, and difficult to standardize or compare. There are already three automated analysis strategies 
for microplastics based on vibrational spectroscopy, laser direct infrared (LDIR)-based particle analysis, Raman-based particle anal-
ysis, and focal plane array-Fourier transform infrared (FPA-FTIR) imaging. We compared the performances of these strategies in 
terms of their quantification, detection limit, size measurement, and material identification accuracy and analysis speed by analyzing 
the same standard and environmental samples. Unfortunately, the automated analysis strategies are not consistent in terms of the 
quantification and material identification results. The number of particles smaller than 60 μm recognized by Raman-based particle 
analysis is far greater than that recognized by LDIR-based particle analysis. Raman-based particle analysis has a submicrometer 
detection limit but should not be used in the automated analysis of microplastics in environmental samples because of the strong 
fluorescence interference. LDIR-based particle analysis provides the fastest analysis speed, but we suggest using a reliable detection 
limit of approximately 60 μm and considering the material identification results and reference database used because the wave-
numbers LDIR spectra are in the range of 975-1800 cm-1. FPA-FTIR imaging provides relatively reliable quantification and material 
identification for microplastics in environmental samples but might provide an imprecise description of the particle shapes. As a 
technological advancement, automated analysis of microplastics should be encouraged, but we need to foster the strengths and cir-
cumvent the weaknesses of different strategies. The automated analysis of microplastics should be further validated and standardized. 

It is almost certain that microplastics, plastics smaller than 5 
mm1, exist in every environment of Earth’s surface2, and all spe-
cies may be exposed to microplastics1,3. Microplastics are 
emerging pollutants known for their interaction with other pol-
lutants4 and potential toxicity to organisms5. Therefore, the ac-
curate and efficient analysis of microplastics in different matri-
ces is important and the first step in the work to assess and de-
scribe microplastic pollution. The entire analysis process of mi-
croplastics includes sampling, pretreatment, identification and 
quantification, but the ‘analysis’ in this study is specially de-
fined as the only identification and quantification of microplas-
tics. 

The traditional manual analysis of microplastics requires an 
operator to visually recognize, count, and measure microplas-
tics under a stereomicroscope. Then, these suspected microplas-
tics will be transferred into Fourier transform infrared (FTIR) 
spectroscopy, Raman spectroscopy, or pyrolysis-gas chroma-
tography−mass spectrometry (Pyr-GC-MS) instruments to 
identify each their polymer type6. Particles smaller than 100 μm 
are challenging to recognize visually7 and transfer into an in-
strument to identify their material types. Nile red staining can 
assist visual recognition of microplastics but cannot identify 
polymer types8. In addition, most studies consider only a part of 
the visually recognized microplastics to identify their polymer 
types9,10, but only 1.4% of suspected microplastics identified 
visually were confirmed as polymers11. The traditional manual 
analysis methods of microplastics are labor intensive, 

inaccurate, easily affected by operator-related factors, and it re-
mains difficult to detect microplastics smaller than 100 μm. 
However, small microplastics usually have a higher abundance 
in the environment2 and stronger toxicological effects12. 

We define the term ‘automated analysis of microplastics’ as 
a strategy that could automatically recognize, count, measure 
the size of, and identify the material types of microplastics to 
quantify them. Such an approach should have low detection 
limits and be labor-free, efficient, and accurate. Although tech-
nologies such as secondary ion mass spectrometry (SIMS)13 and 
single particle-inductively coupled plasma mass spectrometry 
(SP-ICP-MS)14 have been applied to detect microplastics in re-
cent years, they are difficult to apply in environmental sam-
ples14. In contrast, the automated analysis of microplastics 
based on vibrational spectroscopy (Raman and infrared) is more 
compatible with existing studies and sample pretreatment meth-
ods. There are three strategies for the automated analysis of mi-
croplastics: laser direct infrared (LDIR)-based particle analy-
sis15, Raman-based particle analysis16, and focal plane array 
(FPA)-FTIR imaging2,17-19. They are based on different instru-
ments and principles. The problem with the traditional manual 
analysis of microplastics has been that it is challenging to com-
pare the quantitative results of different studies20-22. Naturally, 
a new question arises: Are we measuring the same metrics when 
using these different strategies to analyze microplastics auto-
matically? 



