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ABSTRACT: Pyridone skeletons are found in numerous biologically active molecules and pharmaceuticals. 1-(1-Arylvinyl)pyr-
idin-2(1H)-ones are synthetic intermediates derived from the enamide moiety, and only few examples of the synthesis of 1-
(1-arylvinyl)-2-pyridones have been reported. In this work, a simple and efficient procedure for the synthesis of N-vinyl-sub-
stituted pyridones from ketones and 2-fluoropyridine in the presence of trifluoromethane sulfonic anhydride, followed by base 
treatment is described. Various ketones with electron-donating or -withdrawing groups at the benzene rings can be used in 
this reaction. A preliminary mechanistic study indicates that it is not very likely that both vinyl triflates and vinyl cations play 
major roles as intermediates in this transformation. The thus obtained pyridones can be subsequently transformed via C–H 
arylation and radical alkylation reactions.

Pyridone, i.e., pyridin-2(1H)-one, skeletons exist in nu-
merous biologically active molecules and pharmaceuti-
cals.1–7 The development of efficient synthetic methods for 
the straightforward construction of this structural motif has 
thus received considerable interest from the synthetic com-
munity, and several synthetic routes to N-substituted pyr-
idones have been reported.8,9 Although 1-(1-arylvinyl)pyri-
din-2(1H)-ones are useful synthetic intermediates derived 
from the enamide moiety, only few examples of the synthe-
sis of 1-(1-arylvinyl)-2-pyridones have been reported.10 Und-
heim and co-workers have reported the reaction of 1-bro-
mophenylacetylene with the sodium salt of 2-pyridinone (eq. 
1).11 Rao et al. have reported the nucleophilic addition to 
cyano-substituted aryl alkynes leading to 1-(1-arylvinyl)-2-
pyridones.12 

On the other hand, 2-halopydinium salts are easily con-
verted into 2-pyridones.13–18 Due to the toxicity of 2-chloro-
pyridine,19 the development of efficient synthetic routes to 
vinyl-2-fluoropyridinium salts are highly desirable in order to 
construct 1-(1-arylvinyl)-2-pyridones. However, the synthe-
sis of 1-(1-arylvinyl)-pyridinium salts is still limited. Relles has 
reported the synthesis of vinyl pyridinium salts from elec-
tron-rich acetophenones with SOCl2 using pyridine as the 
solvent (eq. 2).20 Novella and Alvarez-Builla have checked 
the generality of Relles’s work.21 Substrates with electron-
donating groups (e.g., 4-OMe) afford polymers, while sub-
strates with electron-withdrawing groups (e.g., 4-F) do not 
afford vinyl pyridinium salts (eq. 3). Recently, Zhao and co-
workers have reported the synthesis of vinyl pyridinium salts 
from styrenes with fluoropyridinium salts in the presence of 
an organoselenium catalyst (eq. 4).22 Very recently, Majireck 
has reported the pyridination of alkynes in the presence of 
TfOH (eq. 5). However, this system is limited to alkynes that 
contain electron-donating groups such as OMe,22,23 and 

pyridinium salts were not observed using phenylacetylene 
(eq. 6). 

Trifluoromethanesulfonic anhydride (Tf2O) is a highly elec-
trophilic reagent,24 and its reactions with ketones and base 
furnish vinyl triflates.25,26 Yields can often be improved when 
using sterically hindered non-nucleophilic bases such as 
2,6-di-(t-butyl)-4-methylpyridine (DTBMP),27albeit that the 
latter is relatively expensive. During our study on vinyl tri-
flates, 28,29 we obtained N-vinyl-substituted pyridinium salts 
from acetophenones with Tf2O in the presence of 2-fluoro-
pyridine30–34 as a mild nucleophilic base. Subsequent treat-
ment of the resulting pyridinium salts under basic conditions 
furnished 1-(1-arylvinyl)pyridin-2(1H)-ones (eq. 7). Herein, 
we describe the synthesis of 1-(1-arylvinyl)pyridin-2(1H)-
ones from acetophenones that contain electron-donating or 
-withdrawing groups at the benzene ring. 



 

 
For our initial study, we chose 4’-chloroacetophenone 

(1a) as a model substrate (Table 1). When a CH2ClCH2Cl 
solution of 1a, 2-fluoropyridine (2a) (1.0 equiv), and Tf2O (1.5 
equiv) was stirred for 1 h at 80 °C, and subsequently treated 
with NaOH aq., vinyl triflate 3a was obtained in 92% yield 
together with vinyl pyridone 4aa in 4% yield (Table 1, entry 
1). Increasing the amount of 2a to e.g. 3.0 equiv resulted in 
the formation of 4aa in 79% yield after column chromatog-
raphy on silica gel (entry 3). 
Table 1. Initial Study 

 

entry 2a (equiv) conv. of 1a a 3a a 4aa a,b 

1 1.0 97% 92% 4% 
2 2.0 86% 42% 53% 
3 3.0 99% 5% 93% (79%) 

a Determined by 1H NMR spectroscopy using 1,1,2,2-tetra-
chloroethane as an internal standard. b The isolated product 
yield, after flash column chromatography on SiO2, is given in 
parentheses. 