Therefore, for technique validation, we designed a compara-
tive study of the performance of these strategies in the auto-
mated analysis of microplastics. The same standard micro-
plastic sample and environmental microplastic sample were an-
alyzed with different strategies. The comparative targets in-
clude the detection limit, size measurement, material identifica-
tion, quantification results, and analysis speed. Additionally, 
the performance of Raman imaging was compared with that of 
Raman-based particle analysis for detecting microplastics 
smaller than 5 μm. The sample preparation requirements of dif-
ferent strategies were also discussed. 

EXPERIMENTAL SECTION 

Microplastic sample preparation 
Eight virgin microplastic particle powders (Table S1) were 

purchased from Ante Plastic Materials Co., Ltd. (China). Dif-
ferent from the commonly used polystyrene microspheres23, 
these standard microplastic powders are irregular particles, in-
cluding polyethylene (PE), polyethylene terephthalate (PET), 
polyvinyl chloride (PVC), polyamide (PA), and polystyrene 
(PS), with particle sizes ranging from approximately 1 μm to 
300 μm. Then, these different microplastic powders with differ-
ent polymer types and sizes were mixed in absolute ethyl alco-
hol to be used as the standard microplastic sample (Fig. 1). 

Environmental microplastics (Fig. S1) were extracted with 
ZnCl2 (1.7 g·cm-3) from the soil of one of the world’s largest 
plastic waste recycling bases24. Then, the environmental micro-
plastics were filtered through 150 mesh and 500 mesh metal 
sieve stacks. Finally, environmental microplastics with a size of 
approximately 30-100 μm were rinsed from the sieve with ab-
solute ethyl alcohol and used as the environmental sample (Fig. 
1). 

 

 Figure 1. Flow chart of the comparative study between different 
strategies for the automated analysis of microplastics. 

LDIR-based particle analysis 
Agilent 8700 LDIR (Agilent Solutions, Inc., USA) is a novel 

technique and is different from traditional FTIR. It uses a mid-
IR quantum cascade laser (QCL) as the light source. Infrared 
light from the QCL is directed to the sample, then reflected by 
the sample, and directed to a thermoelectrically cooled mer-
cury-cadmium-telluride (MCT) detector. Agilent 8700 LDIR 
only accepts glass slides for loading samples. The particles dis-
persed in the ethanol solution are dropped onto Kevley low-E 
slides (Fig. S2a). First, the instrument obtains a bright image 
with a large-field-of-view camera (resolution of approximately 
24 μm). Then, it uses single wave light (1800 cm-1) with a spa-
tial resolution of 5.5 μm (1 cm/1800 cm-1) to survey, count, lo-
cate and measure the particles in this image. Third, it measures 
the infrared spectrum of each particle in reflection mode. Fi-
nally, Clarity software (version 1.3.42, Agilent) is used to auto-
matically compare the spectrum with the reference spectral li-
brary to identify the material types. Spectra with a match quality 

smaller than 0.65 were listed as ‘Undefined’. The reference 
spectral library contains polymer and nonpolymer materials 
(e.g., coal, alkyd varnish, and chitin). After, if essential, clearer 
images of the particles of interest can be acquired under the ob-
jective (resolution 1 μm). In this work, the detection threshold 
was set to 20 μm. The spectral range was 975-1800 cm-1 with a 
resolution of 0.5 cm-1. The image of the particles in environ-
mental sample #1 were reacquired under the objective after reg-
ular analysis.  

Raman-based particle analysis 
WITec ParticleScout (version 5.3.14.106) is software used 

with a WITec alpha300 R confocal Raman imaging system 
(WITec GmbH, Germany). First, it obtains a large-area image 
by the image-stitching and focus-stacking function. Then, it sur-
veys, measures, and locates particles in this image. Next, it ac-
quires the Raman spectrum of each particle with the Autofocus 
setting and identifies them by linking the WITec TrueMatch da-
tabase. The logic of WITec ParticleScout in detecting micro-
plastics is similar to that of Agilent 8700 LDIR. 

The WITec alpha300 R spectroscope used was equipped with 
a 532 nm laser. The grating used had a groove density of 600 
lines per millimeter and a Blaze wavelength (BLZ) of 500 nm. 
The Raman shift ranged from 0-4000 cm-1. A 20-magnification 
darkfield objective (EC Epiplan-Neofluar HD, Zeiss) with 0.5 
numerical aperture (NA) was used in the analysis of standard 
samples #1, #2, and #3 and environmental samples #1 and #2 
(Fig. 1). A 100-magnification brightfield objective (EC Epi-
plan-Neofluar Dic, Zeiss) with 0.9 NA was used to analyze 
standard sample #4 (Fig. 1). The pixel sizes of visible light im-
ages taken under the 20× and 100× objectives were 0.61 μm and 
0.12 μm, respectively. According to the Rayleigh criterion, the 
lateral resolution (0.61λ/NA) of the Raman spectra acquired un-
der the 20× and 100× objectives were 0.65 μm and 0.36 μm, 
respectively, and the axial resolutions in the air (1.4λ/NA2) were 
3 μm and 0.92 μm, respectively. The vignetting of the image 
was corrected in real time to prevent it from affecting particle 
recognition. The threshold of finding particles from the dark 
field images was automatically set by ParticleScout. The spec-
trum of each particle was automatically acquired with signal op-
timization settings (integration time: 1 s; accumulation number: 
3 or 5 times; and laser power: 5 mW). Autofocus setting was 
performed for the Raman shift range of 2800-3200 cm-1, and the 
steps under the 20× and 100× objectives were set to 2 μm and 
0.2 μm, respectively. The Raman Database of Weathered Mi-
croplastics built in our previous study24 and a commercial pol-
ymer database (ST Japan 5.2) containing 4568 Raman spectra 
were used to confirm polymer types through WITec TrueMatch 
Database software. Spectra with a hit index quality (HQI) 
smaller than 60 were listed as ‘Unknown’. In addition, the Ra-
man mapping performed to detect the microplastics in standard 
sample #4 followed the same Raman spectroscopy approach. 
The integration time of each point in the Raman mapping pro-
cess was 0.2 s. ParticleScout was also used to count and meas-
ure particles from the Raman map. 

Additionally, Raman spectra are easily affected by fluores-
cence interference24,25. Another two WITec alpha300 R instru-
ments equipped with 488 and 785 nm lasers were used to meas-
ure the Raman spectra of some particles in the environmental 
samples to compare the performance of different lasers in re-
ducing fluorescence interference. 

FPA-FTIR imaging 

A LUMOS Ⅱ FT-IR imaging microscope (Bruker Optics 
GmbH, Germany) equips 32×32 focal-plane array detectors and 



can acquire 1024 infrared spectra in a single scan at a minimum 
spatial resolution of 5 μm. The logic of FPA-FTIR imaging in 
detecting microplastics is different from the particle recogni-
tion-spectrum measurement mode of particle analysis. FPA-
FTIR spectroscopy detects microplastics from hyperspectral 
chemical imaging rather than visible light imaging or single-
wave imaging. As early as 2015, FPA-FTIR imaging was used 
to identify microplastics from environmental matrix11,18,26. 
However, the visualization of microplastics based on the inte-
gration of a single peak cannot cope with different polymer 
types, and the considerable amount of data makes this approach 
unable to be widely used in the automated analysis of micro-
plastics27. Within the past two years, multivariate statistics, data 
mining, and machine learning methods, such as principal com-
ponent analysis28, cluster analysis28, random decision forest 
(RDF) classifiers29, and partial least squares discriminant anal-
ysis17, were applied to process hyperspectral imaging. These 
methods make it possible to reduce the dimensionality of hy-
perspectral infrared imaging and detect and quantify microplas-
tics. Two software programs, siMPle developed by Primpke et 
al.30 and Purency Microplastics Finder (Purency GmbH, Aus-
tria), can be applied in processing FPA-FTIR imaging. 