With the optimized conditions (Table 1, entry 3) in hand, 
we next examined the substrate scope for the synthesis of 
vinyl pyridones and the results are summarized in Table 2. 
Halo-substituted acetophenones 1a–1f afforded 4aa–4fa in 
good yield (entries 1–6). The reaction of acetophenone (1g) 
furnished vinyl pyridone 4ga in 85% yield (entry 7). p-Meth-
oxy-, o-methyl-, and p-phenyl-substituted acetophenones 
also worked well (entries 8–10). Substrates with electron-
withdrawing groups at the benzene ring (1k–1m) afforded 
the corresponding products (4ka–4ma) in moderate to 
good yield (entries 11–13). For example, the reaction of 1-
(4-(methylsulfonyl)phenyl)ethan-1-one (1l) furnished 4la in 
52% yield (entry 12). Increasing the proportion of 4-fluoro-
pyridine (2a) to 5 equiv generated vinyl pyridone 4la in 64% 
yield (entry 13). 1-(Naphthalen-1-yl)ethan-1-one (1n) and 2-
(naphthalen-1-yl)ethan-1-one (1o) also worked well (entries 
16 and 17). The reaction of 1f and 2-fluoro-4-methylpyridine 
(2b) with Tf2O gave the corresponding pyridine (4fb) in good 
yield (entry 18). The reaction of 1-(4-chlorophenyl)propan-
1-one (1p) and 1,2-diphenylethan-1-one (1q) afforded the 
corresponding products with high stereoselectivity in 83% 
and 60% yield, respectively (entries 19 and 20). The present 
synthesis of vinyl pyridones can also be carried out on the 
gram scale, furnishing 4fa in 88% yield and 4ha in 97% yield 
(eq. 3 and 4). 
Table 2. Substrate Scope a 
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a 1 (0.5 mmol), 2 (1.5 mmol, 3 equiv), Tf2O (1.5 equiv), 
CH2ClCH2Cl (2 mL), 80 °C, 1 h. b Determined by 1H NMR spec-
troscopy using 1,1,2,2-tetrachloroethane as the internal stand-
ard. c The isolated product yield, after flash column chroma-
tography on SiO2, is given in parentheses. d

 2a (5 equiv) was 
used. e The stereoselectivity was determined by 1H NMR anal-
ysis of the crude reaction mixture. 

 
According to previous work on vinyl triflates by other 

groups, vinyl triflates that contain electron-donating groups 
at the para position of the benzene ring easily afford vinyl 
cations, which can be trapped by nucleophiles such as ni-
triles35 or sulfoxides.36 Therefore, we examined the reaction 
using vinyl triflates 3a, 3g, and 3k or aryl alkynes 1h’, 1g’, 
and 1k’ to gain mechanistic insights. When a CH2ClCH2Cl 
solution of 3a, 3g, and 3k and 2-fluoropyridine was stirred 
at 80 °C for 1 h, followed by treatment with NaOH aq., the 
desired product was obtained in 1%, 12%, and 0% yield, 
respectively. Similar to the result of Majireck et al.,23 the re-
action of aryl alkynes 1g’ and 1k’ with TfOH and 2-fluoro-
pyridine did not afford vinyl pyridones effectively. These re-
sults suggest that it is not very likely that both vinyl triflates 
(3) and vinyl cations play major roles as intermediates in this 
transformation (Scheme 1). 
Scheme 1. Control experiments 

 
When a pyridinium salt, which was obtained from treating 2-
fluoropyridine (2a) with Tf2O,34 in CDCl3 was exposed to aceto-
phenone 1a (4-Cl) or 1h (4-OMe) at rt for 1h, the corresponding 
vinyl pyridinium salts were generated. 

Although the details of the underlying mechanism still re-
main unclear at this stage, a plausible mechanism is shown 
in Scheme 2. The generated trifluoromethanesulfonyl pyri-
dinium salt reacts with a ketone via a concerted pathway to 
give pyridinium intermediate A. Another 2-fluoropyridine ab-
stracts a proton to give vinyl pyridinium B, which undergoes 
hydrolysis to furnish the final product. An alternative mech-
anism is based on Neuhoff’s work.37 The reaction of 
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acetophenone with Tf2O gives carbocation intermediate, 
which is trapped by 2-fluoropyridine to afford pyridinium in-
termediate A.  
Scheme 2. Plausible reaction mechanism for the synthesis 
of 1-(1-arylvinyl)pyridin-2(1H)-ones from ketones and 2-
fluoropyridine 

 
As the products contain enamide moieties, they are ame-

nable to further transformations (Scheme 3). For example, 
a palladium-catalyzed C–H arylation reaction38 of 4ha with 
aryl iodide 5 forms trisubstituted alkene 6ha in 81% yield. A 
black-light-induced Heck-type reaction with bromomalo-
nate furnished the corresponding alkylated product (8ha) in 
56% yield. 
Scheme 3. Subsequent transformation of the obtained vinyl 
pyridones 

 
In summary, we have developed a synthetic route to vinyl 

pyridones from acetophenones and 2-fluoropyridine with 
Tf2O as an activator. This strategy is characterized by an 
excellent functional-group tolerance and procedural sim-
plicity. The generated vinyl pyridones are easily transformed 
via C–H arylation and radical alkylation reactions. Further 

mechanistic studies are currently in progress and the cor-
responding results will be reported in due course. 
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