In this work, the FPA detectors measured the infrared spectra 
in reflection mode with a spectral resolution of 8 cm-1 and 2 
scans. The wavenumber ranged from 750-4000 cm-1. Except for 
standard sample #3 (Fig. 1), which was measured at a spatial 
resolution of 5 μm (no binning), the other samples (Fig. 1) were 
measured at a spatial resolution of 10 μm (2×2 binning). The 
background was measured with the same parameters and was 
subtracted from the results. Then, the hyperspectral data were 
imported into Purency Microplastics Finder (version 3.49) run-
ning with a machine learning model (version PMF_R2021a) 
based on the RDF classifiers29 to detect, measure and classify 
the microplastics. The spectra from 1250-3600 cm-1 were used 
for the Purency calculations. This process only detected the mi-
croplastics, and other particles were listed as ‘Unknown’. 

The machine learning model in Purency Microplastics Finder 
was trained with the transmission spectrum imaging data ob-
tained with an aluminum oxide filter29. Although the Kevley 
low-E slides were designed for reflective infrared measure-
ments and were used in the LDIR spectral measurements, the 
infrared spectra of the Kevely low-E slides (Fig. S3b) differed 
from the infrared spectra of aluminum oxide (Fig. S3a) and 
were not compatible for the Purency Microplastics Finder. 
Therefore, the edges of the microplastics loaded on the Kevley 
low-E slide are poorly recognized (Fig. S5). The quantification 
and size measurement of standard sample #1 and environmental 
sample #2 acquired by the Bruker-Purency Microplastics 
Finder strategy were not compared with those acquired by the 
LDIR-based or Raman-based particle analysis; only the results 
of the material identification and operational speed were com-
pared. Another three samples were loaded on a polished silicon 
wafer (Fig. S2b) to compare the quantification and size meas-
urement results between the FPA-FTIR imaging and Raman-
based particle analysis strategies (Fig. 1). The FPA measure-
ment of the silicon wafer still used the reflection mode based on 
the consideration of measurement consistency. We noticed that 
the FTIR reflection spectrum of the polished silicon wafer had 
a more negligible absorbance than the transmission spectrum 
(Fig. S4). 

Note that the FPA-FTIR imaging strategy was not run under 
the optimal settings to meet the sample preparation require-
ments of different strategies, which may adversely affect the re-
sults. 

Quality assurance and quality control 
The LDIR-based particle analysis strategy analyzed the sam-

ples first. Then, the samples were stored in separate hermetic 
boxes and were manually transported to different laboratories 
instead of being transported by express mail. We tried our best 
to avoid vibration and collision during transport. All the instru-
ment analyses were completed within one week in May 2021 to 
ensure the consistency of the particles. The area of Raman-
based particle analysis and FPA-FTIR imaging was slightly 
larger than those of the LDIR-based particle analysis, which 
made it easier to compare particles. Particles were cross-
checked in terms of their position and shape to compare the size 
measurement and material identification results for the same 
particle. Two particle size standards of 10.12±0.06 μm (4K-10, 
Duke Standards, Thermo Scientific, USA) and 100±1.5 μm 
(4K-100, Duke Standards, Thermo Scientific, USA) were used 
to validate the size measurement results of the Raman-based 
particle analysis. 

RESULTS AND DISCUSSION 

Quantification and detection limits 
Since manta and neuston nets are often used in the sampling 

of microplastics and metal sieves are used for prefiltration6,22, 
the width of the particles is used as the size. The number of par-
ticles smaller than 60 μm recognized by the LDIR-based parti-
cle analysis is much smaller than that recognized by the Raman-
based particle analysis (Fig. 2a, c), which means that the LDIR-
based particle analysis is not accurate in the quantification of 
microplastics smaller than 60 μm. Thus, the percentage of mi-
croplastics smaller than 60 μm is expected to be underestimated 
in studies using LDIR-based particle analysis15,31,32. The Ra-
man-based particle analysis is based on darkfield images with a 
resolution of 0.61 μm, which is helpful for recognizing very 
small particles. For standard sample #1, the quantitative results 
of microplastics under Raman-based particle analysis are much 
higher than those under LDIR-based particle analysis (Fig. 2b). 
For environmental sample #1, the number of microplastics de-
tected by Raman-based particle analysis is smaller than that de-
tected by LDIR-based particle analysis because the differences 
in material identification also affect the quantification of the mi-
croplastics. 

In standard sample #2, the microplastics smaller than 30 μm 
quantified by Raman-based particle analysis are much more 
abundant than those quantified by FPA-FTIR imaging (Fig. 2e) 
because FPA FTIR imaging of standard sample #2 was run with 
a 10 μm resolution (2×2 binning). In standard sample #3, the 
microplastics quantified by FPA-FTIR imaging with a 5 μm res-
olution (no binning) are more similar to those quantified by Ra-
man-based particle analysis (Fig. 2f). However, the number of 
microplastics in environmental sample #2 detected by Raman-
based particle analysis is much lower than that detected by 
FPA-FTIR imaging (Fig. 2f), similar to the difference observed 
for environmental sample #1 between the LDIR-based particle 
analysis and Raman-based particle analysis results (Fig. 2d). 

The difference in the quantitative results is affected by the 
detection limit, particle recognition, size measurement, and ma-
terial identification of the microplastics. Different strategies 
have different detection limits (Fig. 2h). We do not suggest us-
ing the lowest detection limit to quantify microplastics because 
these strategies are often inaccurate for quantifying microplas-
tics close to the detection limit (Fig. 2a, c). We recommend us-
ing a more reliable detection limit based on the consideration of 
the spatial resolution of the spectra and the size measurement 
(Fig. 2h). 



 

Figure 2. Quantification results of different strategies for the same sample (a-g) and the detection limits of different strategies (h). 

Size measurement 
The measurement result of the Raman-based particle analysis 

for the spherical PS standard with a particle size of 10.12±0.06 
μm is 12.23±0.74 μm, and the measurement result for the stand-
ard with a particle size of 100±1.5 μm is 97.68±4.46 μm. It is 
difficult to find the equatorial plane of spherical particles. The 
particle brightness may influence edge recognition in creating a 
particle mask. Generally, the size measurement of the Raman-
based particle analysis is accurate. The size measurement of the 
LDIR-based particle analysis is linearly correlated to the Ra-
man-based particle analysis (Fig. S6a, b). However, the slope 
of the linear fit is not 1, and the intercept is not 0, indicating a 
difference between the size measurements of Raman-based and 
LDIR-based particle analysis. 

 

Figure 3. Microplastic masks created by FPA-FTIR imaging (a, 
b, c) and Raman-based particle analysis (d, e, f). (a, c, d and f) are 

from the material maps of standard sample #2 (Figs. S8 and S9), 
but (b) and (e) are from standard sample #2. The different colors in 
(a, b, and c) represent different polymer types. 

A gap exists between the particle sizes measured by Raman-
based particle analysis and FPA-FTIR imaging (Fig. S6c, d, e). 
The particle sizes measured by FPA-FTIR imaging seem to be 
an order or magnitude greater than the resolution. For example, 
the particle sizes measured under 2×2 binning are often 10 μm 
to 20 μm (Fig. S6c). Clearly, the particle size measured with a 
resolution of 10 μm is far less accurate than that measured by 
Raman-based particle analysis (Fig. 3a, d). Thus, a higher reso-
lution corresponds to a higher accuracy in the size measurement. 
In addition, the particle size measurement under FPA-FTIR im-
aging is also related to the recognition of particle edges. The 
uneven thickness and varying weathering degrees of different 
spots of one microplastic particle will affect the corresponding 
infrared spectra; thus, creating particle masks with Purency Mi-
croplastics Finder is challenging (Fig. 3b). Although Purency 
Microplastics Finder allows the users to re-edit the particle 
mask to improve the accuracy of the particle measurement, this 
step will increase the workload and was not applied in this study. 
Raman-based particle analysis is not affected by the incon-
sistent spectra of the particles themselves (Fig. 3e), but an ad-
vantage of FPA-FTIR imaging is that it could distinguish adja-
cent particles with different polymer types (Fig. 3c), which also 
could be recognized in one microplastic particle by particle 
analysis (Fig. 3f). 



 

Figure 4. Comparison of the material identification results of standard sample #1 (a) and environmental sample #1 (b) under different 
strategies. LDIR, FTIR and Raman spectra for the same particle (c, d, e). 



Material identification 
Raman-based particle analysis and FPA-FTIR imaging are 

consistent in identifying particles in standard sample #1, but 
they are inconsistent with LDIR-based particle analysis (Fig. 
4a). In the LDIR-based particle analysis, PET may be errone-
ously classified as alkyd varnish, polyurethane (PU), PA, and 
rubber, and PA is erroneously classified as chitin (Fig. 4a). In 
fact, the LDIR spectra of these particles are the same as the 
FTIR spectra (Fig. 4c, d). The incorrect classification of parti-
cles is related to the built-in database of Clarity. Clarity's built-
in database includes nonplastic materials such as chitin and al-
kyd varnish, resulting in overmatching phenomena in standard 
sample #1. When the nonplastic materials were removed from 
the library, the revised material identification results of the 
LDIR-based particle analysis strategy were closer to those of 
Raman-based particle analysis and FPA-FTIR imaging. In ad-
dition, the wavenumber range of the LDIR-based particle anal-
ysis is only 975-1800 cm-1, restricting the polymer identifica-
tion from referring to the stretching vibration of C-H bonds at 
2800-3000 cm-1. The FPA-FTIR imaging strategy has a wider 
wavenumber range, 1250-3600 cm-1, and Raman-based particle 
analysis has a Raman shift range of 0-4000 cm-1, making mate-
rial identification more stable. 

The difference in material identification of particles in envi-
ronmental samples between these three strategies is even 
greater (Fig. 4b). The LDIR- and FTIR-based identification of 
polypropylene (PP), PE and PU are basically consistent, but the 
LDIR classifies acrylonitrile butadiene styrene (ABS) as PS be-
cause of the stretching vibration of C≡N in ABS located at 
2236 cm-1, beyond 975-1800 cm-1 (Fig. 4e). There will be a se-
ries of changes in the infrared spectrum of weathered micro-
plastics, such as a C-O stretching vibration peak at 1010 cm-1, a 
C=C stretching vibration peak at 1640 cm-1, and a series of car-
bonyl stretching vibration peaks at 1680-1800 cm-1 24. In con-
trast, the peaks of the C-H stretching vibration of 2800-3000 
cm-1 of polymers are more robust against weathering24. 

The Raman spectra of weathered microplastics7,24 and micro-
plastics with pigment additives25 often have strong fluorescence 
and cannot be identified (Fig. 4e). Switching lasers usually re-
duces fluorescence interference, but a single laser cannot cope 
with the diversity of particles in environmental samples in par-
ticle analysis mode. For some particles, 488, 532, and 785 nm 
lasers cannot obtain effective Raman spectra (Fig. S7d-g), 
which means that Raman-based particle analysis is not reliable 
in quantifying microplastics in environmental samples (Fig. 2g). 
For some other particles, the use of a 785 nm laser may help to 
weaken the fluorescence (Fig. S7a, h, j). However, the charge-
coupled-device (CCD) detector responds poorly to the Raman 
shift beyond 2000 cm-1 excited by 785 nm33, making it challeng-
ing to identify polymers without C-H stretching vibrations at 
2800-3200 cm-1 (Fig. S7b, c, j). In addition, unlike the Raman 
shift between 2800-3200 cm-1, which could be selected as the 
range of autofocus when using a 488 or 532 nm laser, the com-
plete Raman shift can be selected as the range of autofocus, 
which makes it easy to focus on the glass slide or substrate in-
stead of the particles (Fig. S7c, I, j). Therefore, a 785 nm laser 
is not recommended in the Raman-based automated analysis of 
microplastics. Although nonplastic materials are not the focus 
of this study, we find that coal in the LDIR-based particle anal-
ysis is identified as orthoclase by Raman-based particle analysis 
(Fig. 4b). In summary, Raman-based particle analysis should 
not be used for the automated analysis of microplastics in envi-
ronmental samples based on the consideration of strong fluores-
cence interference, but it may be possible to use this method to 

quantify the release of microplastics and nanoplastics in daily 
products34,35. 

Reference databases are crucial in material identification. Af-
ter decades of development of FTIR and Raman technologies, 
reference databases for a variety of polymers and polymer ad-
ditives have been created. However, when identifying micro-
plastics in environmental samples, it is best to use microplastics 
with environmental characteristics to create a database to ad-
dress the influence of weathering on FTIR or Raman spectra7, 
such as those included in the Spectral Library of Plastic Parti-
cles Aged in the Environment (SLoPP-E)36, the Raman Data-
base of Weathered Microplastics (RDWP)24 and the FTIR ref-
erence database designed for the automated analysis of micro-
plastics37. Recently, Open Specy software has been developed 
for allowing researchers to share, view, process, and identify 
their spectra for free38. Although LDIR-based particle analysis 
data should theoretically be compatible with the FTIR-based 
particle analysis database, we suggest that it still needs to be 
further confirmed and revised in Clarity (version 1.3.42). 

Speed 
The LDIR-based particle analysis and the Raman-based par-

ticle analysis are based on point analysis, so the average time 
required for measuring a single particle can be calculated and 
compared (Table 1). It is meaningless to compare the total times 
required because the number of particles detected differs (Fig. 
2). The average measurement time per particle under the LDIR-
based particle analysis is approximately 6-9 s, while the average 
measurement time per particle under the Raman-based particle 
analysis is 14-15 s. The time used by the Raman-based particle 
analysis is related to the integration time, cumulation time, Au-
tofocus range and steps. 

Only the time required for measuring a certain area (1 mm2) 
can be calculated for FPA-FTIR imaging. It takes approxi-
mately 2 min to measure 1 mm2 with the 2×2 binning setting 
(resolution of 10 μm) and approximately 9 min to measure 1 
mm2 without binning (resolution of 5 μm), approximately 4 
times that with 2×2 binning. It takes approximately 7 hours to 
measure an entire aluminum oxide filter (14.9×15.5 mm, 4×4 
binning, Fig. S10). If there are many particles in a small area, 
FPA-FTIR imaging will be preferred. If there are a few particles 
in a large area, then particle analysis will be preferred. 

Table 1. Time consumption and analysis speed of differ-
ent strategies. 

IDa Strategy 
Total 
(min) 

Parti-
cle (s) 

1 mm2  
(min) 

SS #1 

LDIR 7.66 6.39 NAb 
Raman 82 14.0 NA 
FPA-FTIR 

(2×2 binning) 179 NA 1.88 

ES #1 

LDIR 10.5 9.69 NA 
Raman 73 15.5 NA 
FPA-FTIR 

(2×2 binning) 108 NA 1.92 

SS #2 
Raman 63 14.3 NA 
FPA-FTIR 

(2×2 binning) 28 NA 2.38 

SS #3 
Raman 11.5 11.3 NA 
FPA-FTIR 

(no binning) 24 NA 9.38 



ES #2 
Raman 63 14.2 NA 
FPA-FTIR 

(2×2 binning) 30 NA 2.46 

a: Sample ID is written as the abbreviation of the initial character. 

b: Not applicable 

Raman mapping 
The Raman mapping of PVC particles is the same as the ma-

terial map created by ParticleScout (Fig. 5a, b). Specifically, 
Raman mapping provides a more detailed description of the 
edges of particles (Fig. 5a), while ParticleScout provides a 
smoother edge measurement (Fig. 5b). Therefore, the particle 
size measured with ParticleScout is larger than that measured 
by Raman mapping. For example, two adjacent microplastic 
particles (Fig. 5c) were not successfully divided by Parti-
cleScout (Fig. 5b), but they were successfully divided by Ra-
man mapping (Fig. 5a). The smallest microplastics measured 
with ParticleScout and by Raman mapping are both 0.61 μm, 
but the lateral resolution of the Raman spectra in the 100× ob-
jective (0.9 NA) is 0.36 μm. This may be because the smallest 
microplastic particle in standard sample #4 was 0.61 μm. A 
high-precision motor stage can be used to compensate for the 
resolution of the Raman spectrum to detect nanoplastics with a 
size of 30 nm39-41. Raman mapping should be suitable for toxi-
cological studies of microplastics and nanoplastics42. However, 
Raman mapping is challenging to apply to the quantification of 
microplastics and nanoplastics because it is too slow43. It took 
approximately 5 hours to analyze the microplastics in this area 
with Raman mapping (Fig. 5a), but only approximately 5 min 
was required with ParticleScout (Fig. 5b). 

 

Figure 5. Raman mapping image (a) and material map (b), cre-
ated by ParticleScout, of PVC particles (standard sample #4).  

Requirement for sample preparation 
The most commonly used method for separating microplas-

tics is filtration44. In this case, the choice of the filter membrane 
is very important45. According to the structure, filter membranes 

can be divided into multilayer/fiber-type (e.g., glass fiber, cel-
lulose nitrate, and cellulose fiber) and monolayer-type (e.g., 
polycarbonate (PC), and aluminum oxide) membranes16,44-46. 
According to the material, filter membranes can be divided into 
polymer-type (e.g., nylon, and polyethersulfone) and inorganic 
membrane-type (e.g., glass fiber) membranes. In LDIR-based 
particle analysis, the filter membrane first needs to be sonicated 
in ethanol solution to extract the particles. Ethanol was further 
concentrated by nitrogen blowing and transferred to Kevley 
low-E slides. There are two sample transfer steps. It is necessary 
to use an inorganic single-layer filter membrane (e.g., inorganic 
aluminum oxide membrane) to avoid contamination or the po-
tential loss of particles trapped inside the filter membrane. If we 
do not consider the potential contamination that the filter mem-
brane may bring, the nylon filter membrane should also be ac-
ceptable because of its low surface adsorption rate44. 

FPA-FTIR imaging accepts the filter membrane to load par-
ticles directly but requires that the filter membrane has as little 
infrared absorption as possible and can be distinguished from 
microplastic particles by IR imaging. Glass fiber membranes 
and polymer-type membranes are not applicable. The aluminum 
oxide filter has been widely used2,17,46-48 because it has no infra-
red absorption above 1250 cm-1 46. The recommend FPA-FTIR 
imaging uses FPA to measure the transmission spectra of parti-
cles loaded on the aluminum oxide (Fig. S10). The machine 
learning model in Purency Microplastics Finder is trained with 
the transmission spectrum imaging data obtained with an alu-
minum oxide membrane29. The potential problem is that the 
largest pore size of the commercial aluminum oxide filter is 
only 0.2 μm, which is easily blocked during the filtration pro-
cess2. In addition, the particles easily gather at the edge of the 
filter (Fig. S10), making them indistinguishable. A silicon filter 
is also suitable for FPA-FTIR imaging46. 

Raman-based particle analysis allows the same sample prep-
aration approach as LDIR-based particle analysis and allows the 
filter membrane to load particles directly. The filter membrane 
must be uniform and flat to meet the requirements of dark-field 
microscopy, confocal microscopy, and polymer analysis, which 
means that the filter membrane cannot be a polymer-type or fi-
ber-type membrane. Therefore, Raman-based particle analysis 
cannot use most commercial membranes, including alumina 
membranes, which is not suitable for dark-field microscopy 
(Fig. S11). Instead, PC coated with aluminum16 and a silicon 
filter46 are suitable for use in polymer analysis and dark-field 
microscopy. 

CONCLUSIONS 
The answer to the question ‘Are we measuring the same met-

rics when using these different strategies to analyze microplas-
tics automatically?’ is obviously ‘No’. The number, size, and 
material identification results will be different among different 
strategies. The automated analysis of microplastics is the goal, 
and we believe that it will eventually replace traditional manual 
methods. However, a considerable amount of research must be 
conducted before an appropriate approach to the automated 
analysis of microplastics is established. In the future, compari-
sons among strategies, verification of strategies, and the build-
ing and sharing of the spectral database should be further 
strengthened. 
